
Abstract-The early detection of abnormal heart conditions is vital
for intensive care unit patients. The detection of such conditions is
possible through continuous monitoring of electrocardiographic
(ECG) signals to detect the presence of arrhythmia. Conventional
methods of arrhythmia detection rely on observing morphological
features of the signal in the time domain or after applying a
certain transformation. Even though these techniques have been
fairly successful in detecting such conditions, they are limited by
the fact that they treat the heart as a linear system. In this paper,
we present a comprehensive study of the nonlinear dynamics of
ECG signals. The correlation dimension and largest Lyapunov
exponent are used to model the chaotic nature of five different
classes of ECG signals. The model parameters are evaluated for a
large number of real ECG signals within each class and the results
are reported. The proposed algorithms allow automatic
calculation of the features. The statistical analysis of the calculated
features indicates that they differ significantly among different
arrhythmia types and hence can be rather useful in ECG signal
classification. The results of this work show the potential of such
features for use in arrhythmia detection in clinical cardiac
monitoring.
Keywords - chaos theory, arrhythmia detection, ECG.

I. INTRODUCTION

Sudden cardiac death remains a major unresolved clinical
and public health problem. There are more than 300,000 sudden
cardiac deaths each year of which ventricular fibrillation (VF)
is implicated in the vast majority. In general, cardiac
arrhythmia can be diagnosed by monitoring the
Electrocardiographic (ECG) signals of the patient. The accurate
detection of such conditions at an early stage is essential for
timely management of the case.

The conventional method of diagnosing arrhythmia relies
on detecting the presence of particular signal features by a
human observer. Due to the large number of patients in
intensive care units and the need for continuous watch for such
conditions, automated arrhythmia detection systems have been
developed to perform this task. Such techniques try to
transform the mostly-qualitative diagnostic criteria into a more
objective quantitative signal features. Classical techniques such
as cross-correlation, spectrum analysis, sequential hypothesis
testing, wavelets, as well as morphological features have been
used to address this problem. Nevertheless, such techniques
provide only limited information about the signal because they
ignore the underlying nonlinear signal dynamics. Consequently,
such techniques met a limited success in solving this problem.

In the last two decades, there has been an increasing interest
in applying techniques from the domains of nonlinear analysis
and chaos theory in studying biological systems [1]. For
example, more complete dynamical information can be
obtained when we model the heart as a multivariate, non-linear

pumping system that sometimes exhibits unpredictable
(chaotic) ECG pattern. This is a direct consequence of the
complex nature of ECG signals, which involves interactions
between several physiological variables including autonomic
and central nervous regulation, hemodynamic effects, and other
extrinsic variables.

In the field of chaotic dynamical system theory, several
features can be used to describe system dynamics including
correlation dimension (D2), Lyapunov exponents (λk),
approximate entropy, etc. These features have been used to
explain ECG signal behavior by several studies (e.g., [2]).
Nevertheless, these studies applied such techniques only to a
few sample ECG signals. Due to the randomness of such
signals, such studies did not allow the extraction of a general
description of the dynamics of different arrhythmia types.
Moreover, the details of implementation of feature extraction
techniques were not discussed. Given that such techniques are
particularly sensitive to parameter variations, it is impossible
for other researchers to directly use the results or draw
conclusions from these studies for their implementations.
Therefore, the analysis of ECG chaotic behavior that includes a
large number of signals from different types using a more
detailed implementation of the feature extraction steps would
be rather useful.

In this work, we address the problem of characterizing the
nonlinear dynamics of the ECG signal and its variation with
different arrhythmia types. The implementation details to
automatically compute two important chaotic system
parameters, namely the correlation dimension and largest
Lyapunov exponent, are discussed. In particular, the algorithms
used, parameter values in each technique, and their selection
criteria are given and explained. The proposed implementations
were used to compute these features from a large number of
independent ECG signals belonging to five different ECG
signal types from the MIT-BIH Arrhythmia Database [3]. The
statistical mean and standard deviation of the computed
parameters for each pathology are computed. The resultant
statistics are compared between different pathologies to detect
statistically significant differences among different pathologies.
The results suggest the potential and robustness of using such
features in ECG arrhythmia detection.  

