
 

 

Abstract - Obstructive sleep apnea (OSA) is a common health 
concern associated with serious implications and increased 
cardiovascular morbidity and mortality. This study approaches 
the problem of identification OSA patients and detection of OSA 
phases on the basis of heart rate variability (HRV) analysis. 
Only a single ECG-channel is required for this purpose. We 
used data from the apnea ECG database [6]: 40 patients with 
documented OSA and 20 controls divided into a learning and a 
test set of equal size. Commonly used HRV measures as well as 
some novel parameters are tested. The results are compared by 
ROC-analysis and promising parameters are combined into a 
multidimensional vector and evaluated by means of a second 
order polynomial classifier. Best results are obtained from 
parameters calculated by time delay embedding and correlation 
analysis of the interbeat interval series. For the identification 
task, 95% sensitivity and 100% specitifity are achieved on the 
independend test set. The detection task yields an average 
classification rate of almost 85 %. 
Keywords – Heart rate variability, obstructive sleep apnea, time 
delay embedding, correlation analysis. 

 
 

I. INTRODUCTION 
 
Obstructive sleep apnea (OSA) is frequently associated with a 
variety of health implications: from moderate problems with 
breathing and snoring during night, daytime drowsiness up to 
severe restrictions in the cardiovascular system we find a 
wide range of different degrees of this illness. Mostly middle 
aged males are affected with an estimated prevalence of about 
4% [1]. The clinical method of polysomnography is currently 
used for diagnosing OSA [2]. This procedure is time-
consuming and expensive and requires the patient’s stay 
overnight in hospital in a specially equipped sleep laboratory 
for recording of different biosignals, e.g. respiratory and 
cardiovascular signals, the electroencephalogram, vital 
parameters etc.  

Meanwhile, there is some evidence that the cardiac rhythm 
respectively the time course of heart rate shows some specific 
patterns which occur frequently with OSA. These patterns are 
reported by several authors [3, 4] as cyclic variations with 
particularly high amplitude modulation corresponding to 
phases of apnea and bradycardia followed by an increase in 
heart rate and the corresponding stop of apnea. Fig 1. 
demonstrates such a characteristic heart rate pattern for about 
7 minutes from an OSA patient. Because of these findings 
Guilleminault [3] suggested to evaluate a simple screening 
method for the existence of OSA taking these cyclic patterns 
into consideration. 

The aim of our study follows this idea and is performed in 
two different steps: i.) (Identification) what means, to 
investigate, if patients with OSA could be identified from 
healthy subjects by means of heart rate variability parameters, 
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 Fig.1. Sequence of RR intervals recorded from a patient with obstructive 
sleep apnea. The first half of the time course shows several apnea phases 
where as the second half has a normal characteristic. 

 
and ii) (Detection) if for those patients phases of apnea 

during sleep could be detected by heart rate variability 
analysis of Holter ECGs. For both questions the information 
of only one electrocardiogram (ECG) channel is available. 
We tested many well known parameters in time and 
frequency domain [5] as well as some new ones based on 
time delay embedding and correlation analysis. The 
performance of all features considered in this evaluation is 
assessed by ROC analysis. However, in this study we only 
report about the most meaningful parameters which yielded 
best results in terms of sensitivity and specificity. In order to 
increase the classification performance, a multidimensional 
feature vector is tested by a polynomial classifier. 

 
 

II. METHODOLOGY 
 

Our investigation is carried out on a sample of 40 patients 
with established OSA and 20 healthy control probands [6]. 
For all subjects of this study one single ECG channel is 
recorded overnight for about 8 hours. The 60 records are 
equally divided into a training and a test set of 20 patients, 
respectively 10 controls. Healthy controls have fewer than 5 
minutes with apnea. The record of a patient contains at least 
one hour with an apnea index of 10 or more, and at least 100 
minutes with apnea during the recording. All apneas are 
either obstructive or mixed. Hypopneas are also counted as 
apneas. More details can be found in [6]. 
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In the training set, file by file information on the proband’s 
status (patient/control) as well as minute by minute 
annotations on the occurrence of apnea at the beginning of 
this minute are available. The annotations were made by 
human experts on the basis of simultaneously recorded 
respiration signals. For the data in the tests set, no further 
information is given. 

The ECG signal is recorded with a sampling frequency of 
100 Hz and 12 bit resolution. All parameters quantified in 
this study are derived from the sequence of RR intervals of 
the ECG signals. In order to increase the time-resolution of 
the original data, the ECG signal is first interpolated using 
cubic splines and then resampled with 1000 Hz. A median 
highpass filter (width 501 ms) to reduce baseline wander is 
then applied. After R peak detection, a classification of QRS-
morphology [7] and -timing is performed to identify artefacts 
and ectopic beats and exclude them from further processing. 
Gaps in the RR-sequence resulting from rejected or missing 
beats are interpolated by means of a nonlinear algorithm 
described in [8]. 

