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AN INTELL IGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL
NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF
HEART SOUNDS

l. TURKOGLUl, A. ARSLAN?
'Firat University, Technicd Education Faaulty, Eledronics and Computer Dept.,
“Firat University, Engineaing Faaulty, Computer Dept. 23119, Elazg, Turkey

Abstract-In this dudy, we develop a new automated pattern
recognition system for interpretation of heart sound based on
wavelet decomposition of signals and classfication using neural
network. Inputs to the system are the heart sound signals
acquired by a stethoscope in a noiseless environment. We
generate features for the objedive wncise representation of
heart sound signals by means of wavelet decomposition.
Classfication of the features is performed using a back
propagation neural network with adaptive learning rate. With
two hundred record windows obtained from young humans are
studied. One hundred of the remrd windows in database are
seleded for use astraining phase for neural network. Inthetest
result of the intelligent pattern recognition system with ten
different typesheart sound signals are acquired a high success
Keywordss Heart sounds, Phonocardiogram, Wavelet
deamposition, Neural networks, Pattern recognition.

|. INTRODUCTION

Studies $rowed that the most of human deahs in the world
are due to heat diseases. For this reason, ealy detedion of
heat diseases is one of the most important medica research
areas [1]. The auscultation d the human heat sourd is dill
one of the standard procedures used by physicians. The
spedfic heat sound miterns can be eaily listened by a
stethoscope. Today the stethascope is ill well established,
the phonacardiogram (PCG), reveds full information on
disesses of cadiac valves, vavular defed, heat
insufficiencies and heat throb [2]. Many attempts have been
undertaken to automaticdly classfy those signals using
pattern recognition [3]-[7]. Automatic dassficaion using
advanced pattern recognition methods  far has been applied
partly to heat sound [ 8]-[12].

This investigation is performed by use of eleven
recgnition feaures extraded from the wavelet
decomposition d ten various heat sounds (Table ). Results
showed that the corred clasdficdion rate of the neura
network classfier is98.5% (Tablell).

The intelligent pattern recognition system used in the
present study is include following units:

A. Pattern Recognition System

Pattern recognition is a system, which considers the
various features of an input to match the input to the nearest
output class That is to say, the recognition process is the
clasdfication of the patterns[13].

A popuar schematic of the pattern recognition processis
shown in Figure 1 [14]. The sensors measure some physicd
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process which may be in one of many posdble states of
nature & a given time. The following block performs the
important task of dimensionality reduction in one of two
posshle ways, depending on the gplicaion. Extradion
involves a mathematicd mapping from all the available
measurements to a lower dimension feaure space On the
other hand, seledion entails choosing feaures among
avail able measurements, without any functional mapping.
Those measurements with discriminatory information are
retained and those with redundant or irrelevant information
are discarded. Finaly, the role of classfier is to caegorize
the fedures of the recorded pettern into the gopropriate dass
The focus of work is on the dassifier unit [15].

Input : Output :
Feature .
—>» Sensors [—¥ Extract —» Classifier ———»
States of Xtractor Decision
Nature

Fig. 1. A pattern recognition system.
B. Wavelet Decomposition

Wavelet transforms are rapidly surfadng in fields as
diverse @ telecommunications and hiology. Because of their
suitability for analysing non-stationary signals, they have
become apowerful aternative to Fourier methods in many
medicd applications, where such signals abound[16]-[18].

Wavelet decompasition uses the fad that it is posshle to
resolve high frequency comporents within a small time
window, and ony low frequencies comporents need large
time windows. This is becaise alow frequency component
completes a o/cle in a large time interval whereas a high
frequency comporent completes a ¢ycle in a much shorter
interval. Therefore, slow varying components can orly be
identified over long time intervals but fast varying
components can beidentified over short timeintervals.

Wavelet decomposition can be regarded as a mntinuows
time wavelet decomposition sampled at different frequencies
at every leve or stage. The wavelet decompasition function
at level m and time locaion t,, can be expressed as Equation

2):
-t
i (tm) = X() ¥ F—T ®
g2 C
Where ¥, is the decomposition filter at frequency level m.

