
Abstract- The structure of myelinated axons is quite similar to
that of a high-loss coaxial cable. An electromagnetic analysis of
TM waves shows that distributed effects cannot be neglected.
The attenuation and phase constants are obtained as a function
of frequency. Predicted finite wave delay in the internodal
segment approaches measurements.
Keywords -  Nerves, models, elctromagnetism, waves, velocity,
delay, attenuation, myelin

I. INTRODUCTION

Electric stimulation of nervous system can restore motor
functions [1]. Electrical properties of nerves are ususally
described by means of a cable model [2], [10]. This model is
frequently simplified, and each internodal segment is
modeled by a lumped impedance. This can be a series resistor
[3]-[7], but sometimes parallel capacitive impedances are
added [27]. A lumped resistor is unable to model a finite
conduction velocity in the internodal segment, whereas the
presence of capacitors modelling the myelin sheath can
explain delays [27]. Despite this fact, resistor models are
more frequently used, and the delay is usually assigned only
to nonlinearities in Ranvier nodes [15].

The existence of travelling waves in internodal segments
could linearly explain, at least partially, the measured
conduction speed [14]. The objective of this paper is to
determine whether under any circumstances a distributed
circuit [28] covering the effects of both the capacitive and
resistive effects would be more suitable than a lumped model.
To answer this question we shall analyze an internodal
segment through which a transverse magnetic (TM) wave is
guided [20], [26]. This approach links with the spatially
distributed description of electric and magnetic fields found
in literature [7], [11]-[13], [18], [19].

From an electromagnetic point of view, lumped element
models are obtained as a quasi-static approximation [20].
Clark et al. [21] calculate the wave number k as

( )k j= +ω µ ε σ ωε0 1 / (1)

For axoplasm at 1kHz with conductivity 5 mhos/m, the
resultant wave number approximates 0.198 rad/m. In 10 cm.,
the phase shift is less than 0.02 radian or 1.46º, so in [21]
conclude the field is quasi-static. This conclussion was later
adopted explicitly [22] or implicitly in lumped element
models [3]-[7], [27]. We shall show that the waves are not
defined by k, but rather by the propagation constant h, and
that quasi-static approximations don’t apply always, specially
for relatively high frequencies.

II. METHODOLOGY

For sake of simplicity, we shall consider an infinitely long
segment, surrounded by an infinite extracellular medium.
Even though the results will not be the same found in
physiological situations, qualitative conclusions might be
useful to gain understanding into nerve conduction. The
structure is quite similar to a high-loss coaxial cable (fig. 1).
Medium 1 is the axoplasm, medium 2 is the myelin sheath,
and medium 3 is the extracellular fluid.

a1

a2

(1)

(2)

(3)

Fig. 1. Myelinated nerve coaxial model.
Axon radium is a1 and fiber radium is a2.

We shall assume isotropic, homogeneous and linear media
[11]-[13],[16]-[18], although the physiologic medium in
which the nerve is embedded is neither isotropic [8]-[9] nor
homogeneous [4]. The myelin sheath is sometimes considered
as a perfect insulator [3], [7], [18]. We don’t assume this
hypothesis [27]. All media will be generic with permitivity εi,
permeability µ0, and conductivity σi, where subscript i refers
to medium 1, 2 or 3. Let the media be charged due to present
ions. When these ions come into the axon at Ranvier nodes,
they diffuse [23], and thus a diffusion current appears.
Therefore, the current density J at any point designed by r in
any media, when an eletric field E dependent on frequency ω
appears can be expressed as [24]:

( ) ( ) ( )J r E r r, , ,ω σ ω ρ ω= − ∇∑ Di i
i

(2)

where the sum extends to all present ions (Na+;K+;Cl -...) [23]
and Di is the diffusion constant of ion i. The ionic diffusion
would exist even if the ions were uncharged particles [24].

The magnetic field intensity H is solenoidal and may,
therefore, be derived from the curl of a suitable Hertzian
vector potential function ΠΠΠΠe [25], [26]:
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H = ∇ ×j eq eωε ΠΠΠΠ (3)

where

ε ε ε
σ
ωeq r j= −0

(4)

Substitution of (3) into Faraday’s law and subsequent
integration leads to

E = + ∇k e
2 ΠΠΠΠ φ (5)

where k was defined in (1) and φ is an arbitrary scalar
potential function. Using (1) in Ampère-Maxwell’s law,

∇ × = − ∇∑H Ej Deq i
i

iωε ρ (6)

Sustituting (3) into (6) we find that

∇ × ∇ × = + ∇ −
∇∑H k

D

je
i i

eqi

2 ΠΠΠΠ φ
ρ

ωε (7)

Since φ is yet an arbitrary function, we propose the
following gauge:

φ
ρ

ωε
= ∇ ⋅ + ∑ΠΠΠΠ e

i i

eqi

D

j (8)

Hence an homogeneous wave equation is obtained for ΠΠΠΠe.
Let’s adopt a cylindrical coordinates system axially centered
in the axon (r,θ,z). The wave equation reduces to

∇ + =2 2 0ΠΠΠΠ ΠΠΠΠe ek (9)

Despite the existence of a difussion current, the election
of the gauge given by (8) makes this equation to be the same
as if the media were uncharged. Transverse magnetic modes
may be derived from ΠΠΠΠ e e= π z , thus assuming ΠΠΠΠe have no
other components but the axial. The solution to wave
equation (9) is [25]:

ΠΠΠΠ e
n

n n
n

a=
=

∞

∑ 1
2

0 λ
ψ z

(10)

where an is an amplitude constant and ψn is a is a space and
frequency dependent function given by

