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EXECUTIVE SUMMARY 

Object-oriented technology (OOT) has been extensively used throughout the non-safety-critical 
software and computer-based systems industry (e.g., the various window-based graphical-user 
interface icon-based operating systems, applications, and the internet). This technology is touted 
as solving many of the problems seen in software production through the reduction of complexity 
in the development of software and the potential for massive reuse and adaptation of previously 
developed software (e.g., objects) and patterns. In particular, the compilers and development 
environments for object-oriented programming generate a large amount of code automatically. 
There is also a large market of support tools, object libraries, and training supporting OOT. In 
response to this movement, there is interest in moving OOT into the commercial airborne 
software and systems domain. However, as with any new technology, there are concerns and 
issues relating to its adoption within safety-critical systems. 

This report identifies issues concerning the effect of certain features of OOT on structural 
coverage. These issues can concern a specific OOT feature, its implementation within the 
programming languages Ada95, C++, or Java, or the monitoring of the feature and 
implementation by structural coverage analysis tools. Structural coverage is used within DO- 
178B as one of the adequacy measures for the requirements-based testing of software for 
commercial airbome computer-based systems. However, neither DO-178B nor DO-248B, which 
contains supplementary material to DO-178B, addresses OOT. Structural coverage of object- 
oriented software is one of the concerns highlighted by the FAA Chief Scientific and Technical 
Advisor (CSTA) for Aircraft Computer Software in 1998. 

Some of the issues addressed in this report are not new to OOT. The issues exist in current 
software technologies, but their occurrence in OOT may be more frequent or may occur in new 
or different ways. Certain issues that are new to OOT, related to the increasing abstraction level 
between source and object code, may require rethinking of structural coverage in ways that are 
typically not expected. For these issues, new guidance supplementary to DO-178B and DO- 
248B may be needed. For those issues for which new guidance on the appropriate use of 
structural coverage may be needed, options and arguments are presented for consideration. 

vii/viii 



1. INTRODUCTION. 

This report provides information to international certification authorities to assist with the 
development of policy and guidance for the use of object-oriented technology (OOT) to develop 
software for commercial airborne computer-based systems. The research focuses on the aspects 
of structural coverage that are impacted by the use of OOT. 

1.1 BACKGROUND. 

Object-oriented technology has been extensively used throughout the non-safety-critical software 
and computer-based systems industry (e.g., the various window-based graphical-user interface 
icon-based operating systems, applications, and the internet). Many people tout OOT as the 
solution to many of the problems seen in software production through the reduction of 
complexity in the development of software and the potential for massive reuse and adaptation of 
previously developed software (e.g., objects, frameworks, and patterns). In particular, the 
compilers and development enviroimients for object-oriented programming generate a large 
amount of code automatically. There is also a large market of commercially available 
publications, support tools, frameworks, object libraries, and training supporting OOT. In 
response to this movement within the general software industry, there is interest in moving OOT 
into the commercial airborne software and systems domain. However, as with any new 
technology, there are concerns and issues relating to its adoption within safety-critical systems. 

One area of concern, identified by Rierson [1], the CSTA for Aircraft Computer Software, is the 
issues surrounding the proper application of structural coverage analysis to certain features of 
OOT. Within this report, not only are features of OOT examined, but their implementation 
within the programming languages Ada95, C++, and Java are examined, as well as the 
monitoring of the feature and implementation by structural coverage analysis tools. Structural 
coverage is used within DO-178B [2] as one of the adequacy measures for the requirements- 
based testing of software for commercial airborne computer-based systems. However, DO-178B 
does not specifically address OOT, possibly because the use of OOT in safety-critical systems 
was not contemplated in 1992 when DO-178B was released. A docxmient containing 
supplementary material to DO-178B published in 2001, DO-248B [3], also does not address 
OOT. 

Some of the structural coverage issues addressed are not new to OOT. They exist in current 
software technologies, but their occurrence in OOT may be more frequent or may occur in new 
and different ways (e.g., deactivated code). Other structural coverage issues require the use of 
structural coverage in a different maimer than is currently used (e.g., inheritance). For these 
issues in general, new guidance in addition to DO-178B may be needed. For those issues for 
which new guidance on the appropriate use of structural coverage may be needed, options are 
presented for consideration. 



1.2 RELATED DOCUMENTS. 

The Aerospace Vehicle Systems Institute (AVSI) has done some complementary work to this 
study and has published a number of guidelines. The AVSI documents contain some material on 
the structural coverage of certain OOT features: 

a. AVSI. "Guide to the Certification of Systems with Embedded Object-Oriented Software," 
version 1.4, January 2002. 

b. AVSI. "Guide to the Use of Dynamic Dispatch in Embedded Object-Oriented Software," 
version 1.7, October 2001. 

c. AVSI. "Guide to the Use of Multiple Interface Inheritance in Embedded Object-Oriented 
Software," version 1.2, October 2001. 

d. AVSI. "Guide to the Use of Multiple Implementation Inheritance in Embedded Object- 
Oriented Software," version 1.7, October 2001. 

1.3 APPROACH. 

This study was conducted using a five-element process, as shown in figure 1, to produce this 
report. In figure 1 the major flows are depicted with solid lines and the minor flows are depicted 
with dashed lines. In addition, there were feedback flows between each of the elements that are 
not shown in order to simplify the drawing (e.g., when looking at language criteria for certain 
language issues, 00 issues were raised). 
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FIGURE 1. WORKFLOW OF THE STUDY 



The literature search was conducted first, with the other four process elements from figure 1 
conducted in parallel. Each of the five process elements from figure 1 is discussed in more detail 
in the following subsections. 

1.3.1 Literature Search. 

A search of peer-reviewed pubHcations and web-based literature was conducted to locate 
previous work done on this topic. It was discovered that there are no peer-reviewed publications 
dealing with structural coverage, as defined within DO-178B [2], of object-oriented software. 
Listead, publications dealing with two topics that potentially lead to issues affecting structural 
coverage were identified. 

1. The adequacy of testing object-oriented software, both requirements-based testing as well 
as implementation-based testing, and 

2. The implementation-based (structural, white-box) testing of object-oriented software. 

Even though there are no peer-reviewed publications, there are some white papers from structural 
coverage tool vendors available on the web. 

1.3.2 Literature Studv. 

The publications identified in the literature search were examined for issues that need to be 
addressed in the definition or proper application of structural coverage for object-oriented 
software. Issues can be associated with: 

• Object-oriented software features in general. 

• The implementation of those features within a particular programming language. For this 
study, Ada95, C++, and Java. 

• The tools used in the structural coverage verification (analysis) of object-oriented 
software. 

Each of these categories was addressed in its own process element, as documented in sections 
1.4.3-1.4.5. As mentioned in section 1.4.1, the issues had to be discovered indirectly. Issues 
concerning the adequate testing of general object-oriented features were examined to see if there 
were any implications for the structural coverage analysis of the implementation of those 
features. The methods for the implementation-based (structural, white-box) testing of object- 
oriented software and the issues concerning the application of those methods were examined to 
see if any of the methods could be adapted for structural coverage. Also, if the issues carried 
over to structural coverage, these issues that did apply to structural coverage were raised. 

The methodology used to identify issues resulted in a number of object-oriented features being 
examined that resulted in no issues for structural coverage. Surprisingly, all the issues imcovered 



by this study concern issues associated with object-oriented software features, in general, and the 
measurement of those features within the three programming languages. Though the object- 
oriented issues applied to the programming languages, there were no implementation issues 
beyond the general object-oriented (00) issues. For some of the issues, the purpose and proper 
application of structural coverage may need to be extended beyond the current practice. 

1.3.3 00 Criteria. 

Both the general 00 software features and the issues associated with those general features 
identified during the study were examined for their impact on structural coverage analysis. All of 
the features examined are documented in this report. For certain features, there are no issues 
impacting structural coverage, and the analysis stopped there. For those features where there 
were issues, broad solution possibilities for defining what it means to accomplish structural 
coverage in the verification of 00 software in general were identified. These solution 
possibilities were targeted to the use of the feature without regard to how that feature was 
implemented in any particular programming language. 

