
 Abstract- In this paper, we explore the use of quadratic 
classifiers based on Mahalanobis distance to detect EEG 
patterns from a reduced set of recording electrodes. Such 
classifiers used the diagonal and full covariance matrix of EEG 
spectral features extracted from EEG  data. Such data were 
recorded from a group of 8 healthy subjects with 4 electrodes, 
placed in C3, P3, C4, P4 position of the international 10-20 
system. Mahalanobis distance classifiers based on the use of full 
covariance matrix are able to detect EEG activity related to 
imagination of movement with affordable accuracy (average 
score 98%). Reported average recognition data were obtained 
by using the cross-validation of the EEG recordings for each 
subject. Such results open the avenue for the use of 
Mahalanobis-based classifiers in a brain computer interface 
context, in which the use of a reduced set of recording electrodes 
is an important issue. 
 

I. INTRODUCTION 
 
Usually, the EEG was recorded by using an array of 
electrodes, regularly disposed on the scalp surface, according 
to the international 10-20 standard and its successive 
extension [1-2]. Nowadays, neuroscientists set the 
requirements for an high number of electrodes (64-128) for 
the appropriate processing of scalp high spatial frequency 
components of evoked and event-related potentials [3-7]. 
However, there is a research field involving the EEG in 
which the use of an increased number of electrodes is not a 
critical issue. In fact, in the context of Brain Computer 
Interface (BCI), the use of many EEG electrodes represents a 
drawback for the final user, due to the time-consuming 
procedures needed to appropriately set such electrodes and to 
decrease the contact impedance between them and the scalp. 
In this particular framework, the research focuses on the use 
and selection of an appropriate and reduced set of EEG 
electrodes [8-11]. To now, several interesting results for EEG 
classification procedure have been produced by using 
particular electrodes array, preferably disposed along the 
centro-parietal scalp areas, that roughly overlying the 
sensory-motor cortices [8-11]. Another key factor in the BCI 
researches is to develop methods for reliable EEG 
classification that do not involve lengthy training procedures, 
in order to reduce the time spent by the user in the 
unsuccessful interactions with the final device. In this respect, 
many algorithms involving non linear and linear classifiers 
have been suggested in literature [11-15]. With these 
problematic in mind, we explored the possibilities offered by 
simple quadratic classifiers, based on the concept of 
Mahalanobis distance, for the recognition of EEG patterns 

sampled with a low number of scalp electrodes (2 or 4). The 
rationale at the base of the classifier’s choice was to avoid the 
relatively training procedure needed when neural-network 
based classifiers have to be employed. We analyzed the 
performance of such quadratic classifiers on EEG data 
gathered from a group of 8 healthy subjects performing two 
motor-related mental tasks, namely imagined right and left 
hand movements. Furthermore, we compared the 
performance of Mahalanobis-based classifiers against a linear 
classifier recognized known to be useful in the detection of 
EEG patterns when at least 9 electrodes are used [16].  
. 
 

II. METHODOLOGY 
 

A. Data Collection  

 
Eight healthy subjects participated voluntarily in experiments 
where they performed different tasks, including the 
imagination of the movement of the right middle finger (RI) 
as well as the left middle finger (LI).  

Four EEG electrodes are placed over the centro-parietal 
scalp areas of both hemispheres, namely in the position C3, 
P3, C4 and P4 of the 10-20 international system.  

EEG data sampling frequency was 400 Hz, and signal was 
bandpass filtered between 0.1 and 100 Hz before digitization. 
At the beginning of a recording session, subjects remained in 
a resting state—relax with eyes opened—for 60 s. The EEG 
activity of this period is used as a baseline for subsequent 
analysis of the mental tasks. Then, subjects started 
performing the task immediately after the operator instructed 
them to do so, and they maintained that task for more than 
10 s. Every subject executed eight times each task during the 
recording session, with a resting period of 10 s between each. 
After removal of time segments contaminated with EMG in 
the arms it remains about 80 seconds of EEG signals for each 
task for every subject.  

