
Abstract- In this simulation study, we would like to address some 
questions related to the use of fMRI a priori constraints in the 
estimation of the cortical source current density. Namely, we 
would like to assess the utility to include information as 
estimated from event-related and block-design fMRI, by using 
as the dependent variable the correlation between the imposed 
and the estimated waveforms at the level of cortical region of 
interests (ROI). A realistic head and cortical surface model was 
used. Factors used were i) the signal to noise ratio of the scalp 
simulated data (SNR); ii) the particular inverse operator used to 
estimate the cortical source activity from the simulated scalp 
data (INVERSE); iii) the strength of the fMRI priors in the 
estimation of the current activity (K). Analysis of Variance 
(ANOVA) results revealed that all the considered factors (SNR, 
INVERSE, K) significantly afflicts the correlation between the 
estimated and the simulated cortical activity. For the ROIs 
analyzed in which a presence of fMRI hotspots were simulated, 
it was observed that the best estimation of cortical source 
currents were performed with the inverse operator that use the 
event-related fMRI information. When the ROI analyzed do not 
present fMRI hotspots, both minimum norm and fMRI-based 
inverse operators return statistically equivalent correlation 
values. Such results open the avenue for the use of fMRI-based 
inverse operator in the estimation of cortical current strengths 
from motor and cognitive task in the human brain. 

 
I. INTRODUCTION 

 
Electroencephalography (EEG) is an useful technique for 

the study of brain dynamics and functional cortical 
connectivity, due to their high temporal resolution 
(milliseconds;[1]). EEG reflects the activity of cortical 
generators oriented both tangentially and radially with respect 
to the scalp surface. However, the different electrical 
conductivity of brain, skull, and scalp markedly blurs the 
EEG potential distributions and makes the localization of the 
underlying cortical generators problematic. Neural sources of 
EEG can be localized by making a priori hypothesis on their 
number and extension. When the EEG activity is mainly 
generated by a known number of cortical sources (i.e. short-
latency evoked potentials), the location and strength of these 
sources can be reliably estimated by the dipole localization 
technique. However, it is well known that except for the early 
processing of sensory responses, event-related cortical 
responses include a distributed network of several and 
unknown areas. When distributed cortical network is 
supposed to be active, cortical sources of EEG data should be 
modeled by linear inverse estimation. With this approach, 
thousands of equivalent current dipoles are used as a source 
model and realistic head models reconstructed from magnetic 
resonance images serve as volume conductor medium [2]. 

The solution space (i.e. the set of all possible 
combinations of the cortical dipoles’ strengths) is generally 
reduced by using geometrical constraints. For example, the 

dipoles can be disposed along the reconstruction of cortical 
surface with a direction perpendicular to the local surface.  
An additional constraint is to force the dipoles to explain the 
recorded data with a minimum or a low amount of energy 
(minimum-norm solutions). The solution space can be further 
reduced by using information deriving from hemodynamic 
measures recorded during the same task [3]. The rationale of 
a multimodal approach is that neural activity generating EEG 
potentials increases glucose and oxygen demands [4]. This 
results in an increase in the local hemodynamic response that 
can be measured by functional magnetic resonance images 
(fMRI). Hence, fMRI responses and cortical sources of EEG 
data can be spatially related. Determination of the priors in 
the resolution of the linear inverse problem was performed 
with the use of information from the hemodynamic responses 
of the cortical areas as revealed by block-design (strength of 
activated voxels) and by event-related (coupling of activated 
voxels) fMRI. It is worth of notice that using the block-
design fMRI priors for the estimation of current strengths we 
failed to take into account information about the coupling of 
the neural sources. This because we use only the information 
about the presence or absence of a particular source in the set 
of those whose hemodynamic responses have been elicited by 
the considered task. However, we take advantage from the 
hemodynamic responses of the event-related fMRI, in which 
the time course of the source responses is also available, to 
estimate the hemodynamic correlation of the neural sources. 
This estimate is obtained by computing the cross-correlation 
on the hemodynamic waveforms obtained by the averaged 
fMRI activity in the analyzed region of interest.   

While the effects and the level of the inclusion of block-
design fMRI priors in the estimation of source current density 
has been investigated through simulation studies [3,5] no 
studies have been yet addressed similar issues for the 
inclusion of the event-related fMRI priors in the linear 
inverse problem. In this simulation study, we would like to 
address some questions related to the use of fMRI a priori 
constraints in the estimation of the cortical source current 
density. Namely, we would like to assess the utility to include 
information as estimated from event-related and block-design 
fMRI, by using the capacity to recover the imposed simulated 
cortical activation in different region of interest of a realistic 
cortical surface model. This was assessed by using as the 
dependent variable the correlation values between the 
estimated and the generated waveforms at the cortical level. 
Factors used are the noise superimposed to the scalp recorded 
data (with different levels), the inclusion or not of the fMRI 
priors for the estimation of cortical activity (using weighted 
minimum norm solutions as well as  block and event-related 
design for the inclusion of fMRI priors), and the level of the 
tuning parameters for the a priori fMRI-based cortical source 
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estimation. Simulations are performed with realistic head and 
cortical models derived from a normal, healthy subject. 
. 
 