1.3.4 Language Criteria. 

Both the general 00 software features and the issues associated with those general features 
identified during the study were examined to determine if there were any specific issues in the 
implementation of the OO features in the programming languages Ada95, C++, and Java. Both 
the language standards and the outputs from compilers were examined. 

Surprisingly, there were no structural coverage issues with the implementation of the general 00 
features in the three target languages beyond those of the general 00 feature itself Note that this 
study only considered the structural coverage aspects of the language implementations. 

1.3.5 Tool Criteria. 

How current structural coverage verification (analysis) tools deal with the issues defined during 
the study, both general 00 as well as the specific implementations within Ada95, C++, and Java, 
were identified. For certain issues, other options for tool behavior were identified. Where 
multiple tool approaches exist, recommendations for a preferred approach are given. 

1.4 ORGANIZATION OF THE REPORT. 

This report is organized into four sections plus references. Section 1 introduces the context of 
the study. 

Section 2 contains the specific OOT features and issues raised during the course of this study. 
There are three forms of features: 

• Features that have no issues associated with them, 
• Features that have issues that can be resolved, and 
• Features that have issues that may make their use in safety-critical software unacceptable. 



All the features are documented in the order that they were examined, except the excluded 
features, which have their own section. 

Class—^the fundamental concept 
hiheritance—one of the fundamental building blocks 
Aggregation—one of the fundamental building blocks 
Polymorphism and Dynamic Binding—one of the fundamental principles 
Encapsulation and hiformation Hiding—one of the fundamental principles 
Run Time Type Identification—support mechanism 
hnplicit Type Conversions—programming support mechanism 
Templates—support mechanism 
Exceptions—support mechanism 
Excluded Features 

Dynamic Class Loading 
Dynamic Reclassification 
Just-In-Time Compiling 
Reflection 
Garbage Collection 

A brief explanation is given of the feature. For those features with no issues, the feature is 
identified as having no issues. For those features with issues, the issues (general 00, language, 
and tools) are identified along with recommendations for acceptance criteria. For those features 
that were deemed unacceptable, the reason for unacceptability is given. 

Section 3 contains some related issues concerning the use of OOT in general. These issues are 
not related to specific features of OOT, but are side effects of the use of OOT. 

• Data and Control Coupling 
• Deactivated Code 
• Object-State Testing 

Section 4 sxmimarizes the conclusions of the study and identifies issues for further study, and 
section 5 lists the references. 

2. OBJECT-ORIENTED FEATURES. 

The results of examining features of OOT are documented within this section of the report. 
Classes, being the major organizational feature of OOT, are reported on first. Following classes, 
each of the features of a class examined during the course of this study is reported on, essentially 
in the order they were examined. For some of these features, issues concerning structural 
coverage were identified and are, therefore, documented. For other features, no issues were 
found. For certain issues, it was determined that these would not be acceptable in safety-critical 
systems, so no further investigation was conducted. These features are grouped together in 
section 2.10 regardless of the order they were examined. 



2.1 CLASS. 

OOT is a software development methodology based on the concept that all systems are composed 
of objects, and the relationships and interactions between those objects. The fundamental 
concept upon which OOT is founded is that of the class. Classes form the fundamental building 
blocks out of which object-oriented software and systems are created. All objects appearing 
within the system and software must belong to a class. The class is a template that defines the 
attributes and methods applicable to all objects of that class. 

Attributes define the data structure and hold the corresponding values that describe the current 
state of the objects of a class. Note that there are two forms of attributes, i.e., class variables or 
static variables, which are shared by all objects of a class. Instance variables are attributes that 
apply to each individual object of a class. Each object of the class will contain its own set of 
instance variable attributes and share the common set of class variable attributes. 

Methods define the operations that may be performed on the objects of a class, thereby defining 
the possible behavior of the objects of that class. These operations may be sensitive to the 
current state of the object and may update that state by changing the values of attributes. Note 
that there are two forms a method can take. If a method merely defines an interface without an 
implementation, a specification without a body in Ada terms, it is known as an operation. If it 
defines both an interface and an implementation it is known as a method. 

By defining the set of values for an object and the operations that may be performed on those 
objects, the concept of a class is equivalent to the concept of a type as it appears in standard 
programming languages (e.g., Ada). However, the class also identifies the relationships, known 
as associations in the Unified Modeling Language (UML) [4], that can exist between objects of 
that class and objects of other classes (clients). 

Figure 2 shows the diagrammatic representation used for classes in this report. This 
representation is based on tiie UML specification [4]. 

Class 1 
Attribute 1 

Method_l() 
Method_2() 

FIGURE 2. CLASS GRAPHICAL REPRESENTATION 

As shown in figure 2, a class is represented as a box with three compartments. The top 
compartment hsts the name of the class. The middle compartment lists the names of the 
attributes, if any. The bottom compartment lists the names of the methods, if any. 

Classes support encapsulation through separation of the external (public) and internal (private) 
aspects of a class and its objects.   Generally, the external aspects are known as the interface. 



while the internal aspects are known as the implementation. Clients of a class may only have 
access to the interface of the objects of that class. This is also known as data hiding or 
information hiding. 

Classes come in two forms: concrete and abstract. A class is concrete if objects may be created 
of that class. This means that the class must have both its interface and its implementation 
defined. A class is abstract if objects may not be created of that class. This means that the class 
will have either only its interface defined or only a portion of its implementation defined. 

Depending on how one wants to look at it, there are either no OOT structural coverage issues 
associated with classes or all OOT structural coverage issues are associated with classes, hi this 
report, the fimdamental concepts have been broken out and applied to classes into their own 
sections. 

2.1.1 Language Issues. 

All three languages under consideration have a class mechanism. C++ and Java implement 
classes directly, using a classical class hierarchy. Ada95 uses an approach based on type 
derivations within packages. The difference is mainly syntactic, with each approach having 
advantages and disadvantages. 

As part of the class mechanism for C++ and Java, supporting methods known as constructors 
(C++, Java) and destructors (C++) are required for a class. In Java, a finalizer, similar to a C++ 
destructor, may be provided. 

As the name implies, constructors are responsible for creating an object of a class at the 
beginning of its existence, including the initialization of the attributes of the object necessary to 
establish its initial state. For example, consider that an airspeed indicator object should draw 
itself on the display when it is created. 

The destructor and finalizer are responsible for cleaning things up when an object ends its 
existence. These methods perform whatever activities must be performed before an object is no 
longer needed. For example, consider again an object that draws itself on a display when it is 
created. When that object is no longer needed and is about to be destroyed, one of the things that 
it should do is erase itself firom the display. The C++ destructor has an additional responsibility 
in that it is also responsible for cleaning up the memory that the object occupied. The Java 
finalizer does not perform this fimction because memory cleanup is the responsibility of the 
garbage collector. 

Ada95 provides automatic initiahzation and finalization for instantiated objects. Ada95 also 
provides a mechanism, called controlled types, that gives the user additional control of these 
fiinctions. The user can define, for a controlled type, an Initialize procedure that is invoked 
immediately after the normal default initialization and a Finalize procedure that is invoked 
immediately before default finalization. A third procedure. Adjust, is called for controlled types 
following any copy or assignment operation. 



These supporting methods, constractors, destructors, and finahzers are not known to introduce 
any structural coverage issues in and of themselves. However, they can be implemented with 
side effects that can raise issues because these methods are employed by other features of the 
language (e.g., exceptions, destructors, fmalizers; implicit type conversion and constructors). 
These potential interactions are discussed later in the report. 

2.1.2 Tool Issues. 

There are no tool issues associated with classes in general. Specific issues are brought out in 
subsequent sections dealing with specific features of classes. 

2.1.3 Acceptance Criteria. 

There are no constraints on the acceptance of classes in general. Specific issues are brought out 
in subsequent sections dealing with specific features of classes. 

2.2 INHERITANCE. 

Inheritance is one of the fimdamental building blocks of OOT. It is a mechanism whereby a class 
is defined in terms of other classes (its parents), adding the features of its parents to its own 
without disturbing either the relationships between its parents and their clients or the parent's 
concrete implementations. It is generally used to define an IsA or Is_A_Kind_Of relationship 
(e.g., a conic section is_a geometric shape, an ellipse is_a_kind_of conic section). 

