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Abstract-In this study, we develop a new automated pattern 
recognition system for interpretation of heart sound based on 
wavelet decomposition of signals and classification using neural 
network. Inputs to the system are the heart sound signals 
acquired by a stethoscope in a noiseless environment. We 
generate features for the objective concise representation of 
heart sound signals by means of wavelet decomposition. 
Classification of the features is per formed using a back 
propagation neural network with adaptive learning rate. With 
two hundred record windows obtained from young humans are 
studied. One hundred of the record windows in database are 
selected for use as training phase for neural network.  In the test 
result of the intelligent pattern recognition system with ten 
different types heart sound signals are acquired a high success.     
Keywords- Heart sounds, Phonocardiogram, Wavelet 
decomposition, Neural networks, Pattern recognition. 
 

I. INTRODUCTION 
 

 Studies showed that the most of human deaths in the world 
are due to heart diseases. For this reason, early detection of 
heart diseases is one of the most important medical research 
areas [1]. The auscultation of the human heart sound is still 
one of the standard procedures used by physicians. The 
specific heart sound patterns can be easily li stened by a 
stethoscope. Today the stethoscope is stil l well established, 
the phonocardiogram (PCG), reveals full information on 
diseases of cardiac valves, valvular defect, heart 
insuff iciencies and heart throb [2]. Many attempts have been 
undertaken to automatically classify those signals using 
pattern recognition [3]-[7]. Automatic classification using 
advanced pattern recognition methods so far has been applied 
partly to heart sound [ 8]-[12].  
 This investigation is performed by use of eleven 
recognition features extracted from the wavelet 
decomposition of ten various heart sounds (Table I). Results 
showed that the correct classification rate of the neural 
network classifier is 98.5% (Table II ). 
 The intelligent pattern recognition system used in the 
present study is include following units:  
 
A. Pattern Recognition System 
 
 Pattern recognition is a system, which considers the 
various features of an input to match the input to the nearest 
output class. That is to say, the recognition process is the 
classification of the patterns [13].  

A popular schematic of the pattern recognition process is 
shown in Figure 1 [14]. The sensors measure some physical 

process, which may be in one of many possible states of 
nature at a given time. The following block performs the 
important task of dimensionality reduction in one of two 
possible ways, depending on the application. Extraction 
involves a mathematical mapping from all the available 
measurements to a lower dimension feature space. On the 
other hand, selection entails choosing features among 
available measurements, without any functional mapping. 
Those measurements with discriminatory information are 
retained and those with redundant or irrelevant information 
are discarded. Finally, the role of classifier is to categorize 
the features of the recorded pattern into the appropriate class. 
The focus of work is on the classifier unit [15]. 
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Fig. 1. A pattern recognition system. 

 
B. Wavelet Decomposition 

 
Wavelet transforms are rapidly surfacing in fields as 

diverse as telecommunications and biology. Because of their 
suitabili ty for analysing non-stationary signals, they have 
become a powerful alternative to Fourier methods in many 
medical applications, where such signals abound [16]-[18].   

Wavelet decomposition uses the fact that it is possible to 
resolve high frequency components within a small time 
window, and only low frequencies components need large 
time windows. This is because a low frequency component 
completes a cycle in a large time interval whereas a high 
frequency component completes a cycle in a much shorter 
interval. Therefore, slow varying components can only be 
identified over long time intervals but fast varying 
components can be identified over short time intervals.  

Wavelet decomposition can be regarded as a continuous 
time wavelet decomposition sampled at different frequencies 
at every level or stage. The wavelet decomposition function 
at level m and time location tm can be expressed as Equation 
(1): 

                   
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m is the decomposition filter at frequency level m. 

The effect of the decomposition filter is scaled by the factor  
2m at stage m, but otherwise the shape is the same at all 
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stages. This wavelet decomposition function is sampled at 
different rates at every stage to produce the wavelet 
decomposition coefficients. The sampling rate at stage m 
output is Fs/2

m. The level m coeff icients are denoted as 
dm[km], where km is an integer such that km> ? @ A B m. The 
synthesis of the signal from its time-frequency coefficients 
given in Equation (2) can be rewritten to express the 
composition of the signal x[n] from its wavelet coefficients.  
 

                                 
]n[g]n[x]n[c

]n[h]n[x]n[d

∗=

∗=
                              (2) 

 
 

where h[n] is the impulse response of the high pass filter and 
g[n] is the impulse response of the low pass filter [19]. 
 
C. Neural Networks 
 

Artificial neural networks are systems that are deliberately 
constructed to make use of some organizational principles 
resembling those of the human brain. They represent the 
promising new generation of information processing systems. 
Neural Networks are good at tasks such as pattern matching 
and classification, function approximation, optimisation and 
data clustering, while traditional computers, because of their 
architecture, are ineff icient at these tasks, especially pattern-
matching tasks [20].  

A neural network is a parallel-distributed information 
processing structure with the following characteristics: 

- It is neurally inspired mathematical model. 
- It consists of a large number of highly interconnected 

processing elements. 
- Its connections hold the knowledge. 
- A processing element can dynamically respond to its 

input stimulus, and the response completely depends on 
its local information. 

- It has the ability to learn, recall, and generalize from 
training data by assigning or adjusting the connection 
weights. 

- Its collective behaviour demonstrates the computational 
power, and no single neuron carries specific 
information. 

Because of these characteristics, neural networks are 
commonly used in the large area [21].  
 

II . METHODOLOGY 
 

Figure 2 shows the automated identification system we 
developed.  It consists of three parts: a) Data acquisition and 
preprocessing, b) Feature Extraction, c) Classification.   

