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ABSTRACT 

Impulsive noise interference of a biological origin is common in underwater acoustic 
environments. Here we report on properties of impulsive noise produced by sperm whales, 
recorded in deep water off the coast of Manus Island. We analyse the noise as a function of 
frequency band, and find strong non-Gaussian effects in the range 1-6 kHz. Sonar 
performance can be improved by utilising nonlinear filtering techniques from non-Gaussian 
detection theory. We demonstrate this by measuring empirical gains for a constant false-alarm 
rate (CFAR) incoherent narrowband processor. We investigate both parametric locally 
optimum and nonparametric filtering of the time-domain data to enhance weak signal 
detection. Simulated Rayleigh fading signals were inserted into the noise data, and the 
detection threshold was found to be lowered by about 4 dB over conventional processing, for 
signal frequencies 1.5 kHz and 4.5 kHz and a false-alarm probability of 0.0001. Performance 
degradations can potentially occur at large signal-to-noise ratios, but these were mitigated 
using a simple technique for fusing the non-Gaussian processor with a conventional processor 
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Sperm Whale Impulse Noise and Incoherent 
Narrowband CFAR Processing 

Executive Summary 

Ambient underwater acoustic noise is often dominated by sounds produced by marine 
creatures. Some of these noises are impulsive in character, and can seriously degrade 
sonar performance. This is the case with noise produced by sperm whales, which are 
commonly found in deep waters around the world. Impulsive noise is characterised by 
a high probability of occurrence of extreme data samples compared with "Gaussian" 
noise. The effect of intense, sustained impulsive interference on a conventional sonar is 
to severely degrade signal detection, and cause difficulties in selection of thresholds for 
automatic detection. This research was carried out under task DST 00/036, "Advanced 
Signal Processing for Passive Sonar." One component of this task is to investigate new 
processing techniques for improving sonar performance in the presence of biological 
noise interference. 

The purpose of this report is two-fold. Firstly, we analyse the impulsive properties of 
sperm whale noise recorded in deep water off the coast of Manus Island, as a function 
of frequency band. The impulsive effects are particularly strong in the frequency range 
1-6 kHz, and improvements to sonar performance can be expected within this range. 
We demonstrate this by measuring empirical gains for a sonar processor incorporating 
nonlinear filtering to improve weak signal detection, in a problem related to intercept 
detection of sonar pulses. We find that detection threshold (a processor performance 
metric corresponding to the signal-to-noise ratio (SNR) at the processor input required 
to give a probability of detection of 50% at a specified probability of false-alarm) is 
lowered by about 4 dB for signal frequencies of 1.5 kHz and 4.5 kHz and a false-alarm 
probability of 0.0001. The noise data used was obtained from a single hydrophone, but 
array data is required for future work so that gains on operational sonar systems can 
be established. 

The second purpose of this report is to demonstrate a technique for mitigating against 
performance losses that can potentially occur at large SNRs. When multiple signals are 
present at large SNRs, nonlinear mixing effects at the nonlinear filter can lead to the 
generation of artefacts. The key is to develop a processing technique that eliminates 
problems at large SNRs, while retaining the weak signal gains. We propose a simple 
technique for fusing the nonlinear processor with a conventional processor, based on 
the application of a higher-order statistic of the received data as a switch between the 
two processors. We find that this is successfull in eliminating large SNR problems for 
data analysed to date. 
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1. Introduction 

Ambient underwater acoustic noise is often dominated by soimds produced by marine 
creatures. Some of these sounds are impulsive in character; the time-series of pressure 
values has a spikey appearance, with a higher probability of occurrence of extreme 
sample values than is the case for Gaussian noise. This is true for noise produced by 
snapping shrimp [1-2], and also for noise produced by sperm whales [3-7]. Snapping 
shrimp are found in warm, shallow waters, while sperm whales are common in deep 
waters aroimd the world. It is important to understand the statistical properties of 
these noises. A conventional sonar processor is optimised to detect a signal buried in a 
background of Gaussian noise, and may perform poorly in the presence of intense and 
sustained impulsive noise interference. Signal detection may be significantly degraded, 
and difficulties can arise in the setting of thresholds for automatic detection. 
Improvements can be obtained by incorporating impulsive noise models into the 
design of the processor. 