The dfed of the decomposition filter is ded by the fador
2™ at stage m, but otherwise the shape is the same a all
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stages. This wavelet decomposition function is sampled at
different rates at every stage to produce the wavelet
decomposition coefficients. The sampling rate at stage m
output is F42™. The level m coefficients are denoted as
dm[km], Where kn is an integer such that kn.=t/Aty,. The
synthesis of the signa from its time-frequency coefficients
given in Equation (2) can be rewritten to express the
compaosition of the signal x[n] from its wavelet coefficients.

dn] = x[n] Oh[N]

- @)
c[n] = x[n] g[n]

where h[n] is the impulse response of the high passfilter and
g[n] isthe impulse response of the low passfilter [19].

C. Neural Networks

Artificial neural networks are systems that are deli berately
constructed to make use of some organizaional principles
resembling those of the human brain. They represent the
promising new generation of information processng systems.
Neural Networks are good at tasks such as pattern matching
and clasdfication, function approximation, optimisation and
data dustering, whil e traditional computers, because of their
architecture, are inefficient at these tasks, espedally pattern-
matching tasks [20].

A neura network is a paralée-distributed information
processng structure with the following charaderistics:

- Itisneuraly inspired mathematicd model.

- It consists of a large number of highly interconneded

processng elements.

- Itsconnedions hold the knowledge.

- A procesing element can dynamicdly respond to its
inpu stimulus, and the response mmpletely depends on
itslocd information.

- It has the aility to learn, recdl, and generalize from
training data by assigning or adjusting the cnnedion
weights.

Its coll edtive behaviour demonstrates the computational
power, and no single neuron caries spedfic
information.

Because of these daraderistics, neural networks are
commonly used in the large aea[21].

[I. METHODOLOGY

Figure 2 shows the automated identificaion system we
developed. It consists of three parts: a) Data aquisition and
preprocessng, b) Feaure Extradion, ¢) Classificaion.

A. Data Acquisition and Preprocessing

Heat sounds are sampled at 44.1 Khz using MATLAB
software. Analog to dgital conversion resolution is 16 hits.
Type and average period d ead aher of these heat sounds
are shown in Table |. Each heat sound is approximately

asuumed in general to have duration of 1.13 sec, and thus
heat sounds are divided windows having 50,000 samples.

Sampled
S':Jﬁrés Through 16
bit at 44.1 Khz

Feature Classification by Wlnner‘Tgke
. All Decision
Extraction Neural Network Rule

Fig. 2. Block diagram of the heart sound identification system.

Wavelet
Decomposition
of Signals

Divide by 1.13
sec. Windows

Recognition

TABLE|
TYPE OF HEART SOUNDS
No. Type Auscultation area APOW (seg
1 Normal heat sound Apex 113
2 S3 Apex 113
3 +4 Apex 0.9
4 Aortic stenosis Right base 0.9
5 Mitral regurgitation Apex 0.79
6 Midsystolic dick Apex 113
7 Ventricular septal defed  Lower left sternal border 0.9
8 Atrial septal defed Left base 0.9
9 Mitral stenosis Apex 113
10 Aorticregurgitation Mid left sternal border 1.02

(3%intercostal space)
APOW: Average period of waveform

B. Feature Extraction Using Wavel et Decomposition

Fedure extradion is the key to pattern recognition. The
Figure 3 shows the feaure extradion structure, which is
performed uwsing wavelet coefficients of the wavelet
decomposition at ten levels. Wavelet decomposition is
obtained using the Daubechies 4-coefficient wavelet filters
[22]. For example, the wavel et decompasition at ten-levels of
the artic regurgitation signal in awindow is srown in Figure
4.

Signal

cal0 cd10

Fig.3. The wavelet coefficients of the wavelet decompasition at ten levels.
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Fig.4. The wavelet decomposition at ten-level of the aortic regurgitation
signal in awindow.

