
Abstract-In the present paper, we propose a high-
performance, ultrasonic sensor-based head movement de-
tection system, which can be easily applied as an eye 
tracking device by rotating a mirror set in front of a video 
camera in a head-free video-based eye-gaze detection sys-
tem. We propose a simple distance measurement method 
that uses an A-D converter and an envelope detection 
method. Experimental results indicate small standard 
deviations of less than 0.9 mm when the distance between 
transmitter and receiver is within the range of 40 - 80 cm. 
In addition, we arranged three transmitters on the apices 
of a triangle to simulate the head of the user. The receiv-
ers were arranged on the apices of a larger triangle. The 
coordinates of each transmitter were determined using the 
measured distances from the transmitter to the three re-
ceivers. The center of gravity of the three transmitters and 
the normal vector of the plane that includes the three 
transmitters were calculated based on the estimated coor-
dinates of the three transmitters. The results indicate suf-
ficiently high precision and measuring frequency for our 
purpose. The proposed method would be useful for adjust-
ing the focus of a zoom lens to the eye, as well as adjusting 
the direction of the mirror to the eye. 
keywords - distance measurement, tracking, eye -
gaze detection, man-machine interface  
 

 I. INTRODUCTION 

 
We are developing a head-free video-based eye 

gaze detection system for use as a man-machine in-
terface. The system involves the use of a video cam-
era that is placed 50 or 60 cm from the user’s eye [1]. 
Since the eye’s image goes out of the camera frame 
as a result of large head movements, we have pro-
posed methods by which a camera [2] or a mirror set 
in front of the camera [3] is rotated, so that the eye 
image is maintained in the center of the camera 
frame. However, once the eye image was lost from 
the frame, it must have been searched by their rota-
tion [4]. This searching needed a significant period 
of time. Therefore, an improved method for tracking 
the eye in real time is desired.  

It can be assumed that the eyeball rotation center 
is fixed in the head of a user. If the three transmit-
ters are fixed on the user’s head, the positional rela-
tionship between the eyeball rotation center and the 

transmitters is also fixed. Once the relationship is 
determined, the position of the eyeball rotation cen-
ter  in space can be estimated in real time using the 
positions of the three transmitters, even if the head 
moves and rotates. This enables the direction of the 
camera optic axis to coincide with the eyeball rota-
tion center in space. As a result, acquisition of the 
eye image is always possible. The present paper pro-
poses a method by which to determine the direction 
and position of the head in real time using ultrasonic 
sensors.  

In order to measure the direction and position of 
the head in space, at least three transmitters are 
fixed on the head and each of these positions must 
estimated. This requires at least three receives. In 
the case of using only one transmitter, the phase 
difference method [5] can be used. However, the si-
multaneous and continuous ultrasound transmission 
from three transmitters must cause the algorithm of 
positional determination to be very complex. Accord-
ingly, in the present study, the conventional time-of-
flight (ToF, for instance, [6]) is useful because the 
three transmitters can easily send the ultrasonic 
wave in separate time intervals: a time -sliced ToF 
method. In general, however, distance measurement 
using the ToF method is inaccurate: the accuracy of 
the wavelength of the ultrasound (8.8 mm at 40 
kHz). Recently, more accurate method based on the 
ToF has been proposed [7], which utilizes the entire 
received signal (correlation function and  phase) 
rather than the signal at onset. However, upon test-
ing this method on an ultrasonic sensor, which was 
considered to be best suitable for our purpose, the 
total oscillating duration of the received signal was 
found to fluctuate greatly, thereby reducing the ac-
curacy of the distance measurement. Therefore, we  
propose a new envelope detection method for accu-
rate distance measurement. 

  
II. PRINCIPLE OF HEAD MEMOVEMENT MEASUREMENT 

USING ULTRASONIC SENSORS 

 
Suppose that three ultrasonic transmitters, S0, S1, 

and S2, are attached to the head (Figs. 1(a) and (c)) 
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and that the ultrasounds sent from them are re-
ceived with three receivers, R0, R1, and R3, attached 
around the computer screen. The distances between 
each transmitter and each receiver are measured 
using an ultrasound time-of-fight method. 

 The coordinate system is set as shown in Fig. 
1(b). The coordinates of R0, R1, and R2 are known as 
(a, b, c), (d, b, e), (f, b, g). If the distances from S0 to 
R0, R1, and R3 are measured as L0, L1, and L2, S0 ex-
ists on the intersection of the three spherical sur-
faces having the centers of R0,  R1, and R2, and hav-
ing the radiuses of L0,  L1,  and L2, respectively. 
Therefore, the coordinates of S0 is determined by 
solving the simultaneous equations of the three 
spherical surfaces. The coordinates of the remaining 
two transmitters, S1 and S2, are determined in the 
same way.  

Assume a plane, P, including all of S0, S1, and S2 

(Fig. 1(a)). The components of the normal vector of 
P,  are determined as (nX,  nY,  nZ). From these, the 
horizontal and vertical angles (Alpha, Beta) of the 
normal vector of P are obtained. These angles and 
the center of gravity of the three transmitters give 
the direction and position of the head, respectively.  

 
 III. MEASUREMENT OF DISTANCE BETWEEN A 

TRANSMITTER AND A RECEIVER 

 
 A. Transmitting and Receiving 

Small and lightweight (diameter 9.9 mm, 2 grams) 
ultrasonic sensors having  and a weak directivity (80 
deg) were used in the preset study. The rectangular 

pulse train signal sent to the transmitters was gen-
erated from an oscillator circuit (39.0625 kHz). The 
signal was indirectly gated by a personal computer 
(Celeron, 800 MHz) through a digital output termi-
nal on an A-D converter. The gate opened synchro-
nously with the earliest raising of the rectangular 
signal after the order from the computer, and then 
automatically shut after sending out just four peri-
ods of the rectangular signal to the transmitters. 
Simultaneously with gate opening, 1200-point A-D 
conversion of the signal obtained from the receiver 
automatically began after 350-point delay by using a 
trigger delay start function of the converter. The 
sample rate was 3.2µs, corresponding to 8 samples 
per period of the ultrasound. Due to the trigger de-
lay of 350 sample points, it could measure distances 
farther than approximately 385 cm.  