In this report we describe the frequency-dependent non-Gaussian properties of sperm 
whale noise recorded off the coast of Manus Island. We examine probability 
distributions for the noise, and their modelling using standard parametric 
distributions. Sonar processing can be improved by using nonlinear filtering 
techniques from non-Gaussian detection theory [8]. We demonstrate this by measuring 
the empirical gains for a constant false-alarm rate (CFAR) incoherent narrowband 
processor utilizing standard non-Gaussian techniques, in a problem related to intercept 
detection of continuous wave (CW) sonar pulses. We investigate nonlinear filtering of 
the time-domain data at the processor input to enhance weak signal detection, using 
both parametric locally optimum (LO) ([8, 9]) and nonparametric ([8, 10]) filters. The 
LO processor is adaptive; as each block of time-series data is read-in, the noise statistics 
are estimated from the data, noise model parameters are estimated, and the result used 
to tune the nonlinear filter to optimise the processor to detect weak signals buried in 
that data. Gains over conventional processing are measured for simulated Rayleigh 
fading signals inserted into the noise data. 

When multiple signals are present, nonlinear filtering can potentially produce artefacts 
at the processor output at large SNRs, due to nonlinear mixing of the signals. This is a 
serious problem if not addressed, as it can cause confusion in signal classification. We 
suggest a simple technique for mitigating against this problem. As each segment of 
data is read-in, we estimate the marginal kurtosis and decide whether or not to apply 
nonlinear filtering. If the kurtosis is above a threshold then we apply the nonlinear 
filter, otherwise we process in the conventional way. Since the marginal kurtosis is 
lowered by the presence of strong narrowband signals, the processor reverts to a 
conventional processor when SNR becomes too large. This essentially fuses the outputs 
of the conventional and nonlinear processors using a simple 'or' rule. We have 
empirically chosen a threshold value which works well for our data, and make no 
attempt to optimise it here. 
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2. Sperm Whale Impulse Noise 

2.1 Data Set 

We use 33 minutes of data recorded off the coast of Manus Island, using a hydrophone 
located on the ocean bottom in water of depth 640 mJ The data is sampled at a rate of 
32 kHz, and the system response is flat from about 50 Hz up to 10 kHz. Sperm whales 
were observed at the time of recording, and loud clicking and creaking sounds can be 
heard on audio, in a manner consistent with previously published studies ([3-7]). Fig. 1 
shows the power spectrum; there is an intense artefact at 50 Hz, and several of its 
harmonics are also present. Sperm whales dominate the spectrum for frequencies 
between about 1 and 6 kHz. 
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Figure 1. Power spectra. Averaged periodograms for 3 consecutive 5 minute segments of data. 
(Arbitrary reference level.) 

The time-series often exhibits impulses arriving at regular time-intervals, as illustrated 
in Fig. 2. Individual whales tend to click at a regular rate of about 1-2 pulses per sec, 
and this can be observed in our data when a single whale dominates the noise. The rise 
and fall of the impulse amplihides may be due to vocalisation directivity effects, as the 
whale turns towards the receiver and then away [5]. The background is dominated by 
clicking from other pod members. The data also exhibits occasional 'creaking' sounds. 

1 The analog recording was made in 1968, but was only recently digitised by D.Cato from DSTO 
Pyrmont. 
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believed to be clicking at a much higher rate and possibly associated with the whale 
diving for food [4]. 

Figure 2. A time-series segment dominated by regular clicking from an individual whale. 

2.2 Kurtosis 

To characterise the non-Gaussian behaviour, we complex-demodulate the data in 
various passbands and compute the sample kurtosis of the in-phase and quadrature 
components. Kurtosis is the centralised fourth-order moment divided by the square of 
the variance. Gaussian noise has a kurtosis value of 3, while impulsive noise has a 
kurtosis greater than 3 provided the fourth-order moment exists. We use the deviation 
of kurtosis from the value 3 as a measure of non-Gaussian behaviour. We average the 
in-phase and quadrature kurtosis estimates; this gives an estimate of the kurtosis of the 
marginal probability density, assuming the joint density of the in-phase and 
quadrature components is circularly symmetric. 