The feadures are extraded from wavelet decomposition

components of the signals using Equation (3). Thus, the eat
component of signal is expressed with asingle value,

2

aj =

©)

n

where aisthe average of j™ component of signal and the Gi
indicates the j"" comporent vedor of wavelet decompasition
of signal. n is the dimension of the signa in a window.
Exadly like this, the feaure vedor is defined the wavelet
decomposition d the signal analysed at ten levels as foll ow:

[cday, cday, cdas, cday, cdas, cdas, cday, cdag, cdas, cdayg, Caag)

For ead rewrding, these fedure parameters are used
providing an eleven-component feaure vedor as the input to
the neural network classfier.

C. Classification by Adaptive Learning Backpropagation

Recent developments in the field o artificia neura
networks have made them a powerful tod to pattern
clasdfiers. The gplicaion o neural networks has opened a
new areafor solving problems irresolvable by other pattern
clasdfying techniques. A number of neural network
algorithms and their applicaions have been widely reported
[23]. Among the many neural networks leaning algorithm,
the adaptive leaning bad propagation is considered the most
useful leaning algorithm.

The training charaderistics and the structure of the neural
network used in this dudy are & follow:

The Number of Layers: 3

The number of neuron on the layers: 11 - 15-10

Adaptive learning rate: 0.005 (+1.04, -0.7)

Momentum coefficient: 0.98

Sumrsquared error: 0.005

Activation Functions: Tangent Sgmoid

The winner-take-all dedsionrule used in this gudy means
that the input pattern feature vedor was be set to the dass
belonging to the neural network output node whaose value is
the biggest. In the training phase of neural network structure,
the feaure vedors of signal types gown in Figure 5 are used.
The number of train samplesis one hundred windows and ten
windows are used for ead heat sound sample.

Normal Heart Sound S3 Heart Sound

S4 Heart Sound Aortic Stenosis
(5]
= Mitral Regurgitation g Midsystolic Click
= =
S =
D B
3 =
=) - =S -
% Ventricular Septal Defect & Atrial Septal Defect
Mitral Stenosis Aortic Regurgitation
01 2 3 4 5 01 2 3 4 5

Samples x10 Samples x10

Fig. 5. The one-window samples of the signal types of heat sound

D. Classification Results

Table Il shows the dasdfication results for eadh heat
sound. Classfication results of the test data set are given at
corred form and incorred form. The testing data set is used
one hundred windows apart from training data set.

TABLE Il
CLASSIFICATION RESULTS
Corredly classified

Incorrectly classified

Heat SoundTypes  —Sube™—ARP (9 Number ARP (%)
Normal heat sound 9 98 1 92
S3 10 99 - -
sS4 9 99 1 99
Aortic stenosis 10 99 - -
Mitral regurgitation 10 99
Midsystolic dick 10 99 - -
Ventricular septal defed 9 99 1 92
Atrial septal defed 9 95 1 99
Mitral stenosis 10 99 - -
Aortic regurgitation 10 99 -

Total 96 985 4 955

ARP: The Average Recognised Percent.
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[11.DISCUSSION AND CONCLUSION

The fedure vedors obtained by the developed method
were used as the input to reural network clasdfier. The
clasdfier consists of feed forward neural network using badk
propagation learning rule of adaptive learning rate to train the
network. In this gudy, ten varieties of heat sounds were
used onthe ntrary to the previous gudies. The training set,
which included ore hundred data samples are used to train
the network and the testing set, which included ore hundred
data samples apart from training set are used to ched the
automatic pattern recognition performance The best of these
recognition results were obtained a 99% corred recognition
rate. This recognition rate indicaes the robustness of the
developed feature extradion method by us. However, there
are 4% incorred clasgficaions. The misclasgficaion percent
might reduce with a larger train set. Our further work will
continuein this diredion.

The most important asped of the intelligent pattern
recognition system is the aility of self-organization o the
neural network without requirements of programming and the
immediate respomse of a trained net during red-time
applications. These feadures make the intelligent pattern
recognition system suitable for automatic dassficaion in
many aoousticd signa applicaions like interpretation o
heat sound. These results point out to the ility of design of
anew intelligencemedicd asdstance system.
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