
DOT/FAA/AR-02/113 Issues Conceming the Structural
Office of Aviation Researt
Washington, D.C. 20591
Office of Aviation Research COVGraOG Of ObjeCt'OriGntOCi

Software

November 2002

Final Report

This document is available to the U.S. public
through the National Technical Information
Service (NTIS), Springfield, Virginia 22161.

o
U.S. Department of Transportation
Federal Aviation Administration

20030J19 028

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of infomriation exchange.
The United States Government assumes no liability for the contents or
use thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. This
document does not constitute FAA certification policy. Consult your local
FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center's Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

Technical Report Documentation Page
1. Report No.

DOT/FAA/AR-02/113

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

ISSUES CONCERNING THE STRUCTURAL COVERAGE OF OBJECT-
ORIENTED SOFTWARE

5. Report Date

November 2002
6. Performing Organization Code

7. Author(s)

John Joseph Chilenski, Thomas C. Timberlake, and John M. Masalskis

8. Performing Organization Report No.

9. Performing Organization Name and Address

The Boeing Company
P.O. Box 3707
Seattle, WA 98124-2207

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

NASl-20341
12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Office of Aviation Research
Washington, D.C. 20591

13. Type of Report and Period Covered

14. Sponsoring Agency Code

AIR-100
15. Supplementary Notes

The FAA William J. Hughes Technical Center Research Program Manager was Charles Kilgore.
16. Abstract

There is a desire and an emerging trend by suppliers of commercial airborne safety-critical systems towards the use of object-
oriented technology (OOT). There are issues concerning the structural coverage of software and systems built using OOT. One of
the issues is that RTCA DO-178B, which uses structural coverage as one of the adequacy measures for the requirements-based
testing of software for commercial airborne computer-based systems, does not address OOT. This report identifies those issues
for OOT featiu-es in general, the implementation of those features in the programming languages Ada95, C++, and Java, and the
monitoring of the featitfe and implementation by structural coverage analysis tools. Alternatives for resolution of the issues are
given, and the most appropriate resolution proposed. Some of the proposed solutions require that structural coverage be
considered m ways that are not typically expected and possibly issue supplementary material to RTCA DO-178B and its
supplement DO-248B. Some of the issues are not new to OOT, but it is anticipated that OOT will make their occurrence either
more fi-equent or occur in new or different ways.

17. Keywords

Object-oriented technology, OOT, Structural coverage

18. Distribution Statement

This document is available to the public through the National
Information Service (NTIS) Springfield, Virginia 22161.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

39

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY vii

1. INTRODUCTION 1

1.1 Background 1
1.2 Related Documents 2
1.3 Approach 2

1.3.1 Literature Search 3
1.3.2 Literature Study 3
1.3.3 00 Criteria 4
1.3.4 Language Criteria 4
1.3.5 Tool Criteria 4

1.4 Organization of the Report 4

2. OBJECT-ORIENTED FEATURES 5

2.1 Class 6

7
8
8

8

13
14
14

15
inding 15

2.4.1 Language Issues 18
2.4.2 Tool Issues 19
2.4.3 Acceptance Criteria 19

2.5 Encapsulation and Information Hiding 19
2.6 Run Time Type Identification 21
2.7 Implicit Type Conversions 21

2.7.1 Language Issues 22

m

2.1.1 Language Issues
2.1.2 Tool Issues
2.1.3 Acceptance Criteria

2.2 Inheritance

2.2.1 Language Issues
2.2.2 Tool Issues
2.2.3 Acceptance Criteria

2.3 Aggregation
2.4 Polymorphism and Dynami

2.7.2 Tool Issues 22
2.7.3 Acceptance Criteria 22

2.8 Templates 22
2.9 Exceptions 22
2.10 Excluded Features 23

2.10.1 Dynamic Class Loading 23
2.10.2 Dynamic Reclassification 23
2.10.3 Just-In-Time Compiling 23
2.10.4 Reflection 24
2.10.5 Garbage Collection 24

3. RELATED ISSUES 24

3.1 Data and Control Coupling 24
3.2 Deactivated Code 26
3.3 Object State Testing 27

4. RESULTS AND FURTHER WORK 29

5. REFERENCES 32

IV

LIST OF FIGURES

Figure Page

1 Workflow of the Study 2
2 Class Graphical Representation 6
3 Inheritance Representation 8
4 Flattened Inheritance 9
5 Dependency Changes Due to Inheritance 11
6 Override Effects 11
7 Call Change Effects 12
8 Polymorphic Hierarchy 15
9 Polymorphic Call 16
10 Conditional Call 17
11 Method Tables for Polymorphic Calls 17
12 Collaboration Diagram 20
13 Deactivated Code Example 26
14 Stack Class 27
15 Stack State Machine 28

LIST OF TABLES

Table Page

1 Results Summary 29

v/vi

EXECUTIVE SUMMARY

Object-oriented technology (OOT) has been extensively used throughout the non-safety-critical
software and computer-based systems industry (e.g., the various window-based graphical-user
interface icon-based operating systems, applications, and the internet). This technology is touted
as solving many of the problems seen in software production through the reduction of complexity
in the development of software and the potential for massive reuse and adaptation of previously
developed software (e.g., objects) and patterns. In particular, the compilers and development
environments for object-oriented programming generate a large amount of code automatically.
There is also a large market of support tools, object libraries, and training supporting OOT. In
response to this movement, there is interest in moving OOT into the commercial airborne
software and systems domain. However, as with any new technology, there are concerns and
issues relating to its adoption within safety-critical systems.

This report identifies issues concerning the effect of certain features of OOT on structural
coverage. These issues can concern a specific OOT feature, its implementation within the
programming languages Ada95, C++, or Java, or the monitoring of the feature and
implementation by structural coverage analysis tools. Structural coverage is used within DO-
178B as one of the adequacy measures for the requirements-based testing of software for
commercial airbome computer-based systems. However, neither DO-178B nor DO-248B, which
contains supplementary material to DO-178B, addresses OOT. Structural coverage of object-
oriented software is one of the concerns highlighted by the FAA Chief Scientific and Technical
Advisor (CSTA) for Aircraft Computer Software in 1998.

Some of the issues addressed in this report are not new to OOT. The issues exist in current
software technologies, but their occurrence in OOT may be more frequent or may occur in new
or different ways. Certain issues that are new to OOT, related to the increasing abstraction level
between source and object code, may require rethinking of structural coverage in ways that are
typically not expected. For these issues, new guidance supplementary to DO-178B and DO-
248B may be needed. For those issues for which new guidance on the appropriate use of
structural coverage may be needed, options and arguments are presented for consideration.

vii/viii

1. INTRODUCTION.

This report provides information to international certification authorities to assist with the
development of policy and guidance for the use of object-oriented technology (OOT) to develop
software for commercial airborne computer-based systems. The research focuses on the aspects
of structural coverage that are impacted by the use of OOT.

1.1 BACKGROUND.

Object-oriented technology has been extensively used throughout the non-safety-critical software
and computer-based systems industry (e.g., the various window-based graphical-user interface
icon-based operating systems, applications, and the internet). Many people tout OOT as the
solution to many of the problems seen in software production through the reduction of
complexity in the development of software and the potential for massive reuse and adaptation of
previously developed software (e.g., objects, frameworks, and patterns). In particular, the
compilers and development enviroimients for object-oriented programming generate a large
amount of code automatically. There is also a large market of commercially available
publications, support tools, frameworks, object libraries, and training supporting OOT. In
response to this movement within the general software industry, there is interest in moving OOT
into the commercial airborne software and systems domain. However, as with any new
technology, there are concerns and issues relating to its adoption within safety-critical systems.

One area of concern, identified by Rierson [1], the CSTA for Aircraft Computer Software, is the
issues surrounding the proper application of structural coverage analysis to certain features of
OOT. Within this report, not only are features of OOT examined, but their implementation
within the programming languages Ada95, C++, and Java are examined, as well as the
monitoring of the feature and implementation by structural coverage analysis tools. Structural
coverage is used within DO-178B [2] as one of the adequacy measures for the requirements-
based testing of software for commercial airborne computer-based systems. However, DO-178B
does not specifically address OOT, possibly because the use of OOT in safety-critical systems
was not contemplated in 1992 when DO-178B was released. A docxmient containing
supplementary material to DO-178B published in 2001, DO-248B [3], also does not address
OOT.

Some of the structural coverage issues addressed are not new to OOT. They exist in current
software technologies, but their occurrence in OOT may be more frequent or may occur in new
and different ways (e.g., deactivated code). Other structural coverage issues require the use of
structural coverage in a different maimer than is currently used (e.g., inheritance). For these
issues in general, new guidance in addition to DO-178B may be needed. For those issues for
which new guidance on the appropriate use of structural coverage may be needed, options are
presented for consideration.