( )ψ λ θ
n n n

jn jh zZ r e e n= − − (11)

in which ( )Z rn nλ is a generic Bessel function of order n. By
definition,

λn nk h= −2 2 (12)

In these equations, h jn n n= −β α  is the propagation
constant, inherently different to k. Phase constant is βn

(rad/m) and αn is the attenuation constant (Np/m).
We shall proof that the thickness of the axon myelin sheath is
much less than the wavelength of physiological signals, so
that the asymmetric modes (dependent on θ, and thus with
n ≠ 0 ) are evanescent [25] and attenuate quickly (βn=0).
Therefore, the main mode has n=0 and the fields will
correspondingly be denoted E0 and H0. The electric field can
be obtained using (8) and (10) in (5):

E
jh

a
r

j
k

D
rr i

i

i
0

0

0
2 0

0
2

1
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∂ (13)
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D
ri

i
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0 2
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θ ωµ
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E a j
k

D
zz i

i

i
0 0 0 2

1
= + ∑ψ ωµ

∂ρ
∂ (15)

The magnetic field is found from (3):

H r0 0= (16)

H
jk

a
r0

2

2 0
0

θ µωλ
∂ψ
∂

= − (17)

H z0 0= (18)

Note the absence of axial component in the magnetic field
in this propagation mode, despite the diffusion current. This
is therefore a TM mode [26]. At r=0 the field must be finite
so Z J0

1
0

( ) = , with J0 the Bessel function of the first kind and
order 0. In the external fluid, the field can not increase with
distance and should behave like a travelling wave;
therefore Z H0

3
0

1( ) ( )= , where H0 is the Hankel function. In the
myelin sheath, Z J c N0

2
0 0 0

( ) = + , with N0 the Bessel function
of the second kind and order 0, and c0 a constant to be
determined.

Boundary conditions for the continuity of Ez and Hθ at
r=a1 y r=a2 lead to an inhomogeneous equations set for a0

1( ) ,

a0
2( ) , c a0 0

2( )  and a0
3( ) . For the system to have more than a

single solution, and allow waveguiding happen independently
of charge gradient, the determinant of this set of equations
must vanish. The determinantal equation is the same that can
be found for uncharged media [25]:
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The roots of equation (9) together with (12) are the
propagation constants h0m, with m=1,2,3....

III. RESULTS

 The electrical properties of media shown in Fig. 1 can be
found in Table I. We are interested only in h01, since higher
modes present stronger attenuation. Figs. 2 and 3 show the
the phase constant β  and the attenuation constant α  as a
function of frequency. Frequency values have been chosen so
as to cover the whole spectrum of physiological signals.

Signal velocity can be calculated as ω β  (fig. 4).
Wavelenghts are determined as 2π β  (see Table II).

TABLE I
ELECTRICAL PROPERTIES OF MYELINATED NERVE MEDIA

Parameter Symbol Value Unit Reference

Axoplasm Conductivity σ1 0.909 S/m [29]

Myelin Conductivity σ2 3.45e-6 S/m [30]

External Conductivity σ3 0.333 S/m [31]

Axoplasm Permitivity ε1 ε0 F/m

Myelin Permitivitya ε2 25’5ε0 F/m

External Permitivity ε3 ε0 F/m

Axon Radiumaa a1 6.2 µm

Fiber Radium a2 10 µm [23]

aDerived from coaxial capacity 5e-3 µF/cm2 [10], [24]
aaUsing 2 0 8 2 1 81 2a a= × −. .  [32]

Fig. 2. Phase constant as a function of frequency

Fig. 3. Attenuation constant as a function of frequency.

Fig. 4. Wave velocity as a function of frequency.

IV. DISCUSSION

Phase constant is, at 1kHz, higher than 200rad/m (125.6º
in 10cm). This value is far away from 0.198 rad/m pointed
out by Clark et al. [21], [22] and shows the need for a
distributed parameter model. Note that, as one could expect,
this is more true as frequency increases. Therefore, the nerve
behaviour is not always quasi-static. Wavenumber and
propagation constant are the same when the wave is TEM
[26], but we are dealing with TM modes. Attenuation
constant is more or less constant at frequencies below 250
Hz, and then increases linearly. For a typical internodal
distance of 1 mm [23], low frequency signals attenuate up to
0.28 times their value, despite their frequency. At higher
frequencies, attenuation grows approximately at a 3
dB/decade rate.

The order of magnitude of concerning wavelengths are a
thousand times greater than the thickness of the myelin
sheath, validating a previous assumption.
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Signal velocity is independent of frequency up to 500 Hz.
Values are similar to those measured in [33] (25-41 m/s),
[14]. Therefore delay is not only due to Ranvier nodes, but
also to internodal segments. This result is in agreement with
[27], but no we have used no lumped element.

Equation (2) is an extension of Ohm’s law. Lumped
element circuits neglect the diffusion current, taking into
account only the drift current due to the electric field. But
ionic diffusion would be present even in absence of axial
electric field.

TABLE II
WAVELENGTHS IN MYELINATED NERVES

Frequency (Hz) Wavelength (mm)

50 396

100 216

500 46

1000 24

2500 10

5000 6

V. CONCLUSION

Whereas lumped circuit models are much easier to deal
with, the quasi-static hypothesis doesn’t hold for relatively
high frequencies and a distributed model might be more
adequate. TM waves linearly model attenuation and non-zero
delay in the internodal segment, and could help to gain more
insight into neural artificial stimulation problems. Further
research is required to analyze other propagation modes.
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