II. METHODOLOGY 
 
A. Head and cortical models 

 
For the simulation purposes, we used a subject’s multi-

compartment head model (scalp, skull, dura mater, cortex) 
constructed from MRIs. Such model reproduced scalp, skull, 
and dura mater surfaces with about 1000 triangles for each 
surface. Source models were built with the following 
procedure: (i) the voxels belonging to the MR volume of the 
cortex were selected with a semiautomatic procedure 
(threshold algorithm); (ii) these points were triangulated 
obtaining a fine mesh with about 100,000 triangles; (iii) a 
coarser mesh was obtained by resampling the one described 
above down to about 3,000 triangles, taking care that the 
general features of the neocortical envelope were well 
preserved especially in correspondence of pre- and post-
central gyri and frontal mesial area; (iv) an orthogonal unitary 
equivalent current dipole was placed in each node of the 
triangulated surface, with direction parallel to the vector sum 
of the normals to the surrounding triangles. One hundred and 
twenty-eight electrodes real scalp electrodes position 
measured by a 3D digitizer on the same subject during an 
high resolution EEG recording were used during this 
simulation. 
 
B. Estimation of cortical source current density.  
 

Taking into account the measurement noise, an estimate 
of the dipole source configuration that generated a measured 
potential can be obtained by solving the linear system: 
 
  Ax + n = b             (1) 
  
where A is the lead field matrix, in which each j-th column 
describes the potential distribution generated on the scalp 
electrodes  by the j-th unitary dipole,  b is the vector of the 
recorded potential values, and n is the measurement noise, 
supposed to be normally distributed. The electrical lead field 
matrix A and the data vector b must be referenced 
consistently. Among the several equivalent solutions for the 
underdetermined system (1), the solution was chosen that 
satisfies the following variational problem for the sources x : 
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x
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where M, N are the matrices associated to the metrics of the 
data and of the source space, respectively. The solution of the 
variational problem depends on adequacy of the data and 
source space metrics. Under the hypothesis of M and N 
positive definite, the solution of (2) is given by computing the 
pseudoinverse matrix G according to the following 
expressions: 

Gbî = ,    ( ) 1111 −−−− +′′= MAANANG λ       (3)  

An optimal regularization of this linear system was obtained 
by the L-curve approach. This curve, which plots the residual 
norm versus the solution norm at different λ values, was used 
to choose the optimal amount of regularization in the solution 
of the linear inverse problem. Computation of the L-curves 
and optimal λ correction values was performed with the 
original Hansen’s routines. The metric M, characterizing the 
idea of closeness in the data space, can be particularized by 
taking into account the sensors noise level by using the 
Mahalanobis distance. The source metric N, can be 
particularized by taking into account the information from the 
hemodynamic responses of the single voxels as derived from 
fMRIs as showed in the following section. 
 
C. Functional hemodynamical coupling constraints.  
 

We present two characterizations of the source metric N 
that can provide the basis for the inclusion into the linear 
inverse estimation of the information about the statistical 
hemodynamic activation of i-th cortical voxels. The first 
characterization of the source metric N takes into account all 
the cortical voxels on the basis of their electrical “closeness” 
to the EEG sensors (column norm normalization). In this 
case, the inverse of the resulting source metric is 

 

( ) 21 −
⋅

− = iii AN              (4) 

 
in which (N-1)ii is the i-th element of the inverse of the 
diagonal matrix N and ||Aj|| is the L2 norm of the i-th column 
of the lead field matrix A. Introducing fMRI priors into the 
linear inverse estimation produces a bias in the solution: 
statistically significantly activated fMRI voxels, which are 
returned by the so called percentage change approach are 
weighted to account for the EEG measured potentials. The 
inverse of the resulting metric is  

 