II. CORRELATION DIMENSION ESTIMATION

The mathematical description of a dynamical system
consists of two parts: the state which is a snapshot of the
process at a given instant in time, and the dynamics which is the
set of rules by which the states evolve over time. In the case of
the heart as a dynamical system, all the available information
about the system is a set of ECG measurements from skin-
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mounted sensors. There is no mathematical description of the
dynamics of the heart. That is, we deal only with observables
whose mathematical formulation and total number of variables
are not known. Therefore, to study the dynamics of such
system, we first need to reconstruct the state space trajectory.
The most common method to do this is using delay time
embedding theorem.

II.1. Delay Time Embedding    

Consider a single variable, digitized, ECG time series v(.)
(voltages), that consists of N data points evenly-spaced in time:
v(1), v(2), v(3), … , v(t), …, v(N). To create larger dimensional
geometric object out of these observables, the time series is
embedded into a larger m-dimensional embedding space. The
rows of the matrix X of reconstructed state vectors of length m
is defined as follows [4],

x(k)= [v(1+(k-1)J),v(1+(k-1)J+L),…, v(1+(k-1)J+(m-1)L)],
 k=1,2,…,((N-(m-1)L-1)/J)+1  (1)

Here, x(.) is a vector that constitutes a row in the matrix X, m is
the embedding dimension, L is the lag time that is equal to the
number of data points between components of each vector, J is
the number of data points between vectors (e.g., if vectors are
formed from each data point, then J=1), and ((N-(m-1)L-
1)/J)+1 is the number of vectors that could be formed from N
data points.

The value of m must be large enough for delay time
embedding to work. When a suitable m value is used, the orbits
of the system do not cross each other. This condition is tested
using the false nearest neighbor (FNN) algorithm [1]. The
dimension m in which false neighbors disappear is the smallest
dimension that can be used for the given data.

Various algorithms for estimating a suitable time lag (L) for
the reconstruction procedure have been proposed. For example,
the time lag L can be chosen to be the value at which the
autocorrelation function reaches zero, 1/e, 0.5, or 0.1 [4]. It can
also be selected as the value at which the first minimum of the
mutual information function occurs [1]. We used another
approach where we used the time window length to calculate L
[5]. The time window length (W) is defined by the time
spanned by each embedding vector,

LmW )1( −= .                                   (2)
After determining m using FFN, we need to select the optimal
time window length (W). The selection procedure will become
apparent later in this section.

II.2. Dimension Estimation using Grassberger-Procaccia (G-P)
Algorithm.

The simplest way to think about the dimension D of an
object is as the exponent that scales the bulk b of an object with
linear distance r; i.e. b α rD. The G-P algorithm uses the
correlation integral C(r) to represent the bulk b. C(r) is the
average number of neighbors each point has within a given
distance r, given as,
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Here: ⋅ symbolizes the Euclidean distance (2-norm) between
reconstructed state vectors x(i) and x(j), 2/)1( −= kkN p is the
number of distinct pairs of reconstructed state vectors, θ
symbolizes the Heaviside unit step function (i.e., θ(x)=0 when x
< 0 and θ(x)=1 when x ≥ 0). The correlation dimension D2 is
defined as the slope of the linear region of the plot of log(C(r))
versus log(r) for small values of r. That is,
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Unlike the calculation of C(r), the determination of the linear
scaling region is not an easy task in practice. Because of the
presence of noise, it may not be practical to compute the slope
for very small values of r. Several different regions may appear
visually to be equally valid, which makes this determination not
repeatable for manual computation. In our implementation, we
tried this approach combined with computerized regression and
the results were not satisfactory. Then, we improved our
implementation using a second order regression for the whole
curve. The linear regression was then obtained for the part of
this curve that appeared linear by vision. More consistent
values for D2 were obtained. Finally, we developed an
automatic algorithm to determine the linear region to eliminate
the need for human interaction. The algorithm can be
summarized as follows:

 1. Calculate the first derivative of the curve S1 using the
following approximation of differentiation,
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 2. Differentiate S1 once again to obtain the second
derivative S2. The linear region of the curve appears as a
number of consecutive points with very small values in S2.

 3. Threshold the absolute value of S2 to determine the
extent of linear region using a small threshold of 0.1.

 4. Examine the resultant contiguous linear regions.
Discard short linear regions composed of a sequence of 5
points or less on the curve.