 
B. Data Pre-Processing 

 
Time varying spectrograms of EEG data by estimating the 
Power Spectral Density (PSD) of 2-second long epochs, each 
starting 1 s after the previous one were computed. The Welch 
periodogram algorithm to estimate the PSD was applied. 
Epochs are divided into segments of 1 s, with a Hann window 
of the same length applied to each segment, and 50 % 
overlapping between the segments. This gives a frequency 
resolution of 1 Hz. Finally, the power components are 
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referred to the corresponding values of the estimated PSD of 
the baseline and transformed in dB—i.e., we take the 
logarithm of the division. The spectral values were 
considered in a frequency band from 8 to 30 Hz, since those 
band was recognized to be useful for the recognition of 
mental pattern in previous papers [15,16]. Three separate sets 
of feature vectors are prepared, one referring to all the 
electrodes used (C3, P3, C4, P4) another relative to the data 
of only two electrodes (C3 and C4), and the last one referred 
to the data from the electrodes montage C3-P3 and C4-P4. 
The rationale was to investigate the eventual degrade of the 
performance of the classifiers when data from only two 
electrodes were used. 

 
C. Mahalanobis distance-based classifiers 
 
Let us indicate the n-dimensional measured spectral 

vector x from the EEG data in the frequency band of 8-30 Hz 
during the mental tasks analyzed. The mean vector mR (mL) 
is the average of the x vectors computed during the right 
(left) movement imagination during a particular time period 
(training). Now, we define a quantity d called Mahalanobis 
distance that is computed as follows   

 

 )-()-( II
T

I mxCmxd 1−=       (1) 
 

where CI is the covariance matrix  for the particular imagined 
movement considered, left or right (CL and CR, respectively) 
and T stands for the transposition operator.  The Mahalanobis 
distance is used in a minimum-distance classifier as follows: 
Let mR, mL be the means for the right and left imagined 
movement classes, and let CR, CL be the corresponding 
covariance matrices. We classify a feature vector x by 
measuring the Mahalanobis distance d from x to each of the 
means, and assigning x to the class for which the 
Mahalanobis distance is minimum.  

Two particular distance based classifiers have been used in 
this paper. The first was the diagonal Mahalanobis classifier 
(MD), that relies on the use of a diagonal covariance matrix C 
for both left and right imagined movements. The second was 
the full Mahalanobis classifier (M), that relies on the 
estimation of the full covariance matrix. 

 
D. Signal Space Projection 

 
The Signal Space Projection method is here used as a 

linear classifier shown to be useful for the recognition of 
mental EEG patterns [16]. 
 

E. Cross validation.  

 
For recognition purposes, we applied to the all classifiers 

the k-fold cross-validation, with k = 10. Hence, we divided 
the EEG data set for each subject (80 seconds of imagined 
right and left movement) into k subsets of equal size. The 
SSP, MD and M classifiers were recomputed k times, each 
time leaving out one of the EEG data subsets from the 
training, and using the omitted subset to compute the 
recognition rate. Then, the results presented here are an 
average of the recognition rate obtained for each one of the k 

subset of EEG data not used by the classifiers for the 
estimation of the class means (training). 
 

F. Statistical analysis 
 

 A two-way Analysis of Variance (ANOVA) was 
performed on the average values of the recognition scores 
obtained by the cross-validation technique. The first main 
factor was METHODS with three levels (SSP MD, M) for the 
classifiers used in the present work, while the second main 
factor was ELECTRODES, with three levels (2 electrodes C3 
and C4; 2 channels C3-P3 and C4-P4; and 4 electrodes, C3, 
P3, C4, P4). Greenhouse-Gasser correction has been used 
[17] for the ANOVA computation. The Scheffe’s test was 
used as post-hoc test, at the 5% level of significance. 
 

III. RESULTS 
 
Table 1 reports the average true positive rates between the 

experimental subjects with the use of the SSP, MD and M 
classifiers. 
 