1.2 RELATED DOCUMENTS.

The Aerospace Vehicle Systems Institute (AVSI) has done some complementary work to this
study and has published a number of guidelines. The AVSI documents contain some material on
the structural coverage of certain OOT features:

a. AVSI. "Guide to the Certification of Systems with Embedded Object-Oriented Software,"
version 1.4, January 2002.

b. AVSI. "Guide to the Use of Dynamic Dispatch in Embedded Object-Oriented Software,"
version 1.7, October 2001.

c. AVSI. "Guide to the Use of Multiple Interface Inheritance in Embedded Object-Oriented
Software," version 1.2, October 2001.

d. AVSI. "Guide to the Use of Multiple Implementation Inheritance in Embedded Object-
Oriented Software," version 1.7, October 2001.

1.3 APPROACH.

This study was conducted using a five-element process, as shown in figure 1, to produce this
report. In figure 1 the major flows are depicted with solid lines and the minor flows are depicted
with dashed lines. In addition, there were feedback flows between each of the elements that are
not shown in order to simplify the drawing (e.g., when looking at language criteria for certain
language issues, 00 issues were raised).

Literature
Search

00
Criteria

-00 Issues-

Literature
Study

Tools
Issues

Language
Issues

00
Acceptance-

Criteria

Language
- (Implementation) -

Issues

Tools
Issues

Language \
Criteria)

Tools
Issues

Tools
Criteria

Language Acceptance Criteria

Tools Acceptance Criteria

FIGURE 1. WORKFLOW OF THE STUDY

The literature search was conducted first, with the other four process elements from figure 1
conducted in parallel. Each of the five process elements from figure 1 is discussed in more detail
in the following subsections.

1.3.1 Literature Search.

A search of peer-reviewed pubHcations and web-based literature was conducted to locate
previous work done on this topic. It was discovered that there are no peer-reviewed publications
dealing with structural coverage, as defined within DO-178B [2], of object-oriented software.
Listead, publications dealing with two topics that potentially lead to issues affecting structural
coverage were identified.

1. The adequacy of testing object-oriented software, both requirements-based testing as well
as implementation-based testing, and

2. The implementation-based (structural, white-box) testing of object-oriented software.

Even though there are no peer-reviewed publications, there are some white papers from structural
coverage tool vendors available on the web.

1.3.2 Literature Studv.

The publications identified in the literature search were examined for issues that need to be
addressed in the definition or proper application of structural coverage for object-oriented
software. Issues can be associated with:

• Object-oriented software features in general.

• The implementation of those features within a particular programming language. For this
study, Ada95, C++, and Java.

• The tools used in the structural coverage verification (analysis) of object-oriented
software.

Each of these categories was addressed in its own process element, as documented in sections
1.4.3-1.4.5. As mentioned in section 1.4.1, the issues had to be discovered indirectly. Issues
concerning the adequate testing of general object-oriented features were examined to see if there
were any implications for the structural coverage analysis of the implementation of those
features. The methods for the implementation-based (structural, white-box) testing of object-
oriented software and the issues concerning the application of those methods were examined to
see if any of the methods could be adapted for structural coverage. Also, if the issues carried
over to structural coverage, these issues that did apply to structural coverage were raised.

The methodology used to identify issues resulted in a number of object-oriented features being
examined that resulted in no issues for structural coverage. Surprisingly, all the issues imcovered

by this study concern issues associated with object-oriented software features, in general, and the
measurement of those features within the three programming languages. Though the object-
oriented issues applied to the programming languages, there were no implementation issues
beyond the general object-oriented (00) issues. For some of the issues, the purpose and proper
application of structural coverage may need to be extended beyond the current practice.

1.3.3 00 Criteria.

Both the general 00 software features and the issues associated with those general features
identified during the study were examined for their impact on structural coverage analysis. All of
the features examined are documented in this report. For certain features, there are no issues
impacting structural coverage, and the analysis stopped there. For those features where there
were issues, broad solution possibilities for defining what it means to accomplish structural
coverage in the verification of 00 software in general were identified. These solution
possibilities were targeted to the use of the feature without regard to how that feature was
implemented in any particular programming language.

1.3.4 Language Criteria.

Both the general 00 software features and the issues associated with those general features
identified during the study were examined to determine if there were any specific issues in the
implementation of the OO features in the programming languages Ada95, C++, and Java. Both
the language standards and the outputs from compilers were examined.

Surprisingly, there were no structural coverage issues with the implementation of the general 00
features in the three target languages beyond those of the general 00 feature itself Note that this
study only considered the structural coverage aspects of the language implementations.

1.3.5 Tool Criteria.

How current structural coverage verification (analysis) tools deal with the issues defined during
the study, both general 00 as well as the specific implementations within Ada95, C++, and Java,
were identified. For certain issues, other options for tool behavior were identified. Where
multiple tool approaches exist, recommendations for a preferred approach are given.

1.4 ORGANIZATION OF THE REPORT.

This report is organized into four sections plus references. Section 1 introduces the context of
the study.

Section 2 contains the specific OOT features and issues raised during the course of this study.
There are three forms of features:

• Features that have no issues associated with them,
• Features that have issues that can be resolved, and
• Features that have issues that may make their use in safety-critical software unacceptable.

All the features are documented in the order that they were examined, except the excluded
features, which have their own section.

Class—^the fundamental concept
hiheritance—one of the fundamental building blocks
Aggregation—one of the fundamental building blocks
Polymorphism and Dynamic Binding—one of the fundamental principles
Encapsulation and hiformation Hiding—one of the fundamental principles
Run Time Type Identification—support mechanism
hnplicit Type Conversions—programming support mechanism
Templates—support mechanism
Exceptions—support mechanism
Excluded Features

Dynamic Class Loading
Dynamic Reclassification
Just-In-Time Compiling
Reflection
Garbage Collection

A brief explanation is given of the feature. For those features with no issues, the feature is
identified as having no issues. For those features with issues, the issues (general 00, language,
and tools) are identified along with recommendations for acceptance criteria. For those features
that were deemed unacceptable, the reason for unacceptability is given.

Section 3 contains some related issues concerning the use of OOT in general. These issues are
not related to specific features of OOT, but are side effects of the use of OOT.

• Data and Control Coupling
• Deactivated Code
• Object-State Testing

Section 4 sxmimarizes the conclusions of the study and identifies issues for further study, and
section 5 lists the references.

2. OBJECT-ORIENTED FEATURES.

The results of examining features of OOT are documented within this section of the report.
Classes, being the major organizational feature of OOT, are reported on first. Following classes,
each of the features of a class examined during the course of this study is reported on, essentially
in the order they were examined. For some of these features, issues concerning structural
coverage were identified and are, therefore, documented. For other features, no issues were
found. For certain issues, it was determined that these would not be acceptable in safety-critical
systems, so no further investigation was conducted. These features are grouped together in
section 2.10 regardless of the order they were examined.

2.1 CLASS.

OOT is a software development methodology based on the concept that all systems are composed
of objects, and the relationships and interactions between those objects. The fundamental
concept upon which OOT is founded is that of the class. Classes form the fundamental building
blocks out of which object-oriented software and systems are created. All objects appearing
within the system and software must belong to a class. The class is a template that defines the
attributes and methods applicable to all objects of that class.

Attributes define the data structure and hold the corresponding values that describe the current
state of the objects of a class. Note that there are two forms of attributes, i.e., class variables or
static variables, which are shared by all objects of a class. Instance variables are attributes that
apply to each individual object of a class. Each object of the class will contain its own set of
instance variable attributes and share the common set of class variable attributes.

Methods define the operations that may be performed on the objects of a class, thereby defining
the possible behavior of the objects of that class. These operations may be sensitive to the
current state of the object and may update that state by changing the values of attributes. Note
that there are two forms a method can take. If a method merely defines an interface without an
implementation, a specification without a body in Ada terms, it is known as an operation. If it
defines both an interface and an implementation it is known as a method.

By defining the set of values for an object and the operations that may be performed on those
objects, the concept of a class is equivalent to the concept of a type as it appears in standard
programming languages (e.g., Ada). However, the class also identifies the relationships, known
as associations in the Unified Modeling Language (UML) [4], that can exist between objects of
that class and objects of other classes (clients).

Figure 2 shows the diagrammatic representation used for classes in this report. This
representation is based on tiie UML specification [4].

Class 1
Attribute 1

Method_l()
Method_2()

FIGURE 2. CLASS GRAPHICAL REPRESENTATION

As shown in figure 2, a class is represented as a box with three compartments. The top
compartment hsts the name of the class. The middle compartment lists the names of the
attributes, if any. The bottom compartment lists the names of the methods, if any.