 5. If more than one linear region satisfies the above
conditions, select the one that yields the maximum D2
value (i.e., smaller values of r as per its definition in (4)).

In order to select the optimal window length W for a given
m value in the above algorithm (and consequently the time lag
for delay time reconstruction), the window length is selected to
maximize the plateau in the slope S1 vs log(r) curve [5].

To choose the best embedding dimension m, the FNN
criterion was applied and the first zero has been observed at
m=8. The optimal window length was found to be around 583
ms (i.e., 210 samples at 360 samples per sec). Consequently,
the time lag (L) was estimated to be 83 ms using (2). To
evaluate the discrimination ability of D2, pooled t-test is applied
among the results of each category.



III. LYAPUNOV EXPONENTS

Lyapunov exponents quantify the sensitivity of the system
to initial conditions, which is an important feature of chaotic
systems. Sensitivity to initial conditions means that small
changes in the state of a system will grow at an exponential rate
and eventually dominate the behavior. Lyapunov exponents are
defined as the long time average exponential rates of
divergence of nearby states. If a system has at least one positive
Lyapunov exponent, then the system is chaotic. The larger the
positive exponent, the more chaotic the system becomes (i.e.,
the shorter the time scale of system predictability). Lyapunov
exponents will be arranged such that λ1 ≥ λ2 ≥ … ≥ λn , where
λ1 and λn correspond to the most rapidly expanding and
contracting principal axes, respectively. Therefore, λ1 may be
regarded as an estimator of the dominant chaotic behavior of a
system.

The presence of a positive exponent is sufficient for
diagnosing chaos and represents local instability in a particular
direction. It is important to notice that for the existence of an
attractor (a stable regime), the overall dynamics must be
dissipative (i.e., globally stable) and the total rate of contraction
must dominate the total rate of expansion.

Now, consider the case of n-dimensional space where n is
the number of state variables used to describe the system. A
small n-dimensional hyper-sphere of initial conditions evolves
into a hyper-ellipsoid as time progresses. In particular, its
principal axes expand (or contract) at rates given by the
Lyapunov exponents. Measuring the separation of nearby initial
conditions is done along the Lyapunov directions that
correspond to those principal axes. The Lyapunov directions
depend on the system flow and are defined using the Jacobian
matrix (i.e., the tangent map) at each point of interest along the
flow.

III.1. Calculation of the largest Lyapunov exponent using
Wolf’s algorithm

In this work, the largest Lyapunov exponent, λ1, is
calculated as a measure of the chaotic behavior of the system
using the Wolf algorithm [6]. Consider two trajectories with
nearby initial conditions on an attracting manifold. When the
attractor is chaotic, the trajectories diverge, on the average, at
an exponential rate characterized by the largest Lyapunov
exponent λ1. The algorithm used is as follows,

 1. Compute the distance d0 of two, very close, points in
the reconstructed phase space orbit.

 2. Follow both points as they travel a short distance along
the orbit. The distance d1 between them is calculated.

 3. If d1 becomes too large, one of the points is kept and an
appropriate replacement for the other point is chosen.

 4. The two points are now allowed to evolve again
following steps 1-3.

 5. After s  propagation steps, the largest Lyapunov
exponent λ1 is estimated as,
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III.2. Practical Implementation

We used a software implementation of Wolf’s algorithm
[6]. This software is divided into two programs: BASGEN and
FET. BASGEN stands for “dataBASe GENerator”. It is
considered as a preprocessing step for the main program FET.
It generates a database that is used by FET to determine the
closest points to any specific point. FET stands for “Fixed
Evolution Time”. It does the main job of calculating the
average exponential rate of divergence of short segments of the
reconstructed orbit. There are a lot of parameters that need to be
defined for the two programs. We selected those parameters for
BASGEN as follows: embedding dimension m=4, time delay
L=60, and grid resolution ires= 20. It should be noted that for
Lyapunov exponent calculations, the embedding dimension m
was chosen as D2 rounded to the next highest integer [2]. Also,
the grid resolution refers to the fact that BASGEN places the
reconstructed data into a grid of dimension m, with a resolution
of ires cells per side. This grid will be used later by FET to
efficiently find nearest neighbors to any point.

