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Abstract—This paper presents a prediction error variance
reduction procedure based on fractional digital differentiation
with negative order. This reduction is achieved by increasing
correlation in the signals. Applications to ECG signals show that
savings of more than one bit per residual signal sample can be
attained.
Keywords—Linear prediction, fractional differentiation, ECG
signal.

I. INTRODUCTION

     The fractional derivative generalizes the familiar derivative
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=  of a function x(t) with respect  to the

variable t, to noninteger values of n. Fractional differentiation
is of use in Mathematics [1] as well as in  Engineering [2]-
[4].The formula used  in this paper to compute  the fractional
digital derivative is, with the sampling period omitted, the
same as the fractional differencing introduced by Hosking [5],
and Granger and Joyeux [6] to difference time series to
noninteger order.  The fractional differencing (or fractional
digital derivative with n < 0) of a zero-mean white noise gives
a signal whose power spectral density is 1/f at low frequencies
and an normalized autocorrelation function  decaying
hyperbolically  with the lag instead of an exponential decaying
as is the case of ARMA models. These features indicates a
significant statistical dependence between distant signal
samples. On the other hand, the original signal can be
reconstructed from its derivative by the same algorithm with
simple inversion of sign of the differentiation order. In this
paper, fractional digital differentiation with negative order is
used to increase the correlation in signals in order to reduce
the error prediction variance. The paper is organized as
follows. In Section II, fractional digital differentiation is
presented. In Section III, linear prediction is reviewed. In
Section IV, the discrete-time system realizing further variance
reduction by fractional differentiation is described. In Section
V, applications to ECG signal are intended to be illustrative.
Finally, concluding remarks are presented in Section VI.

II. FRACTIONAL DIGITAL DIFFERENTIATION

    There are several approaches to define the fractional
derivative. We utilize the definition used by Oustaloup [2].
This