 
A. Data Acquisition and Preprocessing 
 
 Heart sounds are sampled at 44.1 Khz using MATLAB 
software. Analog to digital conversion resolution is 16 bits. 
Type and average period of each other of these heart sounds 
are shown in Table I. Each heart sound is approximately 

assumed in general to have duration of 1.13 sec, and thus 
heart sounds are divided windows having 50,000 samples. 
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Fig. 2. Block diagram of  the heart sound identification system. 

 
TABLE I 

TYPE OF HEART SOUNDS 
No. Type Auscultation area APOW (sec) 
1 Normal heart sound Apex 1.13 
2 S3 Apex 1.13 
3 S4 Apex 0.9 
4 Aortic stenosis Right base 0.9 
5 Mitral regurgitation Apex 0.79 
6 Midsystolic click Apex 1.13 
7 Ventricular septal defect Lower left sternal border 0.9 
8 Atrial septal defect Left base 0.9 
9 Mitral stenosis Apex 1.13 

10 Aortic regurgitation 
Mid left sternal border 
(3rd intercostal space) 

1.02 

APOW: Average period of waveform 
 
B. Feature Extraction Using Wavelet Decomposition 
 
 Feature extraction is the key to pattern recognition. The 
Figure 3 shows the feature extraction structure, which is 
performed using wavelet coeff icients of the wavelet 
decomposition at ten levels. Wavelet decomposition is 
obtained using the Daubechies 4-coeff icient wavelet fil ters 
[22]. For example, the wavelet decomposition at ten-levels of 
the aortic regurgitation signal in a window is shown in Figure 
4.  
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Fig.3. The wavelet coeff icients of the wavelet decomposition at ten levels. 
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Fig.4. The wavelet decomposition at ten-level of the aortic regurgitation 

signal in a window. 
 

The features are extracted from wavelet decomposition 
components of the signals using Equation (3). Thus, the each 
component of signal is expressed with a single value, 

 

                                
n

n

1i
jic

ja

∑
==                                     (3) 

 
where aJ is the average of  j th  component of signal and the cji  
indicates the j th  component vector of wavelet decomposition 
of signal. n is the dimension of the signal in a window. 
Exactly li ke this, the feature vector is defined the wavelet 
decomposition of the signal analysed at ten levels as follow: 

 
[cda1, cda2, cda3, cda4, cda5, cda6, cda7, cda8, cda9, cda10, caa10] 

 
For each recording, these feature parameters are used 

providing an eleven-component feature vector as the input to 
the neural network classifier. 
 
C. Classification by Adaptive Learning Backpropagation 
 
 Recent developments in the field of artificial neural 
networks have made them a powerful tool to pattern 
classifiers. The application of neural networks has opened a 
new area for solving problems irresolvable by other pattern 
classifying techniques. A number of neural network 
algorithms and their applications have been widely reported 
[23]. Among the many neural networks learning algorithm, 
the adaptive learning back propagation is considered the most 
useful learning algorithm. 

 The training characteristics and the structure of the neural 
network used in this study are as follow: 

The Number of Layers: 3 
 The number of neuron on the layers:  11 - 15 -10 

 Adaptive learning rate: 0.005  (+1.04, -0.7)  
 Momentum coefficient: 0.98 

Sum-squared error:  0.005  
Activation Functions:  Tangent Sigmoid  

 The winner-take-all decision rule used in this study means 
that the input pattern feature vector was be set to the class 
belonging to the neural network output node whose value is 
the biggest. In the training phase of neural network structure, 
the feature vectors of signal types shown in Figure 5 are used. 
The number of train samples is one hundred windows and ten 
windows are used for each heart sound sample. 
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Fig. 5. The one-window samples of the signal types of heart sound. 

 
D. Classification Results 
 

Table II shows the classification results for each heart 
sound. Classification results of the test data set are given at 
correct form and incorrect form. The testing data set is used 
one hundred windows apart from training data set. 

 

TABLE II 

CLASSIFICATION RESULTS 
Correctly classified Incorrectly classified 

Heart Sound Types 
Number ARP  (%) Number ARP  (%)  

Normal heart sound 9 98 1 92 
S3 10 99 -- -- 
S4 9 99 1 99 
Aortic stenosis 10 99 -- -- 
Mitral regurgitation 10 99 -- -- 
Midsystolic click 10 99 -- -- 
Ventricular septal defect 9 99 1 92 
Atrial septal defect 9 95 1 99 
Mitral stenosis 10 99 -- -- 
Aortic regurgitation 10 99 -- -- 

Total 96 98.5 4 95.5 
ARP: The Average Recognised Percent. 
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III .DISCUSSION AND CONCLUSION 
 

The feature vectors obtained by the developed method 
were used as the input to neural network classifier. The 
classifier consists of feed forward neural network using back 
propagation learning rule of adaptive learning rate to train the 
network.  In this study, ten varieties of heart sounds were 
used on the contrary to the previous studies. The training set, 
which included one hundred data samples are used to train 
the network and the testing set, which included one hundred 
data samples apart from training set are used to check the 
automatic pattern recognition performance. The best of these 
recognition results were obtained a 99% correct recognition 
rate. This recognition rate indicates the robustness of the 
developed feature extraction method by us. However, there 
are 4% incorrect classifications. The misclassification percent 
might reduce with a larger train set. Our further work will 
continue in this direction.       

The most important aspect of the intelligent pattern 
recognition system is the ability of self-organization of the 
neural network without requirements of programming and the 
immediate response of a trained net during real-time 
applications. These features make the intell igent pattern 
recognition system suitable for automatic classification in 
many acoustical signal applications li ke interpretation of 
heart sound. These results point out to the abili ty of design of 
a new intelligence medical assistance system. 
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