The parameters for FET were set as follows. The time step
was chosen as the sampling period. The evolution time (evolve)
was chosen as 25. That is, each pair of points is followed
through the phase space for this number of steps at which the
local contribution to orbital divergence is calculated, and a
replacement is attempted if necessary. The minimum separation
at replacement (dismin) was selected to be 0.01. When a
replacement is decided, points whose distance from the kept
point is less than dismin are rejected. The maximum separation
at replacement (dismax) determines the distance between the
pair of points beyond which a replacement is decided and was
chosen as 15% of the data range. Finally, the maximum
orientation error (thmax) is selected to be 30 to define the
maximum allowed angular deviation from the identical
orientation between two points when a replacement is decided.

To evaluate the discrimination ability of λ1, pooled t-test is
applied among the results of each category.

IV. RESULTS

The proposed chaotic feature estimation techniques were
implemented and applied to a large number of real ECG
signals. The ECG signals used in this research were obtained
from the MIT-BIH Arrhythmia Database [3]. The data set used
for this work was composed of 5 different types including
normal (NR), ventricular couplet (VC), ventricular tachycardia
(VT), ventricular bigeminy (VB), and ventricular fibrillation
(VF). Each type was represented by 64 independent signals
with each signal 3 seconds long. The VF signals were sampled
at 250 sample/sec, while the others were sampled at 360
sample/sec.

The results for computing D2 and λ1 for different ECG signal
classes are shown in table (I). P-values of the t-test based on D2

are shown in table (II). The P-values of the t-test based on λ1
are shown in table III.



V. DISCUSSION

The signal length for this analysis can be arbitrarily chosen
provided that it is less than 10 sec. This is to satisfy the
ANSI/AAMI EC13-1992 standard which requires alarms for
abnormal ECG signals to be activated within 10 seconds of
their onset. The variation of the number of points within this
duration was not found to be crucial as long as the ECG signal
is sufficiently sampled.

From table I, we observe non-integer correlation dimension
D2 values for all types indicating the presence of strange
attractor. Also, the positive sign of λ1 confirms the chaotic
behavior of the ECG signal. The results generally support the
hypothesis that cardiac electrical activity reflects a low-
dimensional dynamic system behavior.

As indicated from Tables II and III, the results confirm that
normal ECG signals can be statistically differentiated from
abnormal by both dynamical system features. The very low p-
values suggest the rejection of the null hypothesis and hence the
presence of a significant difference. For example, the first row
of these tables show that normal ECG signals can be
differentiated from all other arrhythmia types. On the other
hand, these measures are not successful in discriminating
between some of the abnormal signals. In particular, when
using D2, there is significant difference between all pairs at 5%
level except between VB and VF, which are significant at the
10% level. Moreover, there was no statistically significant
difference between VT and VF. This may somewhat be
explained by the presence of similarities in dynamics between
these types. Similarly for λ1, it is not possible to find
statistically significant difference between VT, VF, and VB
(shown in boldface inside the table). These statistically
insignificant differences represent a limitation of the dynamical
features in classifying abnormal arrhythmia types.

VI. CONCLUSIONS

The use of ECG signal features from nonlinear dynamical
modeling was studied. The detailed implementation of
automatic feature extraction algorithms was demonstrated. The
results of applying this program on a large data set of actual
ECG signals from five different classes were presented. The
statistical analysis of the results suggests that the use of such
features can be advantageous to ECG signal classification.
They also illustrate the limitations of such features.
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TABLE I
COMPUTED VALUES FOR DYNAMICAL SYSTEM FEATURES

(mean ± standard deviation)
ParameterType

D2 λ1

NR 3.27 ± 0.42 8.18 ± 3.63
VC 2.54 ± 0.39 17.36 ± 3.68
VT 3.07 ± 0.52 13.55 ± 7.24
VB 2.71 ± 0.40 12.11 ± 5.08
VF 2.93 ± 0.71 13.2 ± 4.45

TABLE II
P-VALUES OF t-TEST FOR D2

        Type VC VT VB VF
NR <1.0e-16 0.0071 1.7e-14 0.0006
VC 1.96e-9 0.0148 0.0002
VT 3.01e-5 0.2201
VB 0.0309

TABLE III
P-VALUES OF t-TEST FOR λ1

Type VC VT VB VF
NR <1.0e-16 4.7e-7 1.16e-6 1.38e-10
VC 2.7e-4 6.0e-10 5.82e-8
VT 0.1929 0.7396
VB 0.1976
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