Classes support encapsulation through separation of the external (public) and internal (private)
aspects of a class and its objects. Generally, the external aspects are known as the interface.

while the internal aspects are known as the implementation. Clients of a class may only have
access to the interface of the objects of that class. This is also known as data hiding or
information hiding.

Classes come in two forms: concrete and abstract. A class is concrete if objects may be created
of that class. This means that the class must have both its interface and its implementation
defined. A class is abstract if objects may not be created of that class. This means that the class
will have either only its interface defined or only a portion of its implementation defined.

Depending on how one wants to look at it, there are either no OOT structural coverage issues
associated with classes or all OOT structural coverage issues are associated with classes, hi this
report, the fimdamental concepts have been broken out and applied to classes into their own
sections.

2.1.1 Language Issues.

All three languages under consideration have a class mechanism. C++ and Java implement
classes directly, using a classical class hierarchy. Ada95 uses an approach based on type
derivations within packages. The difference is mainly syntactic, with each approach having
advantages and disadvantages.

As part of the class mechanism for C++ and Java, supporting methods known as constructors
(C++, Java) and destructors (C++) are required for a class. In Java, a finalizer, similar to a C++
destructor, may be provided.

As the name implies, constructors are responsible for creating an object of a class at the
beginning of its existence, including the initialization of the attributes of the object necessary to
establish its initial state. For example, consider that an airspeed indicator object should draw
itself on the display when it is created.

The destructor and finalizer are responsible for cleaning things up when an object ends its
existence. These methods perform whatever activities must be performed before an object is no
longer needed. For example, consider again an object that draws itself on a display when it is
created. When that object is no longer needed and is about to be destroyed, one of the things that
it should do is erase itself firom the display. The C++ destructor has an additional responsibility
in that it is also responsible for cleaning up the memory that the object occupied. The Java
finalizer does not perform this fimction because memory cleanup is the responsibility of the
garbage collector.

Ada95 provides automatic initiahzation and finalization for instantiated objects. Ada95 also
provides a mechanism, called controlled types, that gives the user additional control of these
fiinctions. The user can define, for a controlled type, an Initialize procedure that is invoked
immediately after the normal default initialization and a Finalize procedure that is invoked
immediately before default finalization. A third procedure. Adjust, is called for controlled types
following any copy or assignment operation.

These supporting methods, constractors, destructors, and finahzers are not known to introduce
any structural coverage issues in and of themselves. However, they can be implemented with
side effects that can raise issues because these methods are employed by other features of the
language (e.g., exceptions, destructors, fmalizers; implicit type conversion and constructors).
These potential interactions are discussed later in the report.

2.1.2 Tool Issues.

There are no tool issues associated with classes in general. Specific issues are brought out in
subsequent sections dealing with specific features of classes.

2.1.3 Acceptance Criteria.

There are no constraints on the acceptance of classes in general. Specific issues are brought out
in subsequent sections dealing with specific features of classes.

2.2 INHERITANCE.

Inheritance is one of the fimdamental building blocks of OOT. It is a mechanism whereby a class
is defined in terms of other classes (its parents), adding the features of its parents to its own
without disturbing either the relationships between its parents and their clients or the parent's
concrete implementations. It is generally used to define an IsA or Is_A_Kind_Of relationship
(e.g., a conic section is_a geometric shape, an ellipse is_a_kind_of conic section).

A class may have a single parent (single inheritance) or multiple parents (multiple inheritance).
Figure 3 presents an example of single inheritance where two subclasses (Class_2 and Class_3)
are inheriting fi-om Class_l. Either the interface or the interface and implementation can be
inherited. Where multiple inheritance is allowed, repeated inheritance is a possibility (two or
more parents have a common ancestor in the class hierarchy).

Class_l

Attribute_l

Method_l()
Method_20

'

Class_2 Class_3

Attribute_2 Attribute_3
Method_3() Method 2()

M ethc >d_4()

FIGURE 3. INHERITANCE REPRESENTATION

Inheritance is implemented by three basic mechanisms:

• Extension is the inclusion of the attributes and methods of ancestor classes (parents, their
parents, etc.) in a subclass.

• Overriding is the definition of either an attribute or method in a class with the same
signature as that in a parent class. A signature consists of the name of the feature, the
type for attributes, parameter signatures for methods, and in some languages a return type
for methods (e.g., Ada).

• Specialization is the definition of attributes and methods that are unique to that class.

hiheritance can be pure, where a subclass only extends its parent, or not pure. Li pure
inheritance, only extension and specialization are allowed. Class_2 in figure 3 is an example of
pure inheritance. Class_2 has inherited Attribute_l, Method_l, and Method_2 from Class_l
(extension) and has added an Attribute_2 and Method_3 (specialization). Class_3 on the other
hand is not pure. It has inherited Attribute_l and Method_l from Class! (extension) and has
added Attribute_3 and Method_4 (specialization). However, it has overridden (or redefined)
Method_2 from Class_l with its own Method_2 (overriding).

To fiilly understand a class, one can flatten it. A flattened class is one where all attributes and
methods, including those inherited from a parent class, are shown. A flattened inheritance
hierarchy is one where all classes are shown in flattened form. Figure 4 presents a flattened
inheritance diagram for the inheritance diagram given in figure 3.

Class 1

Attribute 1

Method_10
Method_2()

Class 2 Class_3

Attribute_2 Attributes

Method_3() Method_2()
Method_40

Class 1

Attribute 1

Method_l()
Method_2()

Class_2 Class_3

{Attribute_l}
Attribute_2

{Attribute_l}
Attributes

{Method !()}
{Method 2()}
Method 3()

{Method_10}
Method_20
Method_40

Inheritance Hierarchy
Normal Form

Flattened Inheritance Hierarchy
Normal Form

FIGURE 4. FLATTENED INHERITANCE

On the left-hand side of figure 4, the inheritance is presented in normal form, just as in figure 3.
On the right-hand side of figure 4, the inheritance is presented in flattened form, hi this report,
the flattened form will enclose all inherited attributes and methods in curly braces, hi some
forms of flattening, inherited attributes and methods are annotated with a comment identifying
where they were inherited from (e.g., Attribute_l - Class_l.Attribute_l).

The general issue inheritance brings to structural coverage is: against what should the coverage
be measured, i.e., concrete features only or concrete and inherited features? To answer this
question, look at how OOT is implemented. For classes, each class keeps its own copy of the
class variable attributes. For objects, each object keeps its own copy of the instance variable
attributes. This means that if there is an ObjectA of Classl, it will have its own copy of
Attribute_l that can be acted on by either Method_l or Method_2 defined in Class_l. An
Object_B of Class_2 will have its own copy of Attribute_l and Attribute_2. Attribute_l can be
acted on by Method_l and Method_2 defined in Class_l and by Method_3 defined in Class_2.
Attribute_2 can only be acted on by Method_3. An Object_C of Class_3 will have its own copy
ofAttribute_l and Attribute_3. Attribute_l can be acted on by Method_l defined in Class_l and
by Method_2 and Method_4 defined in Class_3. Attribute_3 can be acted on by Method_2 and
Method_4 defined in Class_3.

Since multiple copies of attributes are made when using inheritance, it is clear that all attributes
need to be tested in the context of all concrete classes within which they appear, whether defined
explicifly within that class or inherited by it. For methods, however, multiple copies are not
made. Only a single copy of each concrete method is created. That means that there is only a
single copy of Method_l, Method_3, and Method_4, as well as Method_2 from Class_l and
Method_2 from Class_3.

Given the single copy of methods, one may be tempted to measure coverage against the concrete
method only. One may even be tempted to test and record coverage for the concrete method in
the context of the class that defined it and reuse that testing and coverage for all inherited
instances (i.e., no retesting needed for inherited instances). However, this ignores the fact that
the context of objects of one class is not guaranteed to be the same as the context of objects of
other classes within the same hierarchy, hi essence, the data and control coupling relationships
between the defining class and the inheriting class maybe different if overriding or specialization
are present.

Specialization can indirectly change the behavior of inherited methods previously verified in the
context of other classes. For an example, consider from figure 3 that Method_l and Method_2 in
Class_l may have an interface through, and thereby a dependency on, Attribute_l. This is
illustrated in the dependency graph on the left-hand side of figure 5, which shows that there is a
dependency between Method_l and Method_2 through Attribute_l. Consider fiirther that
Method_3. in Class_2 may act upon Attribute_l in ways that effect the operation of Method_l
and Method_2. This is illustrated in the dependency graph on the right-hand side of figure 5.
Note that Class_2 has a different set of dependencies than Class_l. This means that the testing
of Method_l and Method_2 within the context of Classl, even though they have been shown to

10

be correct in the base class (Classl), does not guarantee that it will work correctly in the context
of the derived class (Class_2).