A class may have a single parent (single inheritance) or multiple parents (multiple inheritance). 
Figure 3 presents an example of single inheritance where two subclasses (Class_2 and Class_3) 
are inheriting fi-om Class_l. Either the interface or the interface and implementation can be 
inherited. Where multiple inheritance is allowed, repeated inheritance is a possibility (two or 
more parents have a common ancestor in the class hierarchy). 

Class_l 

Attribute_l 

Method_l() 
Method_20 

' 

Class_2 Class_3 

Attribute_2 Attribute_3 
Method_3() Method 2() 

M ethc >d_4() 

FIGURE 3. INHERITANCE REPRESENTATION 



Inheritance is implemented by three basic mechanisms: 

• Extension is the inclusion of the attributes and methods of ancestor classes (parents, their 
parents, etc.) in a subclass. 

• Overriding is the definition of either an attribute or method in a class with the same 
signature as that in a parent class. A signature consists of the name of the feature, the 
type for attributes, parameter signatures for methods, and in some languages a return type 
for methods (e.g., Ada). 

• Specialization is the definition of attributes and methods that are unique to that class. 

hiheritance can be pure, where a subclass only extends its parent, or not pure. Li pure 
inheritance, only extension and specialization are allowed. Class_2 in figure 3 is an example of 
pure inheritance. Class_2 has inherited Attribute_l, Method_l, and Method_2 from Class_l 
(extension) and has added an Attribute_2 and Method_3 (specialization). Class_3 on the other 
hand is not pure. It has inherited Attribute_l and Method_l from Class! (extension) and has 
added Attribute_3 and Method_4 (specialization). However, it has overridden (or redefined) 
Method_2 from Class_l with its own Method_2 (overriding). 

To fiilly understand a class, one can flatten it. A flattened class is one where all attributes and 
methods, including those inherited from a parent class, are shown. A flattened inheritance 
hierarchy is one where all classes are shown in flattened form. Figure 4 presents a flattened 
inheritance diagram for the inheritance diagram given in figure 3. 

Class 1 

Attribute 1 

Method_10 
Method_2() 

Class 2 Class_3 

Attribute_2 Attributes 

Method_3() Method_2() 
Method_40 

Class 1 

Attribute 1 

Method_l() 
Method_2() 

Class_2 Class_3 

{Attribute_l} 
Attribute_2 

{Attribute_l} 
Attributes 

{Method !()} 
{Method 2()} 
Method 3() 

{Method_10} 
Method_20 
Method_40 

Inheritance Hierarchy 
Normal Form 

Flattened Inheritance Hierarchy 
Normal Form 

FIGURE 4. FLATTENED INHERITANCE 



On the left-hand side of figure 4, the inheritance is presented in normal form, just as in figure 3. 
On the right-hand side of figure 4, the inheritance is presented in flattened form, hi this report, 
the flattened form will enclose all inherited attributes and methods in curly braces, hi some 
forms of flattening, inherited attributes and methods are annotated with a comment identifying 
where they were inherited from (e.g., Attribute_l - Class_l.Attribute_l). 

The general issue inheritance brings to structural coverage is: against what should the coverage 
be measured, i.e., concrete features only or concrete and inherited features? To answer this 
question, look at how OOT is implemented. For classes, each class keeps its own copy of the 
class variable attributes. For objects, each object keeps its own copy of the instance variable 
attributes. This means that if there is an ObjectA of Classl, it will have its own copy of 
Attribute_l that can be acted on by either Method_l or Method_2 defined in Class_l. An 
Object_B of Class_2 will have its own copy of Attribute_l and Attribute_2. Attribute_l can be 
acted on by Method_l and Method_2 defined in Class_l and by Method_3 defined in Class_2. 
Attribute_2 can only be acted on by Method_3. An Object_C of Class_3 will have its own copy 
ofAttribute_l and Attribute_3. Attribute_l can be acted on by Method_l defined in Class_l and 
by Method_2 and Method_4 defined in Class_3. Attribute_3 can be acted on by Method_2 and 
Method_4 defined in Class_3. 

Since multiple copies of attributes are made when using inheritance, it is clear that all attributes 
need to be tested in the context of all concrete classes within which they appear, whether defined 
explicifly within that class or inherited by it. For methods, however, multiple copies are not 
made. Only a single copy of each concrete method is created. That means that there is only a 
single copy of Method_l, Method_3, and Method_4, as well as Method_2 from Class_l and 
Method_2 from Class_3. 

Given the single copy of methods, one may be tempted to measure coverage against the concrete 
method only. One may even be tempted to test and record coverage for the concrete method in 
the context of the class that defined it and reuse that testing and coverage for all inherited 
instances (i.e., no retesting needed for inherited instances). However, this ignores the fact that 
the context of objects of one class is not guaranteed to be the same as the context of objects of 
other classes within the same hierarchy, hi essence, the data and control coupling relationships 
between the defining class and the inheriting class maybe different if overriding or specialization 
are present. 

Specialization can indirectly change the behavior of inherited methods previously verified in the 
context of other classes. For an example, consider from figure 3 that Method_l and Method_2 in 
Class_l may have an interface through, and thereby a dependency on, Attribute_l. This is 
illustrated in the dependency graph on the left-hand side of figure 5, which shows that there is a 
dependency between Method_l and Method_2 through Attribute_l. Consider fiirther that 
Method_3. in Class_2 may act upon Attribute_l in ways that effect the operation of Method_l 
and Method_2. This is illustrated in the dependency graph on the right-hand side of figure 5. 
Note that Class_2 has a different set of dependencies than Class_l. This means that the testing 
of Method_l and Method_2 within the context of Classl, even though they have been shown to 
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be correct in the base class (Classl), does not guarantee that it will work correctly in the context 
of the derived class (Class_2). 

Method_l() Method_l() 
i 

' 
11 

Attribute! Attribute_l -«►    Method_3() 
, 1 

Method_2() Method_2() 

Class 1 Class 2 

FIGURE 5. DEPENDENCY CHANGES DUE TO INHERITANCE 

Overriding can directly change the behavior of inherited methods previously verified in the 
contexts of other classes. For example, consider the class given in figure 6. The normal form 
appears on the left-hand side of the figure while the flattened form appears on the right-hand 
side. Within figure 6, the methods have been annotated with the attributes they access and the 
methods they call. In the flattened form, the names were qualified with the class names (e.g., 
C_1.A_1). 

c_i 
A_l 

M_10 - uses A_l, calls M_20 
M_20 - uses A_l 

j i 

C_2 

A_2 

M_2() ~ uses A_2 

c_i 
A_l 

M 10-uses C 1.A 1, calls C l.M 2() 
M_2()~usesC_l.A_l 

.    L 

C_2 

{A_l} 
A_2 

{M l()}-usesC 2.A 1, calls C 2.M 2() 
M_2() - uses C_2.A_2 

Normal Form Flattened Form 

FIGURE 6. OVERRIDE EFFECTS 

Examination of the right-hand side of figure 6 shows how overriding can modify the behavior of 
previously tested methods. Objects of class C_l when called with Ml will end up calling 
C_1.M_2 and using C_1.A_1. However, objects of class C_2 when called with M_l will end up 
calling C_2.M_2 and using C_2.A_1 and C_2.A_2 instead.   These changes will occur even 
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though there has been no change to the source code for Ml! This example clearly shows the 
need for verification and coverage of all concrete attributes and methods within the contexts of 
the concrete classes that use them when overriding is involved. 

Overriding can have an impact on data and control coupling by changing the data and control 
coupling relationships present within the software. Figure 6 shows that objects of C_l have a 
data dependence on A_l, while objects of C_2 have a data dependence on A_2 instead. In 
addition, there is a change in the control flow of M_l between the two classes that must be 
considered. C_1.M_2 and C_2.M_2 are both control dependent on Ml in that Ml is the only 
caller for those methods. This dependence is resolved by the class to which the object invoking 
M_l belongs to. 