Fig. 3 shows a plot of the kurtosis in consecutive 500 Hz bands (0-500 Hz, 500-1000 Hz, 
etc.,) computed from 30 second segments of data that pass the K-S two-sample test of 
homogeneity.2 Circles indicate the median of the kurtosis values obtained and error- 
bars indicate the 25-75 percentile range. The dashed line indicates the Gaussian value 

^ The Kolmogorov-Smimov (K-S) two-sample test checks that the first-order probability 
distribution is homogeneous over the first and second halves of each data segment. We apply 
the test separately to the in-phase and quadrature components at the 5% significance level, and 
we consider the segment to pass the test only if both components pass. If the in-phase and 
quadrature components could be treated as independent (not strictly true for non-Gaussian 
noise, as the components at the same time instant may be uncorrelated but dependent [8-9]) 
then the overall level of the test would be 10%. 
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of 3. Kurtosis is particularly large in the frequency range 1-6 kHz, so non-Gaussian 
processing gains can be expected here. Maximum kurtosis occurs in the 4-4.5 kHz 
band. 

Figure 3.    Kurtosis vs frequency (500 Hz bands). Average of in-phase and quadrature 
components. 

2.3 Envelope Distribution 

The exceedance probability is the probability that an envelope samples exceeds a 
specified value. The triangle symbols in Fig. 4 show the empirical exceedance 
probability for a 30 sec segment of data in the 2-4 kHz band, that passed the K-S test of 
homogeneity. We note that the empirical distribution follows a continually bending 
curve on the log-log plot. Thus the dish-ibution does not appear to exhibit a power-law 
fall-off, so an alpha-stable noise model [11] would appear to be inappropriate for this 
data.4 Also shown are the predictions of several other impulsive noise models; the 
generalised Cauchy (GC) model ([9]), the Gaussian-Gaussian mixture (Mix) model 
([12]), and the K model ([13]), with method of moments used to fit the models to the 
data.5 Details of the envelope probability density functions (PDFs) are given in Table 1, 

c 

3 The envelope sample at each time-instant is the square-root of the sum of the squares of the 
corresponding in-phase and quadrature samples. 
* This is not surprising. Alpha-stable models arise from a generalised central limit theorem 
applicable in the limit of a large number of independent sources. In our case only a small 
number of whales dominates the data. 
5 We only consider a GC model with tail parameter v > 2 , for which the second and fourth 
marginal moments exist. 
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and the relations used to apply method of moments are given in Table 2. Note that the 
moments refer to either the marginal data (in-phase and quadrature samples 
combined) or the envelope data. 

None of the models gives a good fit over the full range of the data. The K model gives a 
good fit at large envelope values, but a poor fit at small envelopes. The Mix model also 
gives a good fit at large envelopes, but over a reduced range. The log-normal model 
(not shown) was found to give a good fit at small envelopes, but a poor fit at large 
envelope values. 
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Figure 4. Envelope exceedance probability; empirical data and model predictions. 

Table 1. Impulsive noise models; envelope PDFs and LO nonlinear filters. 
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Table 2. Model parameters. Here mz, m4 and me are the 2"d, 4"' and 6"" marginal moments, and 
ez and ei are the 2"'' and 4"' envelope moments. 

Noise Model Parameters 
from Moments 

GC 
Model 

p2_  2m^rn, 
m^-3ml 

^_ 2m,-3ml 
m, -3ml 

Mix 
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a = ml-m,/3, b = mJ15-m^mj3, c = ml/9-m^mJ\5 

2    -b + ^|b^ -4ac a. =  
*              2a 
2    m,/3-m2Gl 

m^-a^ 

^2=J       J=l      fil 

K 
Model A-    2^^' 
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3. Incoherent Narrowband CFAR 

3.1 Conventional Processor 

Non-Gaussian detection theory shows that nonlinear filtering can improve sonar 
performance in the presence of impulsive noise ([8-12]). We illustrate this point on a 
problem related to intercept detection of continuous wave (CW) pulses.* Our aim is to 
illustrate simple processing techniques that utilise the impulsive nahire of the noise to 
improve performance, and is not intended to quantify the gains expected of any 
particular operational system. Our analysis uses data recorded from a single 
hydrophone, and can only hint at the gains that might be obtained using data from an 
intercept array on a sea-going platform. 