Method_l() Method_l()
i

'
11

Attribute! Attribute_l -«► Method_3()
, 1

Method_2() Method_2()

Class 1 Class 2

FIGURE 5. DEPENDENCY CHANGES DUE TO INHERITANCE

Overriding can directly change the behavior of inherited methods previously verified in the
contexts of other classes. For example, consider the class given in figure 6. The normal form
appears on the left-hand side of the figure while the flattened form appears on the right-hand
side. Within figure 6, the methods have been annotated with the attributes they access and the
methods they call. In the flattened form, the names were qualified with the class names (e.g.,
C_1.A_1).

c_i
A_l

M_10 - uses A_l, calls M_20
M_20 - uses A_l

j i

C_2

A_2

M_2() ~ uses A_2

c_i
A_l

M 10-uses C 1.A 1, calls C l.M 2()
M_2()~usesC_l.A_l

. L

C_2

{A_l}
A_2

{M l()}-usesC 2.A 1, calls C 2.M 2()
M_2() - uses C_2.A_2

Normal Form Flattened Form

FIGURE 6. OVERRIDE EFFECTS

Examination of the right-hand side of figure 6 shows how overriding can modify the behavior of
previously tested methods. Objects of class C_l when called with Ml will end up calling
C_1.M_2 and using C_1.A_1. However, objects of class C_2 when called with M_l will end up
calling C_2.M_2 and using C_2.A_1 and C_2.A_2 instead. These changes will occur even

11

though there has been no change to the source code for Ml! This example clearly shows the
need for verification and coverage of all concrete attributes and methods within the contexts of
the concrete classes that use them when overriding is involved.

Overriding can have an impact on data and control coupling by changing the data and control
coupling relationships present within the software. Figure 6 shows that objects of C_l have a
data dependence on A_l, while objects of C_2 have a data dependence on A_2 instead. In
addition, there is a change in the control flow of M_l between the two classes that must be
considered. C_1.M_2 and C_2.M_2 are both control dependent on Ml in that Ml is the only
caller for those methods. This dependence is resolved by the class to which the object invoking
M_l belongs to.

This is equivalent to the change in a subprogram in a non-object-oriented calling sequence
depicted in figure 7. The original calling tree is shown on the left side of the figure. M_l calls
M_2, which calls M_3. On the right side of the figure is the calling tree with a changed version
of M_2: M_2'. Given this change to the system, does either subprogram M_l or M_3 need
reverification (i.e., did the change between M_2 and M_2' invalidate any of the verification used
to comply with DO-178B)? The answer is that it depends on the impact of the changes on the
data and control coupling (i.e., integration or interaction) between (M_l, M_2') versus (M_l,
M_2), and between (M_2', M_3) versus (M_2, M_3). For example, if the difference between
M_2 and M_2' is a changed Boolean expression, the tests for the integration verification of
(M_l, M_2') and (M_2', M_3), as well as the tests providing MCDC for M_2', may no longer be
complete.

M_l

1 '

M_2

1 '

M_3

M_l

' f

M_2'

' '

M_3

FIGURE?. CALL CHANGE EFFECTS

The examples for specialization and overriding demonstrate that using these inheritance
mechanisms may result in changes in the data and control coupling relationships between the
defining class and the inheriting class. However, both of these examples can be extended to any
base class (whether it defined or inherited the method) and a derived class.

For this reason, most of the published literature on the testing of object-oriented software
requires the testing of each concrete method within the context of each concrete class that uses it
(i.e., test the flattened class) [5]. Since structural coverage is supposed to be an adequacy
measure of the requirements-based tests, structural coverage should be separately recorded for
each concrete method within each concrete class that uses it. In essence, there is a need to
measure structural coverage against the flattened class.

12

Always testing and covering the flattened class is a simple and straightforward approach.
However, it should be acknowledged that not all instances of inheritance require reverification.
For this reason, it is reasonable to allow a change impact analysis to identify exactly how much,
and what type, of reverification is necessary for each instance of inheritance.

Note that the issues inheritance raises, concerning structural coverage, are independent of
whether it is considered single or multiple inheritance. Multiple inheritance raises more issues
concerning its use in safety-critical software than single inheritance does, but they are outside the
domain of structural coverage [1].

The above discussion has concentrated on the inheritance of implementation. There is another
inheritance mechanism known as inheritance of interface. An interface is known alternatively as
an abstract class or method (UML, Ada95, Java), interface class (Java), virtual function (C++), or
pure virtual function (C-H-). With the inheritance of an interface, there is only a promise to
provide functionality, but no implementation. Because there is no code associated with an
implementation when only an interface is inherited, there are no structural coverage issues
associated with interface inheritance. Recall, however, that there is code associated with the
implementation of an interface. Once there is an implementation, there may be structural
coverage issues as discussed throughout this report.

2.2.1 Lanexiage Issues.

The following are some known differences in inheritance between the three object-oriented
languages studied for this report. None of these differences are known to have any structural
coverage issues associated with them. Ada95 and Java support only single inheritance of
implementation, while C++ supports multiple inheritance of implementation. Ada95 and Java
classes inherit from a single class hierarchy, while C++ allows multiple hierarchies. C++ and
Java support both single and multiple inheritance of interface. Li addition, there are ways in
Ada95 to obtain the effect of multiple inheritance of either interface or implementation.

In Java, if a constructor is not provided explicitly, the compiler will create one that calls the
parent class constructor. If the constructor exists but does not explicitly call the parent class
constructor, Java will insert the call to do so. This compiler-generated code appears to have no
structural coverage issues because it will always be executed when an object is created. A
finalize method is not required by Java. However, if a finalize method is supplied in a derived
class, it must call super.finalize or finalization will not occur for the base class. This is currently
not required by the language specification, but appears to be enforced by some compilers.

In C++, if a constructor or a destructor are not provided explicitly, the compiler will generate a
default. As with the Java case, this compiler generated code appears to have no structural
coverage issues because it will always be executed when an object is created or destroyed.

A class is permitted to have more than one constructor. These different constructors may put the
object into different initial states. As was pointed out in section 2.1, on classes in general,
methods may be sensitive to the current state of an object. Thus, multiple constructors may have

13

implications for data and control coupling for an initial object and its interaction with the
methods of its class. It does not appear that this data and control coupling is any different than
that which is already present in the methods, and would be handled by normal verification of the
methods.

2.2.2 Tool Issues.

There are two major approaches taken in current structural coverage analysis tools for object-
oriented languages for recording the coverage of inherited methods.

• The first approach is to record coverage against the concrete methods only. For example,
given the class in figure 4, all calls to Object_A.Method_l() will have coverage measured
against Class_l.Method_l(), independent of the class Object_A belongs to. The tools in
this category are the simplest to implement because they can use simple probes to
instrument either the source or object code.

• The second approach is to record coverage against the flattened class. For example, given
the class in figure 4, the call to Object_A.Method_l() will record coverage against
Class_l.Method_10 if Object_A is of Class_l, the virtual Class_2.Method_l() if
Object_A is of Class_2, and the virtual Class_3.Method_l() if Object_A is of Class_3.
The tools in this category have slightly more complicated probes in that they must
ascertain the class of the object invoking the method, and then record coverage against a
virtual copy of the method appropriate to the flattened class.

There is an approach taken by some tool vendors where the vendor's tool records coverage
against the concrete class, but the user documentation recommends the testing of the flattened
class by only using objects of a single class to run the tests and record the coverage.

Given the direction seen in the object-oriented testing community toward testing of the flattened
class [5], the preferred approach is to have the structural coverage analysis tools for object-
oriented languages record coverage against the flattened class.

2.2.3 Acceptance Criteria.

As mentioned previously, the general issue inheritance brings to structural coverage is: against
what should the coverage be measured: concrete features only or concrete and inherited
features? As the previous examples have demonstrated, measuring structural coverage against
the concrete methods is inadequate when the data and control coupling is impacted. Therefore,
the following acceptance criteria is proposed for inheritance: structural coverage should be
separately recorded for each concrete attribute and method within each concrete class that uses it,
whether that class defines the attribute or method or inherits it (i.e., measure coverage against the
flattened class). This recommendation is in agreement with the direction seen in the object-
oriented testing community [5].

14

To support the testing of the flattened class, either full testing and structural coverage is required
in each separate class context (i.e., test and cover the flattened class) or a change impact analysis
is required to identify the necessary reverification (testing and structural coverage) in derived
classes.