This is equivalent to the change in a subprogram in a non-object-oriented calling sequence 
depicted in figure 7. The original calling tree is shown on the left side of the figure. M_l calls 
M_2, which calls M_3. On the right side of the figure is the calling tree with a changed version 
of M_2: M_2'. Given this change to the system, does either subprogram M_l or M_3 need 
reverification (i.e., did the change between M_2 and M_2' invalidate any of the verification used 
to comply with DO-178B)? The answer is that it depends on the impact of the changes on the 
data and control coupling (i.e., integration or interaction) between (M_l, M_2') versus (M_l, 
M_2), and between (M_2', M_3) versus (M_2, M_3). For example, if the difference between 
M_2 and M_2' is a changed Boolean expression, the tests for the integration verification of 
(M_l, M_2') and (M_2', M_3), as well as the tests providing MCDC for M_2', may no longer be 
complete. 

M_l 

1 ' 

M_2 

1 ' 

M_3 

M_l 

' f 

M_2' 

' ' 

M_3 

FIGURE?. CALL CHANGE EFFECTS 

The examples for specialization and overriding demonstrate that using these inheritance 
mechanisms may result in changes in the data and control coupling relationships between the 
defining class and the inheriting class. However, both of these examples can be extended to any 
base class (whether it defined or inherited the method) and a derived class. 

For this reason, most of the published literature on the testing of object-oriented software 
requires the testing of each concrete method within the context of each concrete class that uses it 
(i.e., test the flattened class) [5]. Since structural coverage is supposed to be an adequacy 
measure of the requirements-based tests, structural coverage should be separately recorded for 
each concrete method within each concrete class that uses it. In essence, there is a need to 
measure structural coverage against the flattened class. 
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Always testing and covering the flattened class is a simple and straightforward approach. 
However, it should be acknowledged that not all instances of inheritance require reverification. 
For this reason, it is reasonable to allow a change impact analysis to identify exactly how much, 
and what type, of reverification is necessary for each instance of inheritance. 

Note that the issues inheritance raises, concerning structural coverage, are independent of 
whether it is considered single or multiple inheritance. Multiple inheritance raises more issues 
concerning its use in safety-critical software than single inheritance does, but they are outside the 
domain of structural coverage [1]. 

The above discussion has concentrated on the inheritance of implementation. There is another 
inheritance mechanism known as inheritance of interface. An interface is known alternatively as 
an abstract class or method (UML, Ada95, Java), interface class (Java), virtual function (C++), or 
pure virtual function (C-H-). With the inheritance of an interface, there is only a promise to 
provide functionality, but no implementation. Because there is no code associated with an 
implementation when only an interface is inherited, there are no structural coverage issues 
associated with interface inheritance. Recall, however, that there is code associated with the 
implementation of an interface. Once there is an implementation, there may be structural 
coverage issues as discussed throughout this report. 

2.2.1 Lanexiage Issues. 

The following are some known differences in inheritance between the three object-oriented 
languages studied for this report. None of these differences are known to have any structural 
coverage issues associated with them. Ada95 and Java support only single inheritance of 
implementation, while C++ supports multiple inheritance of implementation. Ada95 and Java 
classes inherit from a single class hierarchy, while C++ allows multiple hierarchies. C++ and 
Java support both single and multiple inheritance of interface. Li addition, there are ways in 
Ada95 to obtain the effect of multiple inheritance of either interface or implementation. 

In Java, if a constructor is not provided explicitly, the compiler will create one that calls the 
parent class constructor. If the constructor exists but does not explicitly call the parent class 
constructor, Java will insert the call to do so. This compiler-generated code appears to have no 
structural coverage issues because it will always be executed when an object is created. A 
finalize method is not required by Java. However, if a finalize method is supplied in a derived 
class, it must call super.finalize or finalization will not occur for the base class. This is currently 
not required by the language specification, but appears to be enforced by some compilers. 

In C++, if a constructor or a destructor are not provided explicitly, the compiler will generate a 
default. As with the Java case, this compiler generated code appears to have no structural 
coverage issues because it will always be executed when an object is created or destroyed. 

A class is permitted to have more than one constructor. These different constructors may put the 
object into different initial states. As was pointed out in section 2.1, on classes in general, 
methods may be sensitive to the current state of an object. Thus, multiple constructors may have 
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implications for data and control coupling for an initial object and its interaction with the 
methods of its class. It does not appear that this data and control coupling is any different than 
that which is already present in the methods, and would be handled by normal verification of the 
methods. 

2.2.2 Tool Issues. 

There are two major approaches taken in current structural coverage analysis tools for object- 
oriented languages for recording the coverage of inherited methods. 

• The first approach is to record coverage against the concrete methods only. For example, 
given the class in figure 4, all calls to Object_A.Method_l() will have coverage measured 
against Class_l.Method_l(), independent of the class Object_A belongs to. The tools in 
this category are the simplest to implement because they can use simple probes to 
instrument either the source or object code. 

• The second approach is to record coverage against the flattened class. For example, given 
the class in figure 4, the call to Object_A.Method_l() will record coverage against 
Class_l.Method_10 if Object_A is of Class_l, the virtual Class_2.Method_l() if 
Object_A is of Class_2, and the virtual Class_3.Method_l() if Object_A is of Class_3. 
The tools in this category have slightly more complicated probes in that they must 
ascertain the class of the object invoking the method, and then record coverage against a 
virtual copy of the method appropriate to the flattened class. 

There is an approach taken by some tool vendors where the vendor's tool records coverage 
against the concrete class, but the user documentation recommends the testing of the flattened 
class by only using objects of a single class to run the tests and record the coverage. 

Given the direction seen in the object-oriented testing community toward testing of the flattened 
class [5], the preferred approach is to have the structural coverage analysis tools for object- 
oriented languages record coverage against the flattened class. 

2.2.3 Acceptance Criteria. 

As mentioned previously, the general issue inheritance brings to structural coverage is: against 
what should the coverage be measured: concrete features only or concrete and inherited 
features? As the previous examples have demonstrated, measuring structural coverage against 
the concrete methods is inadequate when the data and control coupling is impacted. Therefore, 
the following acceptance criteria is proposed for inheritance: structural coverage should be 
separately recorded for each concrete attribute and method within each concrete class that uses it, 
whether that class defines the attribute or method or inherits it (i.e., measure coverage against the 
flattened class). This recommendation is in agreement with the direction seen in the object- 
oriented testing community [5]. 
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To support the testing of the flattened class, either full testing and structural coverage is required 
in each separate class context (i.e., test and cover the flattened class) or a change impact analysis 
is required to identify the necessary reverification (testing and structural coverage) in derived 
classes. 

2.3 AGGREGATION. 

Aggregation is another one of the fundamental building blocks of OOT, It is a mechanism 
whereby a class is defined in terms of combinations of other classes. It is generally used to 
define a Has_A relationship (e.g., a circle has_a point as its center). It is generally implemented 
with attributes of one class being objects of another class. Aggregation is not unique to OOT, 
because existing programming languages allow composite types where each component of the 
composite can be of a different type (e.g., records in Ada). Aggregation was found to have no 
structural coverage issues associated with it. 

2.4 POLYMORPHISM AND DYNAMIC BINDING. 

Polymorphism is one of the fundamental principles of OOT. It is the ability of a name in 
software text to denote, at run time, one or more possible entities. The names of objects (in 
particular parameters), attributes, and methods may all be polymorphic in OOT. For example, 
given the flattened inheritance hierarchy from figure 4, repeated in figure 8, consider the 
programming text: Object_A.Method_2() appearing within the source code. 

Class_l 

Attribute_l 

Method 10 
Method 2() 

t 
Class_2 Class_3 

{Attribute_l} 
Attribute_2 

{Attribute_l} 
Attributes 

{Method 1()} 
{Method_2()} 
Method_30 

{Method_10} 
Method_20 
Method_4() 

FIGURES. POLYMORPHIC HIERARCHY 

Which Method_2 to call is dependent on which class ObjectA belongs to, and ObjectA may 
belong to multiple classes (Class_l, Class_2, Class_3), depending on the run-time state of the 
system. Object_A may be an instance of a more specific class (e.g., Class_2), while Method_2 
may be a method of a more general class (e.g., Class_l). Polymorphism is generally supported 
by dynamic binding and dispatch. 
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Static binding, also known as static dispatch, is the matching of attribute references to attributes 
and calls to methods at compile time or link time. Static binding is currently what is 
implemented in traditional non-object-oriented languages. The binding is based on the signature 
of the element to be bound. Since traditional progranmiing languages only allow, at most, one 
signature to be active in any particular scope, the reference is unambiguous. 