In correspondence to the two goals of identification and 
detection further processing of the data follows different 
procedures. 

Detection of apnea phases is performed on the corrected 
RR sequence which is cut into successive segments of one 
minute in duration. For each segment the corresponding HRV 
measures are estimated and finally smoothed by median 
filtering. 

Parameters for identification of patients with established 
apnea are calculated in two different kinds: i) the HRV 
parameters are estimated at once from the total signal of 
about 8 hours; and ii) from the mentioned detection measures 
calculated for successive one minute segments the median is 
taken as representative feature for the whole signal. 

We calculated for both procedures the commonly used 
HRV time domain parameters [5]: standard deviation (SD) of 
all RR intervals between successive beats of normal origin 
(NN intervals), (SDNN), the absolute (NN50count) and 
relative (pNN50) number of successive pairs of NN-intervals 
that differ more than 50 ms and the square root of the mean of 
the summed squares of differences between adjacent NN-
intervals (RMSSD), the SD of the mean of the NN intervals 
in all 5-minute segments of the recording (SDANN) and the 
mean of the SD of all NN intervals for all consecutive 5-
minute segments (SDNN index).  

Another time dependent parameter for HRV analysis is 
introduced as the so called correlation based feature (CBF). It 
is calculated within RR interval segments of 5 minute 
duration, which are shifted in increments of 1 minute over the 
whole signal. See Fig. 2. 

From each 5 minute segment, the central window of one 
minute duration is extracted and cross correlated with the 
surrounding 5 minute segment. The sum of all normalized 
correlation values that exceed the threshold 0.45 yield the 
value of CBF. It aims to identify the cyclical variation of 
heart rate described in [3]. 

In addition to these parameters, we investigated two 
features that have been proposed in EEG processing for  
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Fig.2 Calculation of the Correlation Based Feature (CBF) 

 
brain-computer interfacing [9] and which are not 

commonly used in HRV analysis. Both features are derived 
from the time delay embedded corrected series of RR 
intervals. Given that the time segment of analysis contains N 
RR-intervals ix  (i=1..N), embedding vectors ix�  of the 
dimension D are constructed from values ix  that are spaced t 
RR intervals apart: 
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In [9], the vectors ix�  directly form the columns of the 

embedding matrix X. In our realisation, we first calculate the 
mean vector m� of all embedding vectors ix�  
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and subtract it from each vecor ix�  prior to the aggregation. 
So, the embedding matrix X is calculated according to 
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The sorted eigenvalues il  of the DxD-Matrix TXX ⋅  are 
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respect to the sum of all eigenvalues: 
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and the normalized maximal eigenvalue (NME) serves as 
classification feature: 

1λ=NME  
Since, up to a multiplicative constant, the matrix TXX ⋅  is 

identical to the covariance matrix of the vecors ix� , NME 
reflects the extension of the cluster of the embedded RR 
series in the direction of its largest extension relative to its 
‘size’ in the directions of the other eigenvectors.  

The second parameter is derived from the Entropy H of the 
embedding space eigenspectrum 
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It is calculated following [9] as HEBF 2=  
and quantifies the so called stochastic ‘complexity’ of the 

underlying time series.  
In this study, the values for the embedding Dimension D 

and time delay t were empirically set to 3. It should be noted, 
that the resulting numbers of NME and EBF do not reflect 
‘true values’ in the sense of the theory of nonlinear dynamics, 
where an embedding dimension D sufficiently high for the 
underlying attractor must be guaranteed. Rather, they 
describe spatial properties of the cluster formed by the 
embedding vectors. For classification purposes, the most 
important question is, whether these values have different 
distributions in the case of apnea segments and non apnea 
segments, regardless of whether the values are correct in a 
theoretical sense. 

To assess the quality of the calculated parameters with 
respect to the classification task, ROC curves are generated 
for each measure by plotting sensitivity against (1-specificity) 
for all possible decision thresholds. 

Furthermore, up to three different features are combined 
and the training set served to train a second order polynomial 
classifier which was used to reclassify the training set. For the 
best combination, a validation was performed on the tests set. 

 
 

III. RESULTS 
 

ROC curves are used to characterize the quality of the 
single HRV features with respect to the identification task. 
The threshold corresponding to the point of the curve closest 
to the upper right corner (0,1) was considered as value that 
achieves best separation between the two groups. Table 1 
shows the optimal values of sensitivity and specificity for all 
single HRV features considered in the classification 
procedure. 

The first two columns, sensitivity and specificity, left side 
of Table I, are calculated for the total signal and the two 
columns to the right side present the median of the features 
based on the one min. segments.  