2.3 AGGREGATION.

Aggregation is another one of the fundamental building blocks of OOT, It is a mechanism
whereby a class is defined in terms of combinations of other classes. It is generally used to
define a Has_A relationship (e.g., a circle has_a point as its center). It is generally implemented
with attributes of one class being objects of another class. Aggregation is not unique to OOT,
because existing programming languages allow composite types where each component of the
composite can be of a different type (e.g., records in Ada). Aggregation was found to have no
structural coverage issues associated with it.

2.4 POLYMORPHISM AND DYNAMIC BINDING.

Polymorphism is one of the fundamental principles of OOT. It is the ability of a name in
software text to denote, at run time, one or more possible entities. The names of objects (in
particular parameters), attributes, and methods may all be polymorphic in OOT. For example,
given the flattened inheritance hierarchy from figure 4, repeated in figure 8, consider the
programming text: Object_A.Method_2() appearing within the source code.

Class_l

Attribute_l

Method 10
Method 2()

t
Class_2 Class_3

{Attribute_l}
Attribute_2

{Attribute_l}
Attributes

{Method 1()}
{Method_2()}
Method_30

{Method_10}
Method_20
Method_4()

FIGURES. POLYMORPHIC HIERARCHY

Which Method_2 to call is dependent on which class ObjectA belongs to, and ObjectA may
belong to multiple classes (Class_l, Class_2, Class_3), depending on the run-time state of the
system. Object_A may be an instance of a more specific class (e.g., Class_2), while Method_2
may be a method of a more general class (e.g., Class_l). Polymorphism is generally supported
by dynamic binding and dispatch.

15

Static binding, also known as static dispatch, is the matching of attribute references to attributes
and calls to methods at compile time or link time. Static binding is currently what is
implemented in traditional non-object-oriented languages. The binding is based on the signature
of the element to be bound. Since traditional progranmiing languages only allow, at most, one
signature to be active in any particular scope, the reference is unambiguous.

Dynamic binding is the matching of attribute references to attributes and calls to methods at run
time as opposed to compile time or link time. This results from a polymorphic reference or call,
hi essence, what is happening is that one of the key components of the signature, namely the
class the object belongs to at the time of execution, is missing from the signature. Note that it is
possible to have both static and dynamic binding present in OOT software and systems.

For static binding, it is sufficient to record coverage of the access or call statement itself because
that access or call never changes. For example, given the class presented in figure 8, the call to
Object_B.Method_3() is unambiguous, and a call to Class_2.Method_3 will appear in the object
code.

However, when one sees the call to Object_C.Method_20, it is not clear whether
Class_l.Method_2 or Class_3.Method_2 is to be called. The appropriate method to call depends
on the type (class) of Object_C. This is depicted graphically in the pseudo call tree depicted in
figure 9.

Method_S ~ Object_C.Method_2()

Method 2

Class_l.Method_20 Class_3.Method_20

FIGURE 9. POLYMORPHIC CALL

This is equivalent to the non-object-oriented situation of a subprogram deciding which of
multiple subprograms to call based on a parameter passed into the subprogram (i.e., a conditional
call). This introduces at least control coupling between the calling subprogram and the callees
and possibly data coupling between the subprograms and the caller of the calling subprogram.
This is depicted graphically in figure 10 using standard Structured Analysis and Structured
Design (SASD) notation [6], which is an alternate representation of figure 9.

16

^ObjectJ

Method_S()

Object_C R^Object_C

Class_l .Method_2() Class_3.Method_2()

FIGURE 10. CONDITIONAL CALL

There are a number of ways in which dynamic binding can be supported, but only a single
implementation was employed amongst the compilers examined during the language analysis
portion of this study. This implementation builds a method table for each class containing a set
of pointers to the methods apphcable to that class. The table is built from flattening the class and
is depicted in figure 11. In figure 11, the notation Method_m -^ Classc.MethodmQ denotes a
pointer to the entry of the method with the qualified name given the unqualified name.

m^oo 1 Method_l ^ Class_l.Method_l() \^iaoo i

Attribute_l Method_2 -^ Class_l.Method_2()

Method_l()
Method_20

i 1

Class_3 ■ Method_l ^ Class_l.Method_l()
Attribute_3 Method_2 ^ Class_3.Method_2()

Method_20
Method_40

Method_4 -» Class_3.Method_4()

Class_2 ' Method_l -^ Class_l.Method_l()
Attribute_2 Method_2 -^ Class_l.Method_2()
MethodJO Method_3 -^ Class_2.Method_3()

FIGURE 11. METHOD TABLES FOR POLYMORPHIC CALLS

This implementation then embeds within each object a pointer to the method table applicable to
that object. The compiler and linker then emits code that will follow the pointer from the object
to the method table, index the method table for the appropriate method, and then follow that
pointer to the method to invoke (i.e., a jump table). Note that while the example used a method
call, an attribute access could have been used just as easily.

17

The issue is: What level of structural coverage should be required for the polymorphic call or
access? This study considered three possibilities.

1. One possibility is to treat the execution of the polymorphic reference (call or access) as
sufficient. This approach covers the source code, but ignores the compiler- and linker-
generated method (jump) table in the object code. It is possible that not every entry in the
method Oump) table will be executed and, thereby, not every method will be executed for
each class.

2. Another possibility is to treat the execution of all possible resolutions for the polymorphic
reference as sufficient. This approach covers not only the source code, but also the
method (jump) table the compiler and linker built in the object code, hi fact, this
approach will cover the method (jump) table multiple times: once for each polymorphic
reference.

3. The final possibility is to require that every polymorphic reference and every entry in
every method table be executed at least once. This approach covers the source code and
the method Oump) table the compiler and linker built in the object code.

One of the goals of OOT is to remove some of the effort required to support certain functionality
(e.g., polymorphism) from the software developer by having the compiler and linker provide that
ftinctionality and generate the object code for that fiinctionality automatically. Essentially, the
level of abstraction between source code and object code is being widened. Polymorphism and
dynamic binding are the first instances in this report of OOT features where this auto-code
feature of OOT was encountered, providing significant functionality. Auto-coding is not new to
OOT. What OOT brings to the picture is that traditional auto-coding tools have accepted some
form of specification as input and generated source code as output, while the OOT compiler and
linker generates additional object code, both data and code structures, from the source code.

Traditionally, these data and code structures would have appeared in the requirements or
architecture or source code, and would have gone through a DO-178B-compliant development
and verification process (compliance to standards, fraceability to requirements and design,
coverage by requirements-based tests, structural coverage, etc.). In OOT, these data and code
structures will only appear in the object code. A claim could be made that these data and code
structures are traceable to the source code, just a broader interpretation of traceability than has
been used for traditional languages. Under DO-178B, source code to object code traceability,
and potentially additional verification of the object code, is only required for Level A software.
In the context of OOT, this restriction may need to be broadened to include other levels (e.g., B
and C). Further discussion is provided in section 2.4.2.

2.4.1 Language Issues.

All three languages studied for this report implement polymorphism and dynamic binding. No
language-specific issues beyond the general issues already mentioned were discovered.

18

2.4.2 Tool Issues.

One of the major tool issues brought out by OOT is whether structural coverage should be
obtained at the source code or object code level. This issue has broader applicability than just
polymorphism and dynamic binding, but it is brought up here because this is the first time the
issue of the compiler and linker generating additional object code and providing additional
functionality beyond the source code has been encountered.

Currently, a number of structural coverage analysis tools provided for 00 languages perform
their analysis on the object code instead of the source code. There are two major reasons given
in the literature of these tools for this choice. First, performing this analysis at the object code
level can be done nonintmsively because the source code does not need to be instrumented.
Secondly, coverage of the object code provides a better measiire of testing thoroughness since it
ensures that everything at the object code level has been executed, which source code coverage
does not guarantee.

Currently, DO-178B [2, section 6.4.4.2.b, pg. 33] and DO-248B [3, FAQ#42, pg. 38] state that
coverage of the object code is allowed as long as it provides the equivalent level of coverage
provided by coverage of the source code. This guidance is still soimd when OOT is being used.

Currently, DO-178B [2, section 6.4.4.2.b, pg. 33] and DO-248B [3, DP#12, pp. 97-98] state that
source to object traceability is only necessary for Level A software. Because of the increased
abstraction of source code in OOT, this guidance needs to be reconsidered, and potentially
updated, when OOT is being used. Consideration should be given to source-to-object traceability
for Levels A through C, or coverage of both source and object code for Levels A through C.

2.4.3 Acceptance Criteria.

The following acceptance criteria are proposed for polymorphism and dynamic binding: for
software levels A-C, every polymorphic reference and every entry in every method table must be
executed at least once.