Dynamic binding is the matching of attribute references to attributes and calls to methods at run 
time as opposed to compile time or link time. This results from a polymorphic reference or call, 
hi essence, what is happening is that one of the key components of the signature, namely the 
class the object belongs to at the time of execution, is missing from the signature. Note that it is 
possible to have both static and dynamic binding present in OOT software and systems. 

For static binding, it is sufficient to record coverage of the access or call statement itself because 
that access or call never changes. For example, given the class presented in figure 8, the call to 
Object_B.Method_3() is unambiguous, and a call to Class_2.Method_3 will appear in the object 
code. 

However, when one sees the call to Object_C.Method_20, it is not clear whether 
Class_l.Method_2 or Class_3.Method_2 is to be called. The appropriate method to call depends 
on the type (class) of Object_C. This is depicted graphically in the pseudo call tree depicted in 
figure 9. 

Method_S ~ Object_C.Method_2() 

Method 2 

Class_l.Method_20 Class_3.Method_20 

FIGURE 9. POLYMORPHIC CALL 

This is equivalent to the non-object-oriented situation of a subprogram deciding which of 
multiple subprograms to call based on a parameter passed into the subprogram (i.e., a conditional 
call). This introduces at least control coupling between the calling subprogram and the callees 
and possibly data coupling between the subprograms and the caller of the calling subprogram. 
This is depicted graphically in figure 10 using standard Structured Analysis and Structured 
Design (SASD) notation [6], which is an alternate representation of figure 9. 
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^ObjectJ 

Method_S() 

Object_C R^Object_C 

Class_l .Method_2()        Class_3.Method_2() 

FIGURE 10. CONDITIONAL CALL 

There are a number of ways in which dynamic binding can be supported, but only a single 
implementation was employed amongst the compilers examined during the language analysis 
portion of this study. This implementation builds a method table for each class containing a set 
of pointers to the methods apphcable to that class. The table is built from flattening the class and 
is depicted in figure 11. In figure 11, the notation Method_m -^ Classc.MethodmQ denotes a 
pointer to the entry of the method with the qualified name given the unqualified name. 

m^oo  1 Method_l ^ Class_l.Method_l() \^iaoo   i 

Attribute_l Method_2 -^ Class_l.Method_2() 

Method_l() 
Method_20 

i 1 

Class_3 ■ Method_l ^ Class_l.Method_l() 
Attribute_3 Method_2 ^ Class_3.Method_2() 

Method_20 
Method_40 

Method_4 -» Class_3.Method_4() 

Class_2 ' Method_l -^ Class_l.Method_l() 
Attribute_2 Method_2 -^ Class_l.Method_2() 
MethodJO Method_3 -^ Class_2.Method_3() 

FIGURE 11. METHOD TABLES FOR POLYMORPHIC CALLS 

This implementation then embeds within each object a pointer to the method table applicable to 
that object. The compiler and linker then emits code that will follow the pointer from the object 
to the method table, index the method table for the appropriate method, and then follow that 
pointer to the method to invoke (i.e., a jump table). Note that while the example used a method 
call, an attribute access could have been used just as easily. 

17 



The issue is: What level of structural coverage should be required for the polymorphic call or 
access? This study considered three possibilities. 

1. One possibility is to treat the execution of the polymorphic reference (call or access) as 
sufficient. This approach covers the source code, but ignores the compiler- and linker- 
generated method (jump) table in the object code. It is possible that not every entry in the 
method Oump) table will be executed and, thereby, not every method will be executed for 
each class. 

2. Another possibility is to treat the execution of all possible resolutions for the polymorphic 
reference as sufficient. This approach covers not only the source code, but also the 
method (jump) table the compiler and linker built in the object code, hi fact, this 
approach will cover the method (jump) table multiple times: once for each polymorphic 
reference. 

3. The final possibility is to require that every polymorphic reference and every entry in 
every method table be executed at least once. This approach covers the source code and 
the method Oump) table the compiler and linker built in the object code. 

One of the goals of OOT is to remove some of the effort required to support certain functionality 
(e.g., polymorphism) from the software developer by having the compiler and linker provide that 
ftinctionality and generate the object code for that fiinctionality automatically. Essentially, the 
level of abstraction between source code and object code is being widened. Polymorphism and 
dynamic binding are the first instances in this report of OOT features where this auto-code 
feature of OOT was encountered, providing significant functionality. Auto-coding is not new to 
OOT. What OOT brings to the picture is that traditional auto-coding tools have accepted some 
form of specification as input and generated source code as output, while the OOT compiler and 
linker generates additional object code, both data and code structures, from the source code. 

Traditionally, these data and code structures would have appeared in the requirements or 
architecture or source code, and would have gone through a DO-178B-compliant development 
and verification process (compliance to standards, fraceability to requirements and design, 
coverage by requirements-based tests, structural coverage, etc.). In OOT, these data and code 
structures will only appear in the object code. A claim could be made that these data and code 
structures are traceable to the source code, just a broader interpretation of traceability than has 
been used for traditional languages. Under DO-178B, source code to object code traceability, 
and potentially additional verification of the object code, is only required for Level A software. 
In the context of OOT, this restriction may need to be broadened to include other levels (e.g., B 
and C). Further discussion is provided in section 2.4.2. 

2.4.1 Language Issues. 

All three languages studied for this report implement polymorphism and dynamic binding. No 
language-specific issues beyond the general issues already mentioned were discovered. 
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2.4.2 Tool Issues. 

One of the major tool issues brought out by OOT is whether structural coverage should be 
obtained at the source code or object code level. This issue has broader applicability than just 
polymorphism and dynamic binding, but it is brought up here because this is the first time the 
issue of the compiler and linker generating additional object code and providing additional 
functionality beyond the source code has been encountered. 

Currently, a number of structural coverage analysis tools provided for 00 languages perform 
their analysis on the object code instead of the source code. There are two major reasons given 
in the literature of these tools for this choice. First, performing this analysis at the object code 
level can be done nonintmsively because the source code does not need to be instrumented. 
Secondly, coverage of the object code provides a better measiire of testing thoroughness since it 
ensures that everything at the object code level has been executed, which source code coverage 
does not guarantee. 

Currently, DO-178B [2, section 6.4.4.2.b, pg. 33] and DO-248B [3, FAQ#42, pg. 38] state that 
coverage of the object code is allowed as long as it provides the equivalent level of coverage 
provided by coverage of the source code. This guidance is still soimd when OOT is being used. 

Currently, DO-178B [2, section 6.4.4.2.b, pg. 33] and DO-248B [3, DP#12, pp. 97-98] state that 
source to object traceability is only necessary for Level A software. Because of the increased 
abstraction of source code in OOT, this guidance needs to be reconsidered, and potentially 
updated, when OOT is being used. Consideration should be given to source-to-object traceability 
for Levels A through C, or coverage of both source and object code for Levels A through C. 

2.4.3 Acceptance Criteria. 

The following acceptance criteria are proposed for polymorphism and dynamic binding: for 
software levels A-C, every polymorphic reference and every entry in every method table must be 
executed at least once. 

The rationale for the above is as follows. Every class will have a methods table for all the 
methods appropriate to that class, whether inherited or defined (see figure 11). If every one of 
those entries has been executed, then every method will have been invoked at least once. 
Inherited methods will need to be invoked multiple times: once for the class that defines it and 
once for each class that inherits it. For example, consider Class_l .Method_l. This method will 
need to be invoked at least three times in order to achieve coverage of the methods tables. It will 
need to be invoked with an object of Classl in order to cover Class_l 's method table entry for 
it, it will need to be invoked with an object of Class_2 in order to cover Class_2's method table 
entry for it, and the same for Class_3. 

2.5 ENCAPSULATION AND INFORMATION HIDING. 

Encapsulation and information hiding is one of the fiindamental principles of OOT. As 
mentioned previously in section 2.1, encapsulation and information hiding is the separation of 
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the external (public) and internal (private) aspects of a class and its objects. Clients of a class 
may only have access to the interface of the objects of that class. Encapsulation and information 
hiding brings two issues to the table: access to the internals (e.g., private attributes, method 
implementations) for the purpose of coverage analysis and the effect on the visibility of data and 
control coupling. 