Furthermore, the first three features NME, EBF and CBF, 
which do not belong to the standard HRV parameters, 

 
TABLE I 

CLASSIFICATION RATES FOR IDENTIFICATION OF OSA PATIENTS 
 Analysis of total 

signal 
Median of minute segments 

 Training set 
 

Training set 
 

Tests set 

Parameter Sens. Spec. Sens. Spec. Total 
NME 85 70 95 100 28/30
EBF 75 80 95 100 27/30
CBF   95 100 28/30
pNN50 90 70 90 70  
NN50count 75 70 80 70  
SDNN 60 70 55 60  
SDSD 70 70 75 70  
RMSSD 70 70 75 70  
SDANN 60 80    
SDNN-index 60 70    
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Fig.3 ROC Curves for Detection of OSA patients by CBF, NME, EBF and 

SDNN features, based on one minute ECG segments 
 
achieve best results for the training sets compared to the 

standard time domain HRV parameters.  
From this point of view the second detection task of apnea 

phases is continued with an emphasis on these three favourite 
features.The ROC-curves of Fig. 3 demonstrate the results 
achieved for minute by minute classification in the detection 
task. Obviously, the correlation based feature CBF achieves 
the best performance. However, the NME and EBF parameter 
are only slightly worse. 

Table II shows the corresponding classification rates 
achieved for the minute by minute classification. 

Slightly higher classification values resulted from 
application of selected feature combinations to a second order 
polynomial classifier. Up to three features are tested (Table 
III). 

 
TABLE II 

CLASSIFICATION RATES FOR DETECTION 
OF OSA PHASES 

 Training set 
Parameter Sens Spez 
NME 76.73 74.76 
EBF 81.33 72.05 
CBF 81.31 77.16 
SDNN 68.57 58.93 
   

 
TABLE III 

CLASSIFICATION RATES FOR DETECTION OF OSA PHASES. 

COMBINATIOPN OF UP TO THREE FEATURES. 
 Training set 
Combination Sens Spec 
CBF / NME 72.22 87.38 
CBF / EBF 74.11 84.30 
NME / SDNN 74.96 87.09 
CBF / NME / SDNN 73.36 89.33 

 
 



 

 

IV. DISCUSSION 
 

The best single parameter in the OSA detection task was 
found to be CBF. With a sensitivity of 81,3%, identical to 
that of EBF it has a better specificity 77.2% than the other 
features and yields on average 79.1% correct classification on 
the tests set. Slightly worse results are obtained from the 
embedding based features. 

The comparatively regular structure of the RR intervals 
during apnea phases [3] is better captured by the NME, EBF 
and CBF features. Especially CBF has the advantage that its 
magnitude is only based on similarity of the RR intervals on a 
short timescale (5 min) and therefore allows for variability of 
the cyclic variation of heart rate pattern even in the same 
patient, largely independent from its amplitude and 
frequency. The same would be expected for NME and EBF, 
however only in the limit of a long data sequence and an 
embedding dimension sufficiently high, which is not given 
here due to the restriction to analysis segments of one minute 
in duration.  

From visual inspection, a detection of the apnea phases 
using SDNN seems feasible within one patient, however the 
high inter-patient variability and the fact that SDNN is 
generally higher in healthy persons does not allow to use a 
fixed threshold. 

The best results in the identification of patients with OSA 
(95% sensitivity, 100% specificity on the training set, up to 
28/30 on the tests set) are also obtained from the features 
CBF, NME and EBF (Table I). Interestingly, these results are 
only achieved when the median minute by minute values are 
considered. Calculation over the whole signal duration 
decreases the performance considerably, because the higher 
regularity of the cyclic variations of heart rate during periods 
of apnea is blurred by other fluctuations. From the established 
HRV measures, pNN50 yields the best results (90% 
sensitivity, 70% specificity). Generally, lower, less complex 
heart rate variability is found in apnea patients.  

The combination of several features allows to improve the 
results (Table III). Using three features – CBF, NME and 
SDNN – an average classification rate of almost 85% was 
achieved on the tests set. 

Generally, the temporal smoothing of the minute by minute 
values and classification results by means of a median filter  

yielded a considerable improvement of the classification 
rates. Best results are achieved using a width between 9 and 
15, indicating that apnea phases often extend over several 
minutes. The filter successfully suppressed spurious short 
term transgressions of the decision threshold. 

Further improvements may be expected from the 
combination of identification and detection i.e. by attempting 
a detection procedure only on subjects which are identified as 
OSA patients. This may lead to an improvement of detection 
sensitivity which is probably too low (< 80 %) for practical 
purposes. 

In summary, our results obtained are very promising and 
indicate, that much – if not all – of the information necessary 
to diagnose sleep apnea is contained in the ECG signal. 

Further investigations will have to be carried out in order 
to confirm the diagnostic performance in presence of other 
diseases. 
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