* An intercept sonar is a passive sonar that detects pulse transmissions from the active sonar of 
an enemy vessel. 
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Conventional incoherent CW detection is based on FFTs. Each segment of complex- 
demodulated data, 

is tapered using a window function, Wn, a periodogram is computed, and a noise 
normalisation operator, f, is applied to equalise false-alarms across frequency (within 
each periodogram) and across time (between periodograms). The noise normalisation 
is to provide CFAR performance. The detection statistic for each FFT bin is given by the 
following. 

A(fc) = f 
N-l 

X w„x„ exp(-2;r fcn/N) 
n=0 

(1) 

A widely used approach is for the operator F to rxm a sliding window across the 
periodogram, and divide each bin by the sample mean within that window. To avoid 
signal contamination, bins with extreme values are excluded from the estimate. We 
shall use the order-trxmcate-average algorithm ([14]) for this purpose,7 and will refer to 
(1) as the "conventional processor." This will be our benchmark for performance. In 
practice the A for several overlapping segments of data may be averaged, but in this 
study we will examine detection performance for individual periodograms. A 
detection is declared when the detection statistic exceeds a threshold, which is set to 
give a prescribed false-alarm rate. 

3.2 Non-Gaussian Processor 

Nonlinear filtering can be appHed to enhance weak signal detection in impulsive noise 
([8-12]). A nonhnear filter g is appHed to tihe envelope of the time-series data, and its 
output used to re-scale each data sample. In the simplest case, ^ is a zero-memory filter 
with an output that is a decreasing fimction of the input, that acts to scale down the 
amplitude of extreme data samples. This reduces the spectral energy contributed to the 
periodogram by noise impulses, and enhances the detection of weak signals. Thus we 
replace (1) by. 

X'{k) = F 
N-l 

T,w„g(\x„\)x„exp{-27zkn/N) 
n=0 

(2) 

7 This is similar to a censored-mean CFAR processor, except that the number of bifis rejected 
from the sample estimate of the mean is not fixed, but depends on the value of a parameter. We 
compute the median of all bins within the window, and reject bins with a value greater than the 
product of the median and the parameter. 
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We test several versions of the above, based on different choices of nonlinear filter. We 
include parametric locally optimum (LO) filters ([8-9]), and sub-optimal nonparametric 
filters ([8,10]): 

Parametric LO fillers. These are associated with optimum detection in the weak 
signal asymptotic limit.s The nonlinear function depends on po{y), the envelope 
PDF under the noise-only hypothesis; 

giy)=    ^ 
(po(y)) 

Po(y) dy y 
(3) 

Nonparametric filters. These require no explicit knowledge of the noise PDF. An 
example is the hardlinuter narrowband correlator (HNC) filter ([8,10]) which is 
widely used in impulsive environments; 

g(y)=- (4) 
y 

The parametric version of the processor requires a choice of noise model, and 
estimation of the model parameters from the received data. The LO filters for several 
impulsive noise models are given in Table 1. To apply the processor, we read-in a 
segment of time-series data, estimate the model parameters from that segment of data,^ 
and then input these parameter estimates into the nonlinear filter to tune the processor. 
We then pass the same data segment through the processor according to (2). Our 
technique for estimating the model parameters is to apply method of moments directly 
to the received data, and assumes that the signal is sufficientiy weak that its presence 
in the data has negligible effect on the moments. This means that the processor will 
perform poorly at large SNRs, due to signal contamination affecting the model 
parameter estimates. There is an additional factor which degrades performance at high 
SNRs; when multiple signals are present, nonlinear filtering mixes the signals to create 
artefacts (false signals) at other frequencies. This is a serious problem, as it creates 
confusion in signal classification. The nonparametric version of the processor uses the 
HNC filter, and also suffers from the artefact problem. The HNC processor requires no 
estimation of model parameters, but has the additional problem that it performs poorly 
in Gaussian noise ([10]). All of these problems are mitigated using a simple fusion 
technique described next. 