Many publications on the testing of object-oriented software and systems identify the problems 
of verifying classes through only the interface to objects [5]. The main problem is how to verify 
the proper functioning of the object under test when the internals, particularly the state, cannot be 
set before a test is run or examined after a test is run to assure that the test passed for the correct 
reasons. The issue here is that encapsulation and information hiding can have a negative impact 
on the controllability and observability of an object for the purposes of class verification. 
However, if structural coverage analysis is to be performed with the assistance of a tool that 
instruments the source, then there should be no problem, histrumenters, by their very nature, are 
intrusive and break information hiding by inserting probes into either the source or the object. 
These probes are capable of getting the internal information needed for a coverage analysis out 
into the open. 

For methods, you may only have access to the interface, not the implementation (i.e., all method 
implementations are private). Not being able to look inside the methods can make it difficult to 
understand object interactions and prepare test cases to test such interactions. 

It is even possible that for certain classes and objects (e.g., COTS library or framework) with 
standard software licensing, the developer will know nothing about the implementation. 
However, since current airborne software practice is for all software to comply with DO-178B, 
which includes reviews, analyses, and tests of the source code, access to the implementation will 
not be an issue. Given that access, tools can analyze the interactions between objects and make 
the results available for people. 

For an example of the impact on data and control coupling, consider three objects as shown in 
the collaboration diagram presented in figure 12. In response to an event, Object_l sends a 
message to Object_2 through Method_l. As a result of this message, Object_2 updates its 
attributes with values provided by Object_l. Later, Object_3 sends a message to Object_2 
through Method_2. As a result of this message, Object_2 returns values from its attributes that 
Objects uses to update its own attributes. In this example there is a dependence between 
Object_3 and Objectl, but that dependence may only be discovered through the code. 

^ Object_l Object_2 Object_3 
1: event 2: Method_l() * 3: Method 2() ' 

FIGURE 12. COLLABORATION DIAGRAM 
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2.6 RUN TIME TYPE IDENTIFICATION fRTTD. 

Run time type identification (RTTI) is a support mechanism of OOT that allows an application to 
discover the exact class of an object, even when all that is available is a reference to an ancestor 
class. This mechanism requires that all classes used in the application be available at compile 
and link time. RTTI is commonly used to restore the original class type to an object that has 
been upcasted. For example, in order to store an ellipse object in an array of conic sections, you 
first upcast the ellipse object to a conic section and then store it in the array. When you retrieve 
it firom the array, you use RTTI to restore it back to an ellipse (i.e., downcast). RTTI was found 
to have no structural coverage issues associated with it. 

2.7 IMPLICIT TYPE CONVERSIONS. 

Implicit type conversions are a programming support mechanism and not unique to OOT. Just as 
with implicit type conversions in traditional programming languages, what happens is that the 
compiler and linker generates additional object code. This additional object code will need to be 
examined for OOT, just as it is for non-OOT. 

What OOT brings to the picture is the effect that implicit type conversions can have on the 
resolution of polymorphic references and on the data and control coupling occurring at the object 
or machine code level of the software. 

Certain 00 languages allow implicit type conversions to be performed dynamically to support 
any reference, polymorphic or not. This makes analysis and testing more difficult because the 
exact data type and implementation, both attributes and methods, cannot be determined statically, 
and the control flow of the OO program is less transparent. Static analysis cannot be used to 
precisely identify the dependencies in the program; instead, approximation techniques must be 
employed. This in turn makes it difficult to identify the change impact in regression testing. 

For example, consider the following simple code sequence: 

Object_A := Object_B + Object_C; 
if Object_A.Valid() then 

In this example, there may be temporary objects created for Object_A, ObjectB, and ObjectC 
requiring constructors and destructors to be called. These constructors and destructors may apply 
implicit type conversions in order for the creation and destruction operations to occur. These 
conversions can even change the type of a class object, impacting which attributes and methods 
are used, and can result in imdesired behavior. 

From the data and control coupling perspective, the constructors and destructors may have side 
effects that comphcate the data and control coupling analyses. The addition of the implicit type 
conversions may further obscure the true data and control coupling relationships by changing the 
resolutions of polymorphic references. 
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2.7.1 Language Issues. 

Ada95 and Java restrict implicit type conversions to those between primitive data types only. 
Further restriction is imposed in that implicit type conversions may only be widening from a less 
precise type to a more precise type so that no information would be lost. 

C++ has a much more open policy on implicit type conversions. In particular, a C++ compiler is 
permitted to perform any implicit type conversion that conforms to the C++ rules, including 
those involving constructors. For example, a ftinction expecting an argument of type Tl can be 
called not only with an argument of type Tl, but also with an argument of type T2 if a conversion 
from T2 to Tl exists. Though this may cause unexpected results, it appears to have no structural 
coverage implications. 

2.7.2 Tool Issues. 

The analysis tools used to assist with the data and control coupling analysis may not be aware of 
everything the compiler or linker is doing when implicit type conversions are used. This may 
affect the trustworthiness of their analysis results. 

2.7.3 Acceptance Criteria. 

The following acceptance criteria are proposed for implicit type conversion: for software levels 
A-C, every implicit type conversion must be identified, its impact assessed, and executed at least 
once. Particular attention should be paid to analyze data and control coupling. 

2.8 TEMPLATES. 

Templates are a support mechanism of OOT. A template is a parameterized class, operation, or 
method with unbound (formal) parameters that must be bound to actual (type) parameters before 
it can be used. Templates are not unique to OOT as they appeared as generics in Ada83. What is 
unique in OOT is that other classes, both nontemplate and template, can inherit from a template 
class, whether or not the template class has been instantiated. Templates are currently provided, 
with some semantic differences, in both Ada95 and C++. There is a proposal to include them in 
the next version of the Java language specification. Templates were found to have no structural 
coverage issues associated with it. 

2.9 EXCEPTIONS. 

Exceptions, in the general sense, are a support mechanism of OOT for dealing with errors and 
other exceptional conditions that may arise during program execution. They are not unique to 
OOT because they have existed in previous languages like Ada83. What is unique in OOT is 
that when an exception is raised and propagates to a handler, the destructors or finalizers for all 
the objects that need to be removed must be invoked. Exception handling is provided, with some 
semantic differences, in all three languages examined in this report. Exceptions were found to 
have no structural coverage issues associated with it.   Note, however, that if destructors or 
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finalizers have side effects, those side effects may have data and control coupUng impHcations 
when they are invoked during the handhng of an exception. 

2.10 EXCLUDED FEATURES. 

Certain features of OOT were not examined in this report because there were questions as to 
whether they should be used in safety-critical systems. These features include dynamic class 
loading, dynamic reclassification, just-in-time (JIT) compiling, reflection, and garbage collection. 
Primarily, these features impact either the predictability or repeatability of the resulting code 
expected in safety-rated software or the satisfaction of objectives in DO-178B. In the sections 
below, each feature is explained, and the issue that brings the feature into question is identified. 

2.10.1 Dynamic Class Loading. 

Dynamic class loading is the loading of classes during run time by the run-time support system. 
This is opposed to the loading of compiler and linker identified classes during start-up. This 
mechanism allows an application to be built without the necessity of precompiling and statically 
linking all of the classes. One use Java makes of this mechanism is to load classes it does not 
have access to when an application is built in order to support the running of distributed 
applications over the web. The dynamic loading has the side effect that the class tree is rewritten 
to include the dynamically loaded class. This self-modifying code feature brings into question its 
acceptability in safety-critical systems. 

2.10.2 Dynamic Reclassification. 

Dynamic reclassification is the ability of an object to change its class membership during run 
time between the time it is created and the time it is destroyed. Reclassification goes beyond the 
normal RTTI support for upcasting and downcasting used to support polymorphic data structures 
(e.g., an array of conic sections) (see section 2.6). An example of undesired dynamic 
reclassification would be a square object reclassifying itself as a parabola partway through its 
lifetime. Note that polymorphic parameters can change their membership in different 
invocations of their method depending on the actual parameter supplied. This is considered 
normal because the parameter does not change its membership during its invoked lifetime. 
Dynamic reclassification is probably not acceptable in safety-critical software because it raises 
data and control flow undecidability issues, which impacts the ability to perform data and control 
coupling confirmation. 