The rationale for the above is as follows. Every class will have a methods table for all the
methods appropriate to that class, whether inherited or defined (see figure 11). If every one of
those entries has been executed, then every method will have been invoked at least once.
Inherited methods will need to be invoked multiple times: once for the class that defines it and
once for each class that inherits it. For example, consider Class_l .Method_l. This method will
need to be invoked at least three times in order to achieve coverage of the methods tables. It will
need to be invoked with an object of Classl in order to cover Class_l 's method table entry for
it, it will need to be invoked with an object of Class_2 in order to cover Class_2's method table
entry for it, and the same for Class_3.

2.5 ENCAPSULATION AND INFORMATION HIDING.

Encapsulation and information hiding is one of the fiindamental principles of OOT. As
mentioned previously in section 2.1, encapsulation and information hiding is the separation of

19

the external (public) and internal (private) aspects of a class and its objects. Clients of a class
may only have access to the interface of the objects of that class. Encapsulation and information
hiding brings two issues to the table: access to the internals (e.g., private attributes, method
implementations) for the purpose of coverage analysis and the effect on the visibility of data and
control coupling.

Many publications on the testing of object-oriented software and systems identify the problems
of verifying classes through only the interface to objects [5]. The main problem is how to verify
the proper functioning of the object under test when the internals, particularly the state, cannot be
set before a test is run or examined after a test is run to assure that the test passed for the correct
reasons. The issue here is that encapsulation and information hiding can have a negative impact
on the controllability and observability of an object for the purposes of class verification.
However, if structural coverage analysis is to be performed with the assistance of a tool that
instruments the source, then there should be no problem, histrumenters, by their very nature, are
intrusive and break information hiding by inserting probes into either the source or the object.
These probes are capable of getting the internal information needed for a coverage analysis out
into the open.

For methods, you may only have access to the interface, not the implementation (i.e., all method
implementations are private). Not being able to look inside the methods can make it difficult to
understand object interactions and prepare test cases to test such interactions.

It is even possible that for certain classes and objects (e.g., COTS library or framework) with
standard software licensing, the developer will know nothing about the implementation.
However, since current airborne software practice is for all software to comply with DO-178B,
which includes reviews, analyses, and tests of the source code, access to the implementation will
not be an issue. Given that access, tools can analyze the interactions between objects and make
the results available for people.

For an example of the impact on data and control coupling, consider three objects as shown in
the collaboration diagram presented in figure 12. In response to an event, Object_l sends a
message to Object_2 through Method_l. As a result of this message, Object_2 updates its
attributes with values provided by Object_l. Later, Object_3 sends a message to Object_2
through Method_2. As a result of this message, Object_2 returns values from its attributes that
Objects uses to update its own attributes. In this example there is a dependence between
Object_3 and Objectl, but that dependence may only be discovered through the code.

^ Object_l Object_2 Object_3
1: event 2: Method_l() * 3: Method 2() '

FIGURE 12. COLLABORATION DIAGRAM

20

2.6 RUN TIME TYPE IDENTIFICATION fRTTD.

Run time type identification (RTTI) is a support mechanism of OOT that allows an application to
discover the exact class of an object, even when all that is available is a reference to an ancestor
class. This mechanism requires that all classes used in the application be available at compile
and link time. RTTI is commonly used to restore the original class type to an object that has
been upcasted. For example, in order to store an ellipse object in an array of conic sections, you
first upcast the ellipse object to a conic section and then store it in the array. When you retrieve
it firom the array, you use RTTI to restore it back to an ellipse (i.e., downcast). RTTI was found
to have no structural coverage issues associated with it.

2.7 IMPLICIT TYPE CONVERSIONS.

Implicit type conversions are a programming support mechanism and not unique to OOT. Just as
with implicit type conversions in traditional programming languages, what happens is that the
compiler and linker generates additional object code. This additional object code will need to be
examined for OOT, just as it is for non-OOT.

What OOT brings to the picture is the effect that implicit type conversions can have on the
resolution of polymorphic references and on the data and control coupling occurring at the object
or machine code level of the software.

Certain 00 languages allow implicit type conversions to be performed dynamically to support
any reference, polymorphic or not. This makes analysis and testing more difficult because the
exact data type and implementation, both attributes and methods, cannot be determined statically,
and the control flow of the OO program is less transparent. Static analysis cannot be used to
precisely identify the dependencies in the program; instead, approximation techniques must be
employed. This in turn makes it difficult to identify the change impact in regression testing.

For example, consider the following simple code sequence:

Object_A := Object_B + Object_C;
if Object_A.Valid() then

In this example, there may be temporary objects created for Object_A, ObjectB, and ObjectC
requiring constructors and destructors to be called. These constructors and destructors may apply
implicit type conversions in order for the creation and destruction operations to occur. These
conversions can even change the type of a class object, impacting which attributes and methods
are used, and can result in imdesired behavior.

From the data and control coupling perspective, the constructors and destructors may have side
effects that comphcate the data and control coupling analyses. The addition of the implicit type
conversions may further obscure the true data and control coupling relationships by changing the
resolutions of polymorphic references.

21

2.7.1 Language Issues.

Ada95 and Java restrict implicit type conversions to those between primitive data types only.
Further restriction is imposed in that implicit type conversions may only be widening from a less
precise type to a more precise type so that no information would be lost.

C++ has a much more open policy on implicit type conversions. In particular, a C++ compiler is
permitted to perform any implicit type conversion that conforms to the C++ rules, including
those involving constructors. For example, a ftinction expecting an argument of type Tl can be
called not only with an argument of type Tl, but also with an argument of type T2 if a conversion
from T2 to Tl exists. Though this may cause unexpected results, it appears to have no structural
coverage implications.

2.7.2 Tool Issues.

The analysis tools used to assist with the data and control coupling analysis may not be aware of
everything the compiler or linker is doing when implicit type conversions are used. This may
affect the trustworthiness of their analysis results.

2.7.3 Acceptance Criteria.

The following acceptance criteria are proposed for implicit type conversion: for software levels
A-C, every implicit type conversion must be identified, its impact assessed, and executed at least
once. Particular attention should be paid to analyze data and control coupling.

2.8 TEMPLATES.

Templates are a support mechanism of OOT. A template is a parameterized class, operation, or
method with unbound (formal) parameters that must be bound to actual (type) parameters before
it can be used. Templates are not unique to OOT as they appeared as generics in Ada83. What is
unique in OOT is that other classes, both nontemplate and template, can inherit from a template
class, whether or not the template class has been instantiated. Templates are currently provided,
with some semantic differences, in both Ada95 and C++. There is a proposal to include them in
the next version of the Java language specification. Templates were found to have no structural
coverage issues associated with it.

2.9 EXCEPTIONS.

Exceptions, in the general sense, are a support mechanism of OOT for dealing with errors and
other exceptional conditions that may arise during program execution. They are not unique to
OOT because they have existed in previous languages like Ada83. What is unique in OOT is
that when an exception is raised and propagates to a handler, the destructors or finalizers for all
the objects that need to be removed must be invoked. Exception handling is provided, with some
semantic differences, in all three languages examined in this report. Exceptions were found to
have no structural coverage issues associated with it. Note, however, that if destructors or

22

»

finalizers have side effects, those side effects may have data and control coupUng impHcations
when they are invoked during the handhng of an exception.

2.10 EXCLUDED FEATURES.

Certain features of OOT were not examined in this report because there were questions as to
whether they should be used in safety-critical systems. These features include dynamic class
loading, dynamic reclassification, just-in-time (JIT) compiling, reflection, and garbage collection.
Primarily, these features impact either the predictability or repeatability of the resulting code
expected in safety-rated software or the satisfaction of objectives in DO-178B. In the sections
below, each feature is explained, and the issue that brings the feature into question is identified.

2.10.1 Dynamic Class Loading.

Dynamic class loading is the loading of classes during run time by the run-time support system.
This is opposed to the loading of compiler and linker identified classes during start-up. This
mechanism allows an application to be built without the necessity of precompiling and statically
linking all of the classes. One use Java makes of this mechanism is to load classes it does not
have access to when an application is built in order to support the running of distributed
applications over the web. The dynamic loading has the side effect that the class tree is rewritten
to include the dynamically loaded class. This self-modifying code feature brings into question its
acceptability in safety-critical systems.

2.10.2 Dynamic Reclassification.

Dynamic reclassification is the ability of an object to change its class membership during run
time between the time it is created and the time it is destroyed. Reclassification goes beyond the
normal RTTI support for upcasting and downcasting used to support polymorphic data structures
(e.g., an array of conic sections) (see section 2.6). An example of undesired dynamic
reclassification would be a square object reclassifying itself as a parabola partway through its
lifetime. Note that polymorphic parameters can change their membership in different
invocations of their method depending on the actual parameter supplied. This is considered
normal because the parameter does not change its membership during its invoked lifetime.
Dynamic reclassification is probably not acceptable in safety-critical software because it raises
data and control flow undecidability issues, which impacts the ability to perform data and control
coupling confirmation.