Plot of Means

METHODS Main Effect

F(2,14)=241.55; p<.0000
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Figure 1. Average percentage recognition scores obtained for the population 
analyzed with the linear and quadratic classifiers described above. Methods 

employed are Signal Space Projection (SSP), diagonal Mahalanobis classifier 
(MD) and Mahalanobis-based classifiers with the use of  full covariance 

matrix (M). Data are irrespective of the use of 2 or 4 recording EEG channels 
 

The ANOVA demonstrated that the use of different 
classifiers improves significantly the values of recognition 
scores (METHODS main factor, F = 241.55, p<0.000001). Of 
note, the number of recording electrodes (2 or 4) was 
significant to increase the percentage recognition score of 
EEG imagined patterns with the different classification 
methods. (ELECTRODES main factor, F = 6.23, p = 0.0116). 
Furthermore, no interaction METHODS x ELECTRODES 
was found (F = .94, p = 0.45). The post-hoc statistical 
analysis performed with the Scheffe’s test demonstrated that 
the recognition scores obtained with the Mahalanobis 
classifier using the full covariance matrix are higher (98% 
average recognition scores on all the population analyzed) 
than those obtained with the other classifiers here employed 
(SSP and Mahalanobis with diagonal covariance matrix). 
This result held at the statistical significance of  p < 0.00001 
for any combination of comparisons with different EEG 
recording electrodes configuration (C3 and C4, C3-P3 and 
C4-P4, or C3,C4,P3,P4). The recognition scores obtained by 
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the Mahalanobis classifier with the use of the full covariance 
matrix (2 or 4) are statistically equivalent for any 
combination of the EEG recording electrodes (Scheffe’s test, 
p = 0.12). 

 
 

IV. DISCUSSION 
 

A. Pro and cons about the Mahalanobis distance-based classifiers 
 

As known from the literature, the use of the Mahalanobis 
metric removes several of the limitation of linear classifiers 
based on Euclidean metric, since it automatically account for 
the scaling of the coordinate axes, as well as for the 
correlation between the different features considered. 
However, there is a price for these advantages. The 
covariance matrices can be hard to determine accurately, and 
the memory and time requirements grow quadratically rather 
than linearly with the number of features. These problems 
may be insignificant when only a few features are needed, but 
they can become quite serious when the number of features 
becomes large. In the present case, the use of EEG features 
from a low number of electrodes (2 or 4) makes possible the 
use of Mahalanobis-based classifiers. 
 
 B. Implication for the Brain Computer Interface 
 

Results obtained in the present study suggest that the 
Mahalanobis classifier based on the use of the full covariance 
matrix of features is able to classify EEG patterns during 
imagination of left and right hand movements. Such 
recognition were performed by using data from few EEG 
electrodes at an high level of accuracy. Of note, the 
classification performance by using data from the C3 and C4 
electrodes of such method are statistically equivalent to those 
obtained by using four recording electrodes (C3,C4, P3, P4). 
Instead, SSP and the other Mahalanobis classifier that used a 
diagonal covariance matrix (MD) presented recognition 
scores slightly above the chance level (in this case set to 
50%). The decrement of performance of SSP is related to the 
decrease of recording electrodes, since higher recognition 
scores (on the order of 82%) were obtained by  SSP using 
data from 9 electrodes of the 10-20 International System in 
another group of five healthy subjects [16].  

Compared to neural networks [13,14], linear or quadratic 
classifiers are easier to train since they do not require non-
linear minimization. With respect the recognition scores 
obtained here, other Authors have been able to perform 
successful recognition scores of patterns associated with the 
preparation of performed movements with linear 
classification technique based on the Common Spatial 
Patterns as high as 90% (CSP) [15] as well as non linear 
classifiers as high as 84% [11-13] in the Brain Computer 
Interface area. However, the use of CSP methods required the 
use of a larger set of EEG recording electrodes than those 
reported here. 

 In summary, results of the present work suggest that by 
using quadratic classifiers based on Mahalanobis distance, 
with the use of the full covariance matrix of the features it is 
possible to classify EEG mental patterns related to the 
imagination of hand movements by using just 2 scalp 
electrodes. Such electrodes were placed at C3 and C4 

position of the international 10-20 system [1]. These results 
can open the avenue for an application of this classifier to the 
Brain Computer Interface area, in which the number of the 
electrodes to be used by the final user is a critical issue. 
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