8 The LO filter arises in the problem of detecting a weak random-phase sinusoid in noise 
modelled as independent and identically distributed samples of a bivariate PDF with circular 
sjanmetry (see [8-9]). 
' If the quantity of data is small, then we can combine with past segments to improve the 
parameter estimates. However this reduces the agility with which the processor adapts to 
changes in noise statistics. 
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3.3 Fused Processor 

Our approach to mitigating against potential problems is to decide on a segment-by- 
segment basis whether or not to apply nonlinear filtering. As each segment of data is 
read-in, we estimate the marginal kurtosis of the data; i.e., the kurtosis of the in-phase 
and quadrature samples.!" jhis will correspond to the marginal kurtosis of the 
background impulsive noise when SNR is small, but will reduce in value as SNR 
increases. For example, if one or more Rayleigh fading signals are present in the data, 
then the marginal kurtosis will drop to a value of 3 as SNR becomes large. We use the 
kurtosis as an indicator of the presence of strong signals, and to switch between 
Gaussian and non-Gaussian processing. If the kurtosis estimate is larger than a 
threshold value then we apply the nonlinear filter, otherwise we process that data 
segment in the conventional manner. In effect, this fuses the output of the non- 
Gaussian processor with the output of a conventional processor, using a simple 'or' 
fusion rule.ii We have found this procedure to be effective in eliminating degradations 
at large SNRs, for both parametric and nonparametric processors, while maintaining 
gains over conventional processing at small SNRs. In addition, this technique ensures 
that the nonparametric HNC processor reverts to a conventional processor when the 
noise envirorm\ent ceases to be impulsive. 

Suppose the complex demodulated data comprises one or more independent signals 
added to background noise. Let x denote either the in-phase or quadrature component, 
and Kx its corresponding kurtosis. Notiag that x=s+n, where s denotes signal with 
kurtosis Ks, and n denotes noise with kurtosis K„, it follows after expansion of the 
moments in Kx that. 

r = <^'>=Y^^ (6) 
<n^>    "<«'"> 

where s,„ is the m"" signal. For the case of Rayleigh fading narrowband signals, Ks=2> and 
(5) reduces to, 

(K.-3) = ^^^ ^^ ^   ^      '    {1 + rf 

10 This could be done by computing the sample kurtosis of the in-phase and quadrahare 
components separately, and then averaging. An alternative approach, which is used in this 
shidy, is to combine the in-phase and quadrature data and compute the sample kurtosis of this 
extended data set. 
" As a precaution, the mixture model processor also switches to conventional processing if the 
estimate of one of the variances of the Gaussian components is negative. 
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Equation (7) shows that a kurtosis threshold can be chosen to ensure that the processor 
reverts to conventional processing when SNR exceeds any value at which significant 
degradafions appear. Ideally, the threshold should depend on the background noise 
itself; a highly impulsive noise nxight require a higher threshold than a moderately 
impulsive noise.12 Alternatively, one might choose a constant threshold and plan for a 
worse case scenario. In this case a particularly high threshold might be used, which 
will reduce the risk of any degradation occurring, but will also reduce the weak signal 
gams over conventional processing in moderately impulsive noise. In the current study 
we have chosen the kurtosis thresholds on an ad-hoc basis, and have made littie effort 
to optimise their values. Nevertheless, promising results have been obtained. Unless 
otherwise stated, all processors (parameti-ic and nonparameh-ic) use a kurtosis 
threshold value of 5. 