( ) 221 )(
−

⋅
− = iiii g AN α

                                          (5) 
 

in which (N-1)ii and ||Aj|| has the same meaning described 
above. The g(αi) is a function of the statistically significant 
percentage increase of the fMRI signal assigned to the i-th 
dipole of the modeled source space. This function was 
expressed as 
 
g(αi)2 = 1 + (K-1) (αi /max(αI)),    K ≥1, αi ≥ 0          (6) 
 
where αi is the percentage increase of the fMRI signal during 
the task state for the i-th voxel and the factor K tunes fMRI 
constraints in the source space. Fixing K = 1 let us disregard 
fMRI priors, thus returning to a purely electrical solution; a 
value for K >> 1 allows only the sources associated with 
fMRI active voxels to participate in the solution. It was 
shown that a value for K in the order of 10 (90% of 
constraints for the fMRI information) is useful to avoid 
mislocalization due to overconstrained solutions. In the 
following the estimation of the cortical activity obtained with 
this metric will be denoted as diag-fMRI. The previous 
definition of the source metric N results in a matrix in which 
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the off-diagonal elements are zero (diag-fMRI). Now, we 
take advantage of the off-diagonal elements of the matrix N 
to insert the information about the functional coupling about 
the cortical sources. In particular we set the generic ij entry of 
the inverse of matrix N 

 

( ) ijjijiij corrgg ⋅=
−

⋅
−

⋅
− 111 )()( AAN αα          (7) 

 
where ||Aj|| and g(αi) have the same meaning described 
above and corrij is the degree of functional coupling between 
the source i and the source j during the particular task 
analyzed as revealed by the correlation of their hemodynamic 
responses obtained by the event-related fMRI data. In the 
following the estimation of the cortical activity obtained with 
this metric will be denoted as corr-fMRI. It is of interest that 
in the case of uncorrelated sources (corrij = 0, i ≠ j; corrii = 
1), the corr-fMRI formulation leads back to the diag-fMRI 
one.  
 
D. Regions of interest. 
 

 Seven cortical regions of interest (ROIs) were drawn on 
the computer-based cortical reconstructions by two 
independent and expert neuroradiologists. Such ROIs will be 
those related to the primary sensorimotor (S1 and M1) areas 
both in the ipsilateral and in the controlateral part of the 
performed movement, as well as supplementary motor area 
(SMA). Furthermore, ROIs from posterior parietal areas (PP; 
including at large Broadmann areas, 5,7,39,40,43) were also 
considered. 

 
E. Distribution of fMRI activated dipoles along the ROIs.  
 

Three of the seven ROIs analysed were chosen as site for 
the fMRI activations. Such ROIs were these modelling the 
left S1 and M1 as well as the SMA. In these regions, fMRI 
activations were regularly distributed. Hence, each j-th entry 
of the N matrix of a dipole belonging to such ROI will be 
associated with a prefixed g(αj) value, according to (7). 
Values of corrij = 0.85  have been taken for all dipole pairs 
belong to the same ROIs, while values of corrij = 0.6  have 
been taken for the dipole pairs belong to different ROIs. 
These values were taken as representative by the mean 
correlation level of the hemodynamic responses in real event-
related fMRI acquisition related to voluntary movements. 

 
F. Experimental design.  
 

The experimental design was drawn as follows: 1) to all 
dipoles belonging to a particular selected ROI it was assigned 
an equal moment strength, oscillates between 0 and 1 with a 
square law; 2) all the possible sequences for activating the 
seven selected ROIs have been considered. A total of 128 
trials were generated, each one of 32 data points; 3) through 
the electric lead field matrix, such cortical oscillation were 
propagated toward via the realistic volume conductor to the 
simulated  128 electric sensors, to produce separate HREEG 
data sets. 4) white noise were added to these datasets, with 
different levels of signal-to-noise ratios (SNRs; infinity, 30, 

20, 10, 5, 3, 1), recalling the typical range of SNR commonly 
encountered in evoked, cognitive and motor-related tasks; 5) 
the inverse electric operators described below were applied to 
these datasets and the consequent cortical activity were 
estimated in each ROI. Six types of weights for the inverse 
operators have been used: the minimum norm estimate (MN), 
the column normalized minimum norm estimate (WMN), the 
block-design fMRI constraint without and with the column 
normalization (diag-fMRI and diag-fMRI NC), and the event-
related fMRI constraint without and with column 
normalization (corr-fMRI and corr-fMRI NC); 6) the 
estimated current source density for each ROI was the 
average of the current estimates of each dipoles belonging to 
such ROI; 7) the adequacy of the reconstructed cortical 
activity were analyzed by computing the correlation at the 
ROI level between the generated and the estimated activities 
along all the simulated trials. 

 
G. Statistical analysis.   
 

The obtained results were subjected to the Analysis of 
Variance (ANOVA). The dependent variable was the 
correlation between the generated and simulated current 
density estimation for each region analyzed. The main factors 
of the ANOVA was the SNR (with seven levels), the type of 
inverse operator used (with and without fMRI constraints, 
with six levels) denoted as INVERSE, the value of K 
parameter for the fMRI-based inverse operator (with four 
levels; 3, 5, 7, 10), denoted as K. The correction of 
Greenhouse-Gasser for the violation of the spherical 
hypothesis in the ANOVA was used. The post hoc analysis 
was performed with the Scheffe’s test. 
  