2.10.3 Just-In-Time Compiling.

There are two forms of JIT compiling used in OOT. The first is a mechanism to allow an
application to be built when not all of the source or object code is available. As the application is
running and it comes to a point where it needs the missing piece, it will compile and install that
piece and then resume running. Not only is this a self-modifying code issue, but the absence of
complete source code prevents satisfaction of numerous objectives in DO-178B, particularly
those concerning timing and memory usage.

23

The second form of JIT is a technique used in some virtual machine implementations,
particularly Java (JVM), to improve program execution time. Through JIT, a bytecode method is
translated into a native method on the fly, to reduce the overhead of executing the method by
interpreting the bytecodes. It is more likely that traditional ahead-of-time compilation will be
used in hard real-time embedded systems to generate native code. Should JIT methods be
employed in the future, they will require further analysis for acceptability.

2.10.4 Reflection.

Reflection is a Java-specific mechanism that allows an application to interrogate a class to find
out the method names, field names, and constructor names for the class at run time. Reflection is
used to support dynamic class loading, discussed in section 2.10.1. The Reflection Application
Programmers Interface (API) allows a running program to invoke the methods and modify the
fields of the class, thus, interrogated, even when that class is not available at compile and link
time. The self-modifying code aspects of reflection bring into question its acceptability in safety-
critical systems.

2.10.5 Garbage Collection.

For systems using dynamic random access memory (DRAM) there is an issue as to whether that
memory is to be explicitly managed, generally by the application, or implicitly managed by the
run-time support. For explicit management, the application makes explicit calls to allocate and
deallocate sections of memory, while for implicit management the application makes calls to
allocate sections of memory, but does not make calls to deallocate it. The implicit management
technique is generally known as garbage collection. In this technique, a garbage collector is
periodically run and reclaims memory that is no longer in use. Additionally, it may move the
contents of memory in order to compact it. The nondeterminism introduced by the timing impact
of when the garbage collector will run, and how long it will take, as well as the question of where
in memory the data will be, probably makes the use of a garbage collector unacceptable in safety-
critical software.

3. RELATED ISSUES.

This section of the report looks at three issues that came up during the course of the study. These
issues are not direcfly related to OOT features, but instead, result as side effects of OOT. The
issues are data and control coupling, deactivated code, and object-state testing. Each is covered
in its own subsection.

3.1 DATA AND CONTROL COUPLING.

Data and control coupling are not imique to OOT. What OOT brings to the picture is that data
and control coupling relationships can be far more complicated and obscure in OOT than they are
in traditional (functional) systems and software. This report has included the issues of data and
control coupling within the sections of the affected object-oriented features. This section
provides some higher level discussion as well as pointers to the sections in the report dealing
with the details.

24

<i

One impact on data and control coupling is in the nature of OOT. OOT encourages the
development of many small, simple methods to perform the services provided by a class. Most
of the control flow is moved out of the source code through the use of polymorphism and
dynamic binding, hi essence, the control flow, and thereby the control coupling, will become
implicit in the source code, as opposed to being exphcit. There is a similar effect on the data
flow and, thereby, the data coupling.

OOT also encourages hiding the details of the data representation (i.e., attributes) behind an
abstract class interface. Suggested best practice is that attributes of an object should be private,
and access to them only provided through the methods appropriate to the class of the object.
Being able to access attributes only through methods makes the interaction between two or more
objects implicit in the code.

Section 2.1 on classes provided an example where data and control coupling were impacted by
constructors. If a class has multiple constructors that put a new object into different states, these
different states may impact how the methods behave in subsequent calls.

Section 2.2 on inheritance provided examples where data and control coupling were impacted by
specialization and overriding. An added method in the derived class changed the data
dependencies between inherited methods. An overridden method changed the data and control
dependencies between inherited methods (and attributes).

Section 2.4 on polymorphism and dynamic binding provided an example where data and control
coupling were impacted by dynamic binding. The dynamic binding influences the control flow,
and potentially the data flow, between methods with polymorphic references.

Section 2.5 on encapsulation and information hiding provided an example where data and control
coupling were impacted by encapsulation and information hiding. Encapsulation and
information hiding can obscure the coupling between objects when intermediary objects are
involved.

Section 2.7 on implicit type conversions provided an example where data and control coupling
were impacted by implicit type conversion. The constructors and destructors invoked during
implicit type conversions may have side effects that complicate the data and control coupling
analyses, hnplicit type conversions may further obscure the true data and control coupling
relationships by changing the resolutions of polymorphic references.

Section 2.9 on exceptions provided an example where data and control coupling were impacted
by exception handling. The destructors invoked during exception handling may have side effects
that complicate the data and control coupling analyses.

In summary, it appears that the major impact of OOT on structural coverage will be in the area of
data and control coupling. The standard code coverage measures of statement coverage, decision
coverage, and modified condition and decision coverage were not impacted by OOT within the
three languages investigated during this study.

25

3.2 DEACTIVATED CODE.

Deactivated code is not vinique to OOT. What is unique to OOT is that several variations of this
can occur, some of which give the impression of being dead code, i.e., classes in a library not
used, methods of a class not called in a particular application, methods of a class (abstract)
overridden in all subclasses, or attributes of a class not accessed in a particular application.

For example, consider the situation presented in figure 13.

c_i
A 1
A_2

M 10-A 1
M 20-A 1
MJO -- A_2
M_40 -- A_2 Client

i ^
_

M 1,
M_2,
M_5

C_2 C_3
A_3 A_4

1 j M_5()--A_3,M_1,M_2 M_60 -- A_4, M_3, M_4

'A

FIGURE 13. DEACTIVATED CODE EXAMPLE

Figure 13 presents a class being used by a client (the system). Within this diagram, as was done
within figure 6, the methods have been annotated with the attributes they access, and the methods
they call, as is the client. From the point of view of the client, class (C_3), methods (M_3, M_4,
and M_6), and attributes (A_2 and A_4) appear to be dead code (i.e., not used by this system).

One approach would be to treat the unused classes, methods, and attributes as dead code and
remove them for this system. However, the guidance given in DO-178B says that dead code is
due to an error, but that does not appear to be the case in figure 13. The C_l class has been
intentionally designed and implemented with two subclasses (C_2 and C_3). At least, it is
assumed that the design and implementation was intentional, as opposed to accidental or
erroneous. The current client (system) is only making use of one of those subclasses (C_2), but
there is potential use by other clients (systems) of the other subclass (C_3). Therefore, the
unused classes, methods, and attributes should be treated as deactivated code. Note that it would
be better if the intent behind the design and implementation was known, rather than assumed, as
was done in the preceding analysis.

4

26

A complication can arise in the interaction between the use of a smart compiler or linker and a
structural coverage analysis tool. For the uninstrumented source, the unused classes, methods,
and attributes may not be loaded into the system, but they are in the instrumented source. This
will lead the coverage analysis process to show that no tests cover the unused entities. However,
this is not a problem as they are not loaded into the final system.

Smart compilers and linkers also present some issues of their own. Some smart compilers and
linkers will remove only entire unused classes (e.g., C_3 in figure 13). Others will not only
remove entire imused classes, but also unused attributes (e.g., A_2 of figure 13) or unused
methods (e.g., M_3 and M_4 of figure 13) of used classes. The effects on the resulting
executable code will be different and will need to be investigated.

3.3 OBJECT STATE TESTING.

Object state testing in OOT is an issue that was investigated because of the number of papers and
technical reports published on both its necessity and the difficulties of properly achieving it.

State and state-based testing are not unique to OOT. What is unique to OOT is that potentially
every object is its own little state machine. The state of an object is defined by the values held by
its attributes. The issue of object state is related to the issue of context brought out in section 2.2
on inheritance.

For example, consider the stack class presented in figure 14.

FIGURE 14. STACK CLASS

There are five methods applicable to any object of this class (Push, Pop, Top, Is_Empty, Is_Full).
Each of these methods may have different behavior depending on the state of the stack object
when they are called. These behaviors can be summarized by the stack state machine shown in
figure 15. Notice that Is_Empty and Is_Full never change the state of the stack and never raise
exceptions. Top never changes the state either, but if it is called when the Stack is in the Empty
state an exception will be raised. Push and Pop can change the state, but not change the state and
not raise an exception, or not change the state and raise an exception.

27

Is_Empty() r^

Is_Full() C^
Empty

I PopO ~ raise Is_Empty exception

I TopO ~ raise Is_Empty exception

PushO

Is_Empty() d

PopO

Is_FuliO

Holding ^T°P0
P-^ Data —] PushO

tD PopO

PushO PopO

Is_EmptyO r^

is_Fuiio nl
Full

^ TopO

I PushO ~ raise IsFull exception

FIGURE 15. STACK STATE MACHINE

Though the proper verification and testing of object state appears to be an important issue with
the use of OOT, and is crucial for certain kinds of classes (e.g., a stack), it is not an issue for the
current measures used for structural coverage (statement coverage, decision coverage, modified
condition and decision coverage), as given in DO-178B. The reason for this is that the semantics
behind state are at the design and requirements level of the software, and are not available at the
source code level. The current measures only concern themselves with the executions occurring
at particular statements. Statement coverage and decision coverage do not concern themselves
with the associations of the execution of statements and the values of the data alive at those
statements. Modified condition decision coverage (MCDC) concerns itself only with the
association at a single decision. This concern is not broad enough to encompass ftiU state
coverage. As an example, consider that to cover the methods of stack only requires the testing of
each method in two of the three possible states.

However, object state testing appears to have implications for data and control coupling. Notice
that the behavior of Push, Pop, and Top are all dependent on the current state and, thereby,
dependent on previous executions of the methods. For example, consider that the execution of
Push, which places the stack into the Full state, changes how Push will behave the next time it is
called if the stack remains in the Full state.

^

'I

28

4. RESULTS AND FURTHER WORK.

There is a desire and an emerging trend by suppliers of commercial airborne safety-critical
systems towards the use of OOT. One area of concern, identified by Rierson [1], is the issues
surrounding the proper application of structural coverage analysis to certain features of OOT.
Structural coverage is used within DO-178B [2] as one of the adequacy measures for the
requirements-based testing of software for commercial airborne computer-based systems.
However, DO-178B does not specifically address OOT, possibly because the use of OOT in
safety-critical systems was not contemplated in 1992 when DO-178B was released. This report
identifies the issues concerning the structural coverage of certain features of OOT; the
implementation of those features within the programming languages Ada95, C++, and Java; and
the analysis of those features and implementations by current structural coverage analysis tools
for object-oriented languages.

A summary of the OOT features examined, the role they play, and the results of this study are
presented in table 1. Li table 1, the issues column is supported by three types of issues: whether
there was a coverage issue or not, whether there was a tool issue or not, and whether there is a
data and control coupling issue or not. For the excluded features, all entries are not applicable
(N/A).

TABLE 1. RESULTS SUMMARY

Feature Role
Issues

Coverage Tool Coupling
Aggregation Fundamental building block No No No
Class Fundamental concept No No Yes
Dynamic Class Loading Support mechanism N/A N/A N/A
Dynamic Reclassification Support mechanism N/A N/A N/A
Encapsulation and Information Hiding Fundamental principle No No Yes
Exceptions Support mechanism No No Yes
Garbage Collection Support mechanism N/A N/A N/A
Implicit Type Conversions Support mechanism No Yes Yes
Inheritance Fundamental building block Yes Yes Yes
Just-In-Time Compiling Support mechanism N/A N/A N/A
Polymorphism and Dynamic Binding Fimdamental principle Yes Yes Yes
Reflection Support mechanism N/A N/A N/A
Run Time Type Identification Support mechanism No No No
Templates Support mechanism No No No

Based on the results from the analyses of the OOT features performed dining this study, it is
concluded that there are two areas where the use of OOT impacts structural coverage. The first
area of impact concems whether measuring coverage against the source code only is sufficient.
This area is important due to the widening of the abstraction level between source code and
object code. Inheritance and polymorphism with dynamic binding are two OOT features where
simple source code measurement may not be sufficient and are identified in table 1 as the only
features with coverage issues. The second area of impact concems the confirmation of data and

29

control coupling. Nearly every non-excluded OOT feature examined had data and control
coupling concerns. Table 1 shows that only aggregation, Run Time Type Identification (RTTI),
and templates were not concerns.

The general issue inheritance brings to structural coverage is: Against what should the coverage
be measured—concrete features only or concrete and inherited features? The analysis presented
within this report shows that coverage should be measured against both concrete and inherited
features. This goes beyond measuring coverage against the source code only, as there is source
code for concrete features within the class where it is defined, not within the class(es) where it is
inherited. This finding is in agreement with the general literature on the adequacy of testing
inheritance [5]. Note that the measurement of coverage against concrete and inherited features
does not necessarily require unique testing for concrete and inherited features. The same set of
tests could be run with objects of the defining class and rerun with objects of the inheriting *i
classes.

The general issue polymorphism with dynamic binding brings to structural coverage is: For
compiler- and linker-generated data and control structures beyond normal source to object
traceability (e.g., auto-code), should coverage be measured against the source code only, the
object code only, or some combination? The analysis presented within this report shows that
coverage should be measured against a combination of source code and object code for Level A-
C software. This finding goes beyond DO-178B, where source-to-object traceability is only an
issue for Level A software.

The OOT features examined in this report, both general 00 features as well as language
implementations for those features, were analyzed for structural coverage implications only.
These features and implementations were identified through a literature search where there were
questions about the proper requirements-based or implementation-based testing of the feature or
implementation. There may be other features of OOT requiring investigation that were not
identified in the literature search.

As mentioned previously, nearly every OOT feature examined had data and control coupling
concerns. Unfortunately, data coupling, control coupling, and their confirmation are not well
defined in either DO-178B or DO-248B. Within this report, if an OOT feature lead to either a ^
data dependence or a control dependence, then a data coupling or a control coupling resulted,
requiring verification. No attempt was made to specify what verification was needed for the .jt
coupling.

Both the general object-oriented software features and the issues associated with those features
were examined to determine if there were any specific issues in the implementation of the object-
oriented feahires in tiie programming languages: Ada95, C++, and Java. Surprisingly, there were
no additional structural coverage issues with the implementation of the general 00 features in
the three target languages beyond those of the general 00 feature itself

How current structural coverage verification (analysis) tools deal with the issues uncovered
during the study were identified. Table 1 shows that inheritance, polymorphism with dynamic

30

■^

binding, and implicit type conversions were all general object-oriented features found to have
tools issues. For inheritance, multiple approaches currently exist in different tools: recording
coverage against concrete methods only versus recording coverage against the flattened class.
This report recommends that the preferred approach is to have the structural coverage analysis
tools for object-oriented languages record coverage against the flattened class. For
polymorphism with dynamic binding multiple approaches also exist: source versus object code
coverage. This report recommends that the preferred approach be a combination of the two:
coverage of the polymorphic references at the source code level and coverage of the method
tables at the object code level. For implicit type conversions the issue is whether analysis tools
will properly understand what is happening in the code emitted by the compiler and linker. This
report recommends that every implicit type conversion be analyzed.

• The conclusions from this study are:

• OOT impacts structxiral coverage in two areas:

Measuring structural coverage against the source code only may not be sufficient,
even for levels B and C software, due to the widening of the abstraction level
between source code and object code; and

The confirmation of data and control coupling assumes greater importance with
OOT, but is problematic.

• Structural coverage should be measured against both concrete and inherited features.
Tools should record coverage against the flattened class.

• Structural coverage should be measured against a combination of source code and object
code for polymorphism with dynamic binding. Tools should record coverage of the
polymorphic reference at the source level and entries of the methods tables at the object
code level.

• Each implicit type conversion needs to be analyzed.

The recommendations from this study are:

^ • Another study should be conducted to look into the widening of the abstraction level
between source code and object code in OOT, and whether a combination of source and
object code analysis is required.

• Another study should be conducted to look into the proper requirements-based
verification of OOT features and language implementations per section 6.4.2 of DO-178B
[2].

• Another study should be conducted to look into the proper verification (i.e., confirmation)
of data and control coupling for OOT features and language implementations per section
6.4.4.2c of DO-178B [2].

31

5. REFERENCES.

1. Rierson, L.K., "Object-Oriented Technology (OOT) in Civil Aviation Projects:
Certification Concerns," Federal Aviation Administration, Washington, D.C.

2. RTCA, DO-178B/ED-12B, "Software Considerations in Airborne Systems and
Equipment Certification," December 1,1992.

3. RTCA, DO-248B, "Final Report for Clarification of DO-178B 'Software Considerations
in Airborne Systems and Equipment Certification,' " October 12,2001.

4. The Open Group document, "OMG Unified Modeling Language Specification," Version
1.4, September 2001.

5. Binder, R.V., "Testing Object-Oriented Systems: Models, Patterns, and Tools," Addison
Wesley, Massachusetts, 2000.

6. Page-Jones, M., "The Practical Guide to Structured Systems Design," Yourdon Press,
New York, 1980.

«U.S. GOVERNMENT PRINTING OFFICE: 2002/504-042/60034

32

