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Abstract-The acceleration change index (ACI) to describe heart
rate variability (HRV) is presented. It is calculated from the
parameters of a time series derived from the RR time series.
Evaluating the ACI for simulated signals shows that it correlates
with the their fractal dimension. Evaluating the ACI for records
from healthy subjects shows that it decreases with periodical
breathing and increases during exercise. When the ACI is applied
to records from commercial ECG databases, it can discriminate
healthy subjects from subjects who had suffered ventricular
tachycardia and/or fibrillation and from subjects with myocardial
ischemia..
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|. INTRODUCTION

Heart rate variability (HRV) carries information about the
neura modulation of the cardiovascular system by the
autonomous nervous system. HRV anaysis can discriminate
normal from pathologic subjects by several indexes calculated
from the RR time series [1]. The commonest indexes are
defined in the time (statistical indexes) and frequency domains
(spectra indexes). The usefulness of these HRV indexes
depends on their specificity, sensitivity, robustness in front of
artifacts (false positive or false negative detections of QRS
complexes in the ECG), and time required to compute them.
Spectral indexes, as well as indexes based on non-linear
dynamics, are prone to fail in the presence of artifacts and need
more computing time than statistical indexes. On the other
hand, statistical indexes have poor sensitivity and specificity to
several cardiovascular diseases as compared to spectral indexes.
This work aims to present a new statistical index which is
robust to artifacts, very fast to compute, and able to distinguish
normal from abnormal RR time series with good specificity and
sensitivity.

First, the index is defined. Then, its ability to characterize
the dynamics of simulated time series is analyzed by
calculating it for fractal signals with known fractal dimension.
Next, the index is applied to real RR time series from heathy
subjects in order to investigate the influence of the respiratory
sinus arrhythmia and exercise stress on its value. Afterward, the
index is applied to discriminate healthy subjects from subjects
that had suffered ventricular tachycardia and/or fibrillation and
subjects with myocardial ischemia. Finally, some limitations of
the study are discussed.
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Il. INDEX DEFINITION

The differentiated RR time series (DRR) is

_JRR(2)- RR(1),...RR(n)- RR(N- 1), @

DRR = |
{RR(n+1) - RR(n)....RR(N) - RR(N - 1)}

D

where RR(n) is the length of the RR interval from best n to beat
n+1,and N + 1 isthe number of beats. The SDRR is the time
series defined by the sign of the DRR series and its eements
are either 1 or —1. The sign change (SC) time seriesis the series
whose elements are the positions where SDRR changes from 1
to —1 or conversaly. Differentiating SC yields the distance (in
beats) between successive changes of sign of the DRR time
series. The new time series is named DSC. The Acceleration
Change Index (ACI) isdefined as
k
ACI M (2

where k is the number of times that the DSC time series equals
1 and M is the total number of samples of the DSC time series.
Fig. 1 shows a sample RR time series and the derived SDRR,
DSC and sorted DSC time series. The ACI carries information
about the number of times that alocal maximum is followed by
alocal minimum and vice versa. As opposed to most statistical
methods, this index depends on the order (dynamics) of the RR
time series; the mean and standard deviation, for example, yield
the same result when reordering the time series. When
compared with spectral indexes, the ACI includes a sign
operation that protects from artifacts. The worst-case influence
of an artifact on the ACl isto increase k and M by 2, regardless
of the artifact's amplitude. For indexes that depend on the
variance of the signa (as the spectral indexes), the effect of the
artifact depends on its amplitude. Although the definition of the
ACI may seem complex, the algorithm to compute it is very
fast.

IIl. MATERIALS AND METHODS

Four different studies were carried out in order to show the
usefulness of the ACI. The first study shows that the ACI
correlates well with the fractal dimension of simulated signals.
The second study shows changes in the ACI due to changes in
breathing patterns in healthy subjects. The third study
investigates the variation of the ACI under exercise stress in
healthy subjects. The last study compares the ACI from healthy
subjects with that from subjects who suffered ventricular



Report Documentation Page

Report Date Report Type
25 Oct 2001 N/A

Dates Covered (from... to)

Title and Subtitle
A New, Fast, and Robust Index for Heart Rate Variability
Analysis

Contract Number

Grant Number

Program Element Number

Author (s)

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Addr ess(es)

Divisio d'Instrumentacio i Bioenginyeria Department

d’ Enginyeria Electronica Universitat Politecnica de Catalunya
Barcelona Spain

Performing Organization Report Number

Sponsoring/M onitoring Agency Name(s) and Addr ess(es)
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
uu

Number of Pages
4




tachycardia and/or
myocardial ischemia
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Fig 1. Example of computation of the ACI for a RR time series from a healthy
subject.

fibrillation and from subjects with A. Relationship between the ACI and the fractal dimension on

simulated time series

In order to prove that the ACI carries information of the
dynamics of the time series analyzed, it was calculated for
several simulated time series, whose fractal dimension was
known. The simulated series were synthesized by the algorithm
proposed in [2]. The length of the simulated time series was
1024 samples. For each fractal dimension (starting at 1, ending
a 2, and with a step of 0.01), a hundred redlizations were made.
The ACI was computed for each realization. The mean ACI and
the upper and lower 5 % confidence intervals were computed
for each simulated fractal dimension. Another simulation was
carried out with 128 samples per simulated signal.