3.4 Empirical Detection Gains 

We measure the empirical gains for detecting Rayleigh fading CW signals inserted into 
the noise data. We insert the signal into a large number of test data segments, and run 
the processors on each segment. We empirically determine the threshold required to 
give a specified firaction of false-alarms (P/) in bins excluding windows around the 
signal bin and near the band edges. We then measure the fraction of detections {PJ) at 
this false-alarm rate, by counting the fraction of segments for which the empirical 
threshold is exceeded by the largest bin in a small window centred on the simal 
firequency. We repeat for various SNRs, 

SNR = 10 log, N <a^ > 
<n] +nl> (8) 

to give a plot of the fraction of detections vs SNR. In (8) N is the FFT length, <fl2> is the 
mean-squared signal amplihjde, and <n,2> and <nQ^> are the mean-square of the in- 
phase and quadratiire noise samples. The latter are estimated from the test data before 
the signal is added. 

Fig. 5 shows results for detection of (a) a 1.5 kHz signal in a 1-2 kHz passband, and (b) 
a 4.5 kHz signal in a 4-8 kHz passband. In both cases the pulse-width was matched to 
the FFT length. In (a) the pulse-width was 2 sees, FFT length was 2048 samples, and 800 
periodograms were tested. In (b) the pulse-width was 250 millisec, FFT length was 1024 
samples, and 1600 periodograms were tested. In both cases, the false-alarm probability 
was 0.0001, and over 1.25 million noise-only bins were used to empirically establish the 
thresholds. The results indicate a 4 dB gain for non-Gaussian processing over 
conventional processing, measured in terms of the reduction in detection threshold. 

" This is complicated by the fact that the SNR at which degradations appear might itself depend 
on the kurtosis of the noise. 

10 
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(Detection threshold is the SNR required to give a Pd of 50% at a given Pf, in this case 
PpO.OOOl). All versions of the non-Gaussian processor performed equally well, with 
only marginal differences in gain." 
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The fusion technique based on kurtosis thresholding was successful in eliminating 
degradations in the parametric processors, associated with signal contamination 
affecting the model parameter estimates at large SNRs. A comparison with results 
obtained by rvmning the processors in a marmer that used noise-only data to estimate 
the model parameters, revealed no significant loss in weak signal gain. It also 
eUminated problems arising from the received data having a light-tailed distribution 
(i.e., kurtosis less than the Gaussian value of 3). In such cases, the nonparametric HNC 

13 An exception is the processor based on the K model, which gave significantly worse 
performance and has not been included in Fig. 5. The reason for the poor performance is 
unclear, and is a matter for further investigation. 

11 



DSTO-TR-1357 

processor gives poorer detection performance than a conventional processor ([10]), 
while the parameh-ic processors based on impulsive noise models can fail, causing 
"drop-outs" in signal detection. In the next Section we show that the fusion technique 
also solves the artefact problem. 

3.5 Artefact Mitigation 

The artefact problem is caused by nonlinear mixing when multiple signals are present 
at large SNRs, and leads to the appearance of false signals at new frequencies.!* This is 
illustrated in Fig. 6. This shows the outputs of each processor when applied to 
consecutive segments of data in the 2-4 kHz band, when fusion with a conventional 
processor is not applied. Two Rayleigh fading signals were inserted into each data 
segment (at frequencies of 2.5 kHz and 2.8 kHz) with the same SNR, and the SNR was 
increased from segment to segment. The images in the figure show pixel colour 
corresponding to the value of the detection statistic, plotted as functions of time and 
frequency, but with SNR used to label the time-axis (since SNR is linearly related to 
time). The image at top left is for a conventional processor. The other images are for 
non-Gaussian processors, and show the generation of a cascade of false signals which 
first appear for an SNR in the range 30-40 dB, and which grow in number as SNR 
mcreases.i5 By comparison. Fig. 7 shows the same as Fig. 6, but with fusion applied, 
and demonsh-ates the elimination of artefacts. 