 
B. Calculation of Distance 

Fig. 1. (c) and (d) Arrangements of three transmitters and three 
receivers, and definitions of (b) the coordinate system and (a) angles 
of the plane including the three transmitters. 

Fig. 2. Analysis method of received signal. 
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Fig. 2(a) shows a typical 1200-point signal that 
was sampled by the A-D converter. First, 512 points 
including the signal were chosen for the following 
analyses (Fig. 2(b)). Second, the 512 points were 
squared (Fig. 2(c)). Third, smoothing in the fre-
quency domain was executed (Fig. 2(d)). Fourth, the 
smoothed signal was differentiated (Fig. 2(e)). The 
temporal point where the value that crossed zero 
level was detected as TF. The resolution of TF coin-
cides with the A-D sampling interval (3.2µs); this 
corresponding to approximately 1.1 mm. To increase 
the resolution, fifth, in the differentiated signal, the 
previous and subsequent points of zero crossing were 
interpolated with a direct line. The time when the 
line crossed zero level was calculated and was used 
as the ultrasonic reaching time, i.e., ToF. The meas-
ured distance is obtained by multiplying ToF by the 
sound velocity. The velocity was compensated by 
temperature. 

 
C. Calibration and Stability of Distance  

The measured distances did not coincide with the 
actual distances. Calibration between them was exe-
cuted as follows: A transmitter and a receiver were 
arranged face-to-face. 500 times of distance meas-
urements were done for each distance from approxi-
mately 400 mm to 800 mm. The SD of the measured 
distance showed the values between 0.4 mm and 0.9 
mm, tending to increase as the actual distance. The 
equation of the regression line was calculated. The 

correlation coefficient was r=0.99998. Based on the 
equation of the regression line, the equation used to 
transform from the measured distance, DM, into the 
estimated distance, DE, is as follows: 

DE = 1.004980DM – 18.0275 [mm]         (1)  
Later, this equation is used for compensation of 

distances.  
 

 IV. MEASUREMENTS OF POSITION AND DIRECTION BY 
3 TRANSMITTERS AND 3 RECEIVERS 

 
The three transmitters and three receivers were 

attached to a small plate (Fig. 1(c)) and a larger 
plate (Fig. 1(d)), respectively. The three transmitters 
sequentially sent an ultrasonic wave. Every trans-
mission, the signals from the three receivers (R0, R1, 
and R2) were each A-D converted every 3.2µs, and 
then the three distances (L0,  L1, and L2) were esti-
mated.  Next, the coordinates of position in space of 
the three transmitters were estimated. Finally, the 
center of gravity of the transmitters (xG, yG, zG) and 
the direction of the normal vector of plane P (Alpha, 
Beta) were calculated. These parameters were ob-
tained 100 times/sec. 

 Static experiment was performed. The plate hav-
ing the three transmitters was placed at several lo-
cations. Figs. 3(a)-(c) show the relationships between 
the actual and estimated positions for xG, yG, and zG, 
respectively. In each figure, the coordinate of inter-
est is variable and the other two coordinates are con-

Fig. 3. Results of static experiment. 
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stant. The figures show strong linear relationships, 
slopes of approximately 1.0 and small SDs. The av-
erages of the SDs for xG, yG, and zG were 1.463 mm, 
0.315 mm, and 1.827 mm, respectively. Figs. 3(d) 
and (e) show the relationships between the actual 
and estimated positions for Alpha and Beta, respec-
tively. The average SD of Alpha was 0.46 deg for an 
angle range of ±40 deg. Those of Beta was 0.64 deg 
and 0.93 deg for angle range of ±20 deg and ±30 deg, 
respectively. 

Finally, dynamic experiments were performed. 
The transmitter plate was moved by hand. As a re-
sult, a slight trembling of the plate occurred. Each 
panel in Fig. 4 indicates the results for the case in 
which one of he five parameters was varied. The 
other parameters were set to have approximately 
the same value as that for the static experiments 
(Fig. 3). These results show that the data was rela-
tively smooth.  

 
 V. DISCUSSION 

 
The results in Figs. 3 and 4 indicated that the pro-

posed method for measuring the position and direc-
tion of the head has sufficiently high accuracy to di-
rect the camera’s optic axis to the eye over a wide 
spatial range.  

 By using the standard computer, one hundred 
measurements per second were materialized. The 
highly frequent measurement would make it easy to 
track the eye by open-loop mirror control with al-
most no time delay. It took 10 ms for calculation of 
the distances from the signals obtained from the 
three receivers. Using a faster computer can shorten 
the time, whose limitation is determined by the 
measurable distance range (the period of A-D con-
version). In the present setting, the farthest measur-
able distance was approximately 1100 mm. For this 
condition, the limitation is approximately 5 ms, cor-
responding to 200 measurements per second. This 
frequency of  measurement would produce higher 
accuracy because the moving average method can be 
used with negligible delay.  

   
 VI. CONCLUSION 

 
 In this paper, we proposed a high performance, 

ultrasonic sensor-based head movement detection 
system, which would be easily used for tracking the 
eye by a rotation mirror in a head-free eye-gaze de-
tection system. This method would be useful for con-
trolling the focus of the zoom lens. 
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Fig. 4. Results of dynamic experiment. 
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