B. Effect of breathing pattern on the ACI

The second study searched the effect of the vagal tone on
the ACIl. We used periodical breathing to enhance the vagal
tone [3]. Twenty healthy subjects (30.9 + 5.1 years) were
enrolled in the study. For each subject, five successive
electrocardiographic records were acquired while the subject
was in supine position. Each record was 5 minutes long and
was sampled at 500 Hz. The RR time series was obtained by
QRS detection. The first and fifth records were obtained while
the subject was breathing at will. The second and fourth records
were obtained while the subject was breathing periodically at
0.15 Hz (synchronously with a trace displayed on an
oscilloscope). The third record was obtained while the subject
was breathing synchronously with a frequency-modulated
signal whose carrier frequency was 0.15 Hz, modulating
frequency 0.01 Hz, and frequency deviation 0.05 Hz. Reference
[4] further details the experiment. The RR time series are
available at [5]. For each RR time series, the ACl was
computed. The mean and standard deviation of the ACI was
obtained for each breathing pattern. A paired t-Student test was
used in order to search any significant differences between
results.

C. Effect of the exercise stress on the ACI

The third study searched the effect of the sympathetic
nervous system on the ACI. We used exercise stress to enhance
the modulation of heart rate by the sympathetic nervous system
[6]. Eight healthy subjects (31.3 £ 10.5 years) participated in
the test by pedaling on a static bicycle for more than 15
minutes. The ECG was acquired at 1 kHz from some time prior
to starting pedaling to a time after the exercise when the mean
of the hearth rhythm was close to the initia hearth rhythm. RR
time series were measured for 2 min before starting to pedal, 2
min at the maximum effort (maximum heart rhythm), and 2 min
during the after-exercise recovery stage. The RR time series are
available at [5]. For each RR time series the ACI was
computed. A paired t-Student test was used in order to search
any significant differences between results.






In order to calculate the sensitivity, specificity, and positive
and negative predictive value of the ACI, we need a threshold.
Three different thresholds were computed: the first threshold
aims to separate the control group from group A; the second
threshold aims to separate the control group from group B; and
the third threshold aims to separate the control group (healthy
subjects) from the union of groups A and B (ill subjects). If m
is the mean of the ACI in the control group, s; is its standard
deviation, and m is the mean of the other group under test and
S, isits standard deviation, each threshold is computed as

Sy

ACly, =m +(m, - m) 3

Table V shows the sensitivity, specificity, and positive and
negative predictive values for the three different thresholds. 111
subjects classified as ill were considered true positives (ACI
greater than the corresponding threshold). The three thresholds
have similar vaues, a sendtivity of about 90 % and a
specificity of 96 %.

TABLEV
RESULTS OF THE SEPARATION OF TWO GROUPS WHEN ACl+, IS APPLIED
ACly, | Sensitivity | Specificity Positive Negative
(%) (%) Predictive Predictive
value (%) value (%)
Control- | 0.55 91.4 96.0 97.0 88.9
Group A
Control- | 0.54 89.7 96.0 98.7 727
Group B
Control- | 0.55 87.8 96.0 99.1 61.5
Groups A
and B
IV. DISCUSSION

The ACI is robust to artifacts because it is independent of
the magnitude of the changes in the signal analyzed. The ACI
counts the number of times that the heart accelerates and
decelerates. Because RR time series from ill subjects contain
many abnormal beats, the ACI is very useful to analyze those
series; no artifact correction is needed. On the other hand, the
ACI is senditive to the physiologica state of the measured
subject. The ACI is smal when resting and at periodical
breathing, and increases when the subject is exercising or
breathing freely. Therefore, a good way to compare groups of
people could be by averaging the ACI on recordings of 24
hours. Regrettably, no pathological recording lasting 24 h were
available for the present study. More studies should be
performed in order to compare different groups of people in
similar physiologica state. The effect of mental stress on the
ACI could aso be of interest. The ages from control and ill
subjects in this study were different. Nevertheless, no
correlation was found between age and the ACI in 226 different
records (ages from 18 to 57 years).

V. CONCLUSIONS

The ACI is a fast and robust index that reflects the
dynamics of the RR time series and correlates well with the
fractal dimension. The ACI is affected by both the vagus and
the sympathetic nerves: it has a low value during periodic
breathing and a high value under exercise stress and free
breathing. The ACI can discriminate groups of healthy people
from groups of patients who had suffered ventricular
tachycardia and/or fibrillation, and from groups of patients with
myocardial ischemia. The ACI is lower in healthy subjects than
inill subjects. A threshold near 0.55 separates both groups with
sensitivity near 90 % and a specificity of 96 %.
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