One can devise a more sensitive test of the ability of the fusion technique to eliminate 
artefacts. We measure the probability of detecting a given signal vs SNR, when several 
other signals with the same SNR are also present in the data. We keep the probability 
of false-alarm fixed, but we include artefacts in the false-alarm count. We exclude ft-om 
the false-alarm count, (i) a window of bins around all signals, and (ii) a widow of bins 
near the band edges, but we include bins containing artefacts. Fig. 8 shows results for 
detecting a 1.5 kHz signal in the 1-2 kHz band, with PpO.OOOl. Other signals are 
present in the data at (a) 1.625 kHz, (b) 1.625 kHz and 1.375 kHz, and (c) 1.625 kHz 
1.375 kHz, 1.25 kHz and 1.75 kHz. Comparing with Fig. 5(a), it can be seen that there is' 
no significant loss of weak signal detection performance, and no degradation at high 
SNRs (except for a marginal degradation of the fiised HNC processor, evidenced by a 
slight dip in Pd). 

'* Strictly speaking, the artefact problem will arise whenever the product of the data sample 
with g(y) IS a nonlinear function of the data sample. Thus it is only avoided when the fUter ? £ a 
constant. ° 
15 Several other points can be noted from Figs. 6-7. Firstly, the difference in SNR at which the 
hvo signals first appear is due to spectral variation within the passband; the nominal SNR as 
defmed by (8), is the same for both signals, but the true SNR is larger for the 2.8 kHz signal than 
for the 2.5 kHz signal. Secondly, the horizontal striping observed in the parametric processor 
outputs m Fig. 6, is the "drop-out" effect associated with processor failure, as discussed in 
Section 3.4. 
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(a) signal of InlerosI: 1.5 kHz 
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Figure 8. P, vs SNR (Pf= 0.0001) for a 1.5 kHz signal. The passband contains (a) one, (b) two 
and (c)four other signals at the same SNR. Artefacts are counted as false-alarms. 
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Figure 9. Pd vs SNR (Pf= 0.0001) for a 1.5 kHz signal, using a larger kurtosis threshold for the 
fusion than in Figs. 5-8. The passband contains (a) none, (b) one, (c) two and (d) 
four other signals at the same SNR. Artefacts are counted as false-alarms. 

The slight degradation for the hised HNC processor is due to the fact that the chosen 
kurtosis threshold was a little too low (a value of 5 was used for all fused non-Gaussian 
processors in Figs. 5-8), and disappears when the kurtosis threshold is increased. This 
is illustrated in Fig. 9, which shows Pd vs SNR for the same multiple signal scenario as 
before, but this time using a higher kurtosis threshold value of 9. In this case the fused 
HNC processor shows no dip in Pd at large SNRs, while the low SNR detection 
performance is unchanged. For comparison, the figure also shows the corresponding 
results for a HNC processor without fusion, to demonstrate the severe degradation that 
occurs at high SNRs, as artefacts are generated in increasing numbers and cotmted as 
false-alarms. 
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4. Conclusions 

Sonar performance is degraded in the presence of impulsive noise interference. Some 
of the performance loss can be regained using nonlinear filtering techniques from non- 
Gaussian detection theory. Improvements in detection threshold of 4 dB were obtained 
in this study, for CFAR incoherent narrowband detection in noise dominated by sperm 
whale clicking. The noise data used was obtained from a single hydrophone, but array 
data is required for fuhire work so that the gains on operational sonar systems can be 
established. The key to practical implementation of non-Gaussian processing 
techniques is to make the processor robust to deviations from the assumptions 
underl)ang the processor design. 

In principle, problems can occur when multiple signals are present at large SNR, due to 
generation of false signals from nonlinear mixing effects. This problem arises for both 
parametric and nonparametric processors. Parametric processors have additional 
problems associated with the estimation of model parameters when only signal+noise 
data is available. The nonparameh-ic HNC processor also has the problem of requiring 
the noise environment to be sufficiently impulsive before gains over conventional 
processing can be obtained. 

In this report we have examined a technique for overcoming these problems; the 
marginal kurtosis of the received data is used as a switch between linear and nonlinear 
filtering. This effectively fuses the non-Gaussian and conventional processor outputs 
on a segment-by-segment basis. This technique has shown promise in eliminating 
degradations in data analysed to date, but fijrther work is required before the 
robushiess of the technique can be established. In particular, the issue of selecting a 
kurtosis threshold requires more study. 
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