 

III. RESULTS 
 

A. Left S1 region 
 

Results for this cortical region are here reported as 
paradigmatic for all the ROIs with fMRI activations used in 
this simulation (like left M1, and SMA). All the considered 
factors (SNR, INVERSE, K) decrease significantly in the 
simulations the variance of the correlation between the 
estimated and the computed cortical current densities. F 
values for SNR (F = 61.86, p < 0.0001), INVERSE  (F = 
3.67.3, p< 0.0028) and K (F = 6.6, p < 0.0002) are all above 
the significant threshold of p = 0.05. Almost all the 
interactions between the main factors were statistically 
significant. F values for  K x INVERSE (F = 5.84, p < 
0.0001), SNR x K (F = 7.85, p < 0.0001), are all above the 
significant threshold. Of special interest also the significant 
interaction between all the main effects SNR x INVERSE x 
K with a F = 8.28 and p < 0.001. Correlation values obtained 
in the left S1 cortical areas for the fMRI-based inverse types 
(diag-fMRI, corr-fMRI) are statistically significant higher 
than those obtained for the MN and MNC inverse methods 
(Scheffe’s test, p<0.005). This holds for the all range of SNR 
values studied. In this context, correlation values obtained for 
the corr-fMRI were higher than those of diag-fMRI. 
Correlation values decrease significantly for all inverse 
methods used when data with SNR of 1 or 3 are employed 
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with respect to the simulations performed with other SNR 
values (5, 10, 20, 30). Figure 1 presents the mean values 
obtained for the correlation values in the ROI analyzed when 
the level of K values and the type of inverse operator were 
varied. Such interaction between the INVERSE and K main 
factors is statistically significant(F = 5.84, p < 0.0001). 
Similar results were obtained for the other ROIs in which 
fMRI hotspots were present (right M1, SMA). 

 
Figure 1. Left S1 area.  

 
B. Left PP region. 

 
Results for this cortical region are here reported as 

paradigmatic for all the ROIs without fMRI activations used 
in this simulation (like right S1, M1, and PP areas). All the 
considered factors (SNR, INVERSE, K) decrease 
significantly in the simulations the variance of the 
correlation. F values for SNR (F = 140.4, p < 0.00001), 
INVERSE  (F = 33.05, p< 0.00001) and K (F = 65.5, p < 
0.00001) are all above the significant threshold of p = 0.05. 
All the interactions between the main factors of this ANOVA 
were also significant. F values for  K x INVERSE (F = 65.2, 
p < 0.00001), SNR x K (F = 29.06, p < 0.0001), INVERSE x 
SNR (F = 25.33, p < 0.00001) are all above the significant 
threshold. Of special interest also the significant interaction 
between all the main effects SNR x INVERSE x K with a F = 
29.91 and p < 0.0001. Correlation values obtained in the PP 
ROI for the fMRI-based inverse types are statistically similar 
to those obtained for the MN and MNC inverses (Scheffe’s 
test, p>0.05). Furthermore, the corr-fMRI performs generally 
better than diag-fMRI based inverses, for all the level of SNR 
analyzed. Low values of SNR decrease the value of 
correlation between the estimated and the simulated 
waveform in the ROI analyzed, for all methods and level of 
fMRI priors. The inverse methods that returns higher values 
for the correlation coefficient in this area are the corr-
fMRINC and the MNC, while the best level for the fMRI 
priors is K = 3. Increasing values of K reduces the correlation 
values between the estimated and the simulated waveforms. 
All these observations are statistically significant after 
Scheffe’s post hoc tests performed at the 5% of significance 
level. Figure 2 presents the mean values obtained for the 
correlation values in the ROI analyzed when the level of K 
values were varied. Note the significance of the interaction 
between the INVERSE and K main factors (F = 65.2, p < 
0.0001).  

Figure 2. Left posterior parietal area. 
 
 

IV. DISCUSSION 
 

This simulation integrates the results obtainable by the use 
of inverse operators performance indexes based on the 
resolution matrix [2]. This is due to the fact that resolution 
matrix indexes are valid when no noise is present on the data, 
a condition rarely met in EEG practice. Results of this 
simulation suggests that the reconstruction of the cortical 
currents involving ROIs in which fMRI hotspots are present 
is better performed by the corr-fMRINC inverse operator 
(with K = 3 or 5)  than the diag-fMRI or minimum norm 
inverse operators. When the reconstruction was produced for 
the cortical areas where no fMRI hotspots are present, the 
performance of corr-fMRI methods (with K = 3) are 
equivalent to those returned by un- and weighted minimum 
norm inverse operators.  All the inverse methods decrease 
significantly their performances when the SNR decrease from 
values of 10, 5 to  values of 3 and 1. As result, the use of 
fMRI-based inverse operators appear to be useful in the 
reconstruction of cortical current densities from EEG data. 
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