2.10.3 Just-In-Time Compiling. 

There are two forms of JIT compiling used in OOT. The first is a mechanism to allow an 
application to be built when not all of the source or object code is available. As the application is 
running and it comes to a point where it needs the missing piece, it will compile and install that 
piece and then resume running. Not only is this a self-modifying code issue, but the absence of 
complete source code prevents satisfaction of numerous objectives in DO-178B, particularly 
those concerning timing and memory usage. 
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The second form of JIT is a technique used in some virtual machine implementations, 
particularly Java (JVM), to improve program execution time. Through JIT, a bytecode method is 
translated into a native method on the fly, to reduce the overhead of executing the method by 
interpreting the bytecodes. It is more likely that traditional ahead-of-time compilation will be 
used in hard real-time embedded systems to generate native code. Should JIT methods be 
employed in the future, they will require further analysis for acceptability. 

2.10.4 Reflection. 

Reflection is a Java-specific mechanism that allows an application to interrogate a class to find 
out the method names, field names, and constructor names for the class at run time. Reflection is 
used to support dynamic class loading, discussed in section 2.10.1. The Reflection Application 
Programmers Interface (API) allows a running program to invoke the methods and modify the 
fields of the class, thus, interrogated, even when that class is not available at compile and link 
time. The self-modifying code aspects of reflection bring into question its acceptability in safety- 
critical systems. 

2.10.5 Garbage Collection. 

For systems using dynamic random access memory (DRAM) there is an issue as to whether that 
memory is to be explicitly managed, generally by the application, or implicitly managed by the 
run-time support. For explicit management, the application makes explicit calls to allocate and 
deallocate sections of memory, while for implicit management the application makes calls to 
allocate sections of memory, but does not make calls to deallocate it. The implicit management 
technique is generally known as garbage collection. In this technique, a garbage collector is 
periodically run and reclaims memory that is no longer in use. Additionally, it may move the 
contents of memory in order to compact it. The nondeterminism introduced by the timing impact 
of when the garbage collector will run, and how long it will take, as well as the question of where 
in memory the data will be, probably makes the use of a garbage collector unacceptable in safety- 
critical software. 

3. RELATED ISSUES. 

This section of the report looks at three issues that came up during the course of the study. These 
issues are not direcfly related to OOT features, but instead, result as side effects of OOT. The 
issues are data and control coupling, deactivated code, and object-state testing. Each is covered 
in its own subsection. 

3.1 DATA AND CONTROL COUPLING. 

Data and control coupling are not imique to OOT. What OOT brings to the picture is that data 
and control coupling relationships can be far more complicated and obscure in OOT than they are 
in traditional (functional) systems and software. This report has included the issues of data and 
control coupling within the sections of the affected object-oriented features. This section 
provides some higher level discussion as well as pointers to the sections in the report dealing 
with the details. 
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One impact on data and control coupling is in the nature of OOT. OOT encourages the 
development of many small, simple methods to perform the services provided by a class. Most 
of the control flow is moved out of the source code through the use of polymorphism and 
dynamic binding, hi essence, the control flow, and thereby the control coupling, will become 
implicit in the source code, as opposed to being exphcit. There is a similar effect on the data 
flow and, thereby, the data coupling. 

OOT also encourages hiding the details of the data representation (i.e., attributes) behind an 
abstract class interface. Suggested best practice is that attributes of an object should be private, 
and access to them only provided through the methods appropriate to the class of the object. 
Being able to access attributes only through methods makes the interaction between two or more 
objects implicit in the code. 

Section 2.1 on classes provided an example where data and control coupling were impacted by 
constructors. If a class has multiple constructors that put a new object into different states, these 
different states may impact how the methods behave in subsequent calls. 

Section 2.2 on inheritance provided examples where data and control coupling were impacted by 
specialization and overriding. An added method in the derived class changed the data 
dependencies between inherited methods. An overridden method changed the data and control 
dependencies between inherited methods (and attributes). 

Section 2.4 on polymorphism and dynamic binding provided an example where data and control 
coupling were impacted by dynamic binding. The dynamic binding influences the control flow, 
and potentially the data flow, between methods with polymorphic references. 

Section 2.5 on encapsulation and information hiding provided an example where data and control 
coupling were impacted by encapsulation and information hiding. Encapsulation and 
information hiding can obscure the coupling between objects when intermediary objects are 
involved. 

Section 2.7 on implicit type conversions provided an example where data and control coupling 
were impacted by implicit type conversion. The constructors and destructors invoked during 
implicit type conversions may have side effects that complicate the data and control coupling 
analyses, hnplicit type conversions may further obscure the true data and control coupling 
relationships by changing the resolutions of polymorphic references. 

Section 2.9 on exceptions provided an example where data and control coupling were impacted 
by exception handling. The destructors invoked during exception handling may have side effects 
that complicate the data and control coupling analyses. 

In summary, it appears that the major impact of OOT on structural coverage will be in the area of 
data and control coupling. The standard code coverage measures of statement coverage, decision 
coverage, and modified condition and decision coverage were not impacted by OOT within the 
three languages investigated during this study. 
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3.2 DEACTIVATED CODE. 

Deactivated code is not vinique to OOT. What is unique to OOT is that several variations of this 
can occur, some of which give the impression of being dead code, i.e., classes in a library not 
used, methods of a class not called in a particular application, methods of a class (abstract) 
overridden in all subclasses, or attributes of a class not accessed in a particular application. 

For example, consider the situation presented in figure 13. 
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'A 

FIGURE 13. DEACTIVATED CODE EXAMPLE 

Figure 13 presents a class being used by a client (the system). Within this diagram, as was done 
within figure 6, the methods have been annotated with the attributes they access, and the methods 
they call, as is the client. From the point of view of the client, class (C_3), methods (M_3, M_4, 
and M_6), and attributes (A_2 and A_4) appear to be dead code (i.e., not used by this system). 

One approach would be to treat the unused classes, methods, and attributes as dead code and 
remove them for this system. However, the guidance given in DO-178B says that dead code is 
due to an error, but that does not appear to be the case in figure 13. The C_l class has been 
intentionally designed and implemented with two subclasses (C_2 and C_3). At least, it is 
assumed that the design and implementation was intentional, as opposed to accidental or 
erroneous. The current client (system) is only making use of one of those subclasses (C_2), but 
there is potential use by other clients (systems) of the other subclass (C_3). Therefore, the 
unused classes, methods, and attributes should be treated as deactivated code. Note that it would 
be better if the intent behind the design and implementation was known, rather than assumed, as 
was done in the preceding analysis. 

4 
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A complication can arise in the interaction between the use of a smart compiler or linker and a 
structural coverage analysis tool. For the uninstrumented source, the unused classes, methods, 
and attributes may not be loaded into the system, but they are in the instrumented source. This 
will lead the coverage analysis process to show that no tests cover the unused entities. However, 
this is not a problem as they are not loaded into the final system. 

Smart compilers and linkers also present some issues of their own. Some smart compilers and 
linkers will remove only entire unused classes (e.g., C_3 in figure 13). Others will not only 
remove entire imused classes, but also unused attributes (e.g., A_2 of figure 13) or unused 
methods (e.g., M_3 and M_4 of figure 13) of used classes. The effects on the resulting 
executable code will be different and will need to be investigated. 

3.3 OBJECT STATE TESTING. 

Object state testing in OOT is an issue that was investigated because of the number of papers and 
technical reports published on both its necessity and the difficulties of properly achieving it. 

State and state-based testing are not unique to OOT. What is unique to OOT is that potentially 
every object is its own little state machine. The state of an object is defined by the values held by 
its attributes. The issue of object state is related to the issue of context brought out in section 2.2 
on inheritance. 

For example, consider the stack class presented in figure 14. 

FIGURE 14. STACK CLASS 

There are five methods applicable to any object of this class (Push, Pop, Top, Is_Empty, Is_Full). 
Each of these methods may have different behavior depending on the state of the stack object 
when they are called. These behaviors can be summarized by the stack state machine shown in 
figure 15. Notice that Is_Empty and Is_Full never change the state of the stack and never raise 
exceptions. Top never changes the state either, but if it is called when the Stack is in the Empty 
state an exception will be raised. Push and Pop can change the state, but not change the state and 
not raise an exception, or not change the state and raise an exception. 
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FIGURE 15. STACK STATE MACHINE 

Though the proper verification and testing of object state appears to be an important issue with 
the use of OOT, and is crucial for certain kinds of classes (e.g., a stack), it is not an issue for the 
current measures used for structural coverage (statement coverage, decision coverage, modified 
condition and decision coverage), as given in DO-178B. The reason for this is that the semantics 
behind state are at the design and requirements level of the software, and are not available at the 
source code level. The current measures only concern themselves with the executions occurring 
at particular statements. Statement coverage and decision coverage do not concern themselves 
with the associations of the execution of statements and the values of the data alive at those 
statements. Modified condition decision coverage (MCDC) concerns itself only with the 
association at a single decision. This concern is not broad enough to encompass ftiU state 
coverage. As an example, consider that to cover the methods of stack only requires the testing of 
each method in two of the three possible states. 

However, object state testing appears to have implications for data and control coupling. Notice 
that the behavior of Push, Pop, and Top are all dependent on the current state and, thereby, 
dependent on previous executions of the methods. For example, consider that the execution of 
Push, which places the stack into the Full state, changes how Push will behave the next time it is 
called if the stack remains in the Full state. 

^ 

'I 
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4. RESULTS AND FURTHER WORK. 

There is a desire and an emerging trend by suppliers of commercial airborne safety-critical 
systems towards the use of OOT. One area of concern, identified by Rierson [1], is the issues 
surrounding the proper application of structural coverage analysis to certain features of OOT. 
Structural coverage is used within DO-178B [2] as one of the adequacy measures for the 
requirements-based testing of software for commercial airborne computer-based systems. 
However, DO-178B does not specifically address OOT, possibly because the use of OOT in 
safety-critical systems was not contemplated in 1992 when DO-178B was released. This report 
identifies the issues concerning the structural coverage of certain features of OOT; the 
implementation of those features within the programming languages Ada95, C++, and Java; and 
the analysis of those features and implementations by current structural coverage analysis tools 
for object-oriented languages. 

A summary of the OOT features examined, the role they play, and the results of this study are 
presented in table 1. Li table 1, the issues column is supported by three types of issues: whether 
there was a coverage issue or not, whether there was a tool issue or not, and whether there is a 
data and control coupling issue or not. For the excluded features, all entries are not applicable 
(N/A). 

TABLE 1. RESULTS SUMMARY 

Feature Role 
Issues 

Coverage Tool Coupling 
Aggregation Fundamental building block No No No 
Class Fundamental concept No No Yes 
Dynamic Class Loading Support mechanism N/A N/A N/A 
Dynamic Reclassification Support mechanism N/A N/A N/A 
Encapsulation and Information Hiding Fundamental principle No No Yes 
Exceptions Support mechanism No No Yes 
Garbage Collection Support mechanism N/A N/A N/A 
Implicit Type Conversions Support mechanism No Yes Yes 
Inheritance Fundamental building block Yes Yes Yes 
Just-In-Time Compiling Support mechanism N/A N/A N/A 
Polymorphism and Dynamic Binding Fimdamental principle Yes Yes Yes 
Reflection Support mechanism N/A N/A N/A 
Run Time Type Identification Support mechanism No No No 
Templates Support mechanism No No No 

Based on the results from the analyses of the OOT features performed dining this study, it is 
concluded that there are two areas where the use of OOT impacts structural coverage. The first 
area of impact concems whether measuring coverage against the source code only is sufficient. 
This area is important due to the widening of the abstraction level between source code and 
object code. Inheritance and polymorphism with dynamic binding are two OOT features where 
simple source code measurement may not be sufficient and are identified in table 1 as the only 
features with coverage issues. The second area of impact concems the confirmation of data and 
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control coupling. Nearly every non-excluded OOT feature examined had data and control 
coupling concerns. Table 1 shows that only aggregation, Run Time Type Identification (RTTI), 
and templates were not concerns. 

The general issue inheritance brings to structural coverage is: Against what should the coverage 
be measured—concrete features only or concrete and inherited features? The analysis presented 
within this report shows that coverage should be measured against both concrete and inherited 
features. This goes beyond measuring coverage against the source code only, as there is source 
code for concrete features within the class where it is defined, not within the class(es) where it is 
inherited.   This finding is in agreement with the general literature on the adequacy of testing 
inheritance [5]. Note that the measurement of coverage against concrete and inherited features 
does not necessarily require unique testing for concrete and inherited features. The same set of 
tests could be run with objects of the defining class and rerun with objects of the inheriting *i 
classes. 

The general issue polymorphism with dynamic binding brings to structural coverage is: For 
compiler- and linker-generated data and control structures beyond normal source to object 
traceability (e.g., auto-code), should coverage be measured against the source code only, the 
object code only, or some combination? The analysis presented within this report shows that 
coverage should be measured against a combination of source code and object code for Level A- 
C software. This finding goes beyond DO-178B, where source-to-object traceability is only an 
issue for Level A software. 

The OOT features examined in this report, both general 00 features as well as language 
implementations for those features, were analyzed for structural coverage implications only. 
These features and implementations were identified through a literature search where there were 
questions about the proper requirements-based or implementation-based testing of the feature or 
implementation. There may be other features of OOT requiring investigation that were not 
identified in the literature search. 

As mentioned previously, nearly every OOT feature examined had data and control coupling 
concerns. Unfortunately, data coupling, control coupling, and their confirmation are not well 
defined in either DO-178B or DO-248B. Within this report, if an OOT feature lead to either a ^ 
data dependence or a control dependence, then a data coupling or a control coupling resulted, 
requiring verification.   No attempt was made to specify what verification was needed for the .jt 
coupling. 

Both the general object-oriented software features and the issues associated with those features 
were examined to determine if there were any specific issues in the implementation of the object- 
oriented feahires in tiie programming languages: Ada95, C++, and Java. Surprisingly, there were 
no additional structural coverage issues with the implementation of the general 00 features in 
the three target languages beyond those of the general 00 feature itself 

How current structural coverage verification (analysis) tools deal with the issues uncovered 
during the study were identified.  Table 1 shows that inheritance, polymorphism with dynamic 
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binding, and implicit type conversions were all general object-oriented features found to have 
tools issues. For inheritance, multiple approaches currently exist in different tools: recording 
coverage against concrete methods only versus recording coverage against the flattened class. 
This report recommends that the preferred approach is to have the structural coverage analysis 
tools for object-oriented languages record coverage against the flattened class. For 
polymorphism with dynamic binding multiple approaches also exist: source versus object code 
coverage. This report recommends that the preferred approach be a combination of the two: 
coverage of the polymorphic references at the source code level and coverage of the method 
tables at the object code level. For implicit type conversions the issue is whether analysis tools 
will properly understand what is happening in the code emitted by the compiler and linker. This 
report recommends that every implicit type conversion be analyzed. 

• The conclusions from this study are: 

• OOT impacts structxiral coverage in two areas: 

Measuring structural coverage against the source code only may not be sufficient, 
even for levels B and C software, due to the widening of the abstraction level 
between source code and object code; and 

The confirmation of data and control coupling assumes greater importance with 
OOT, but is problematic. 

• Structural coverage should be measured against both concrete and inherited features. 
Tools should record coverage against the flattened class. 

• Structural coverage should be measured against a combination of source code and object 
code for polymorphism with dynamic binding. Tools should record coverage of the 
polymorphic reference at the source level and entries of the methods tables at the object 
code level. 

• Each implicit type conversion needs to be analyzed. 

The recommendations from this study are: 

^ • Another study should be conducted to look into the widening of the abstraction level 
between source code and object code in OOT, and whether a combination of source and 
object code analysis is required. 

• Another study should be conducted to look into the proper requirements-based 
verification of OOT features and language implementations per section 6.4.2 of DO-178B 
[2]. 

• Another study should be conducted to look into the proper verification (i.e., confirmation) 
of data and control coupling for OOT features and language implementations per section 
6.4.4.2c of DO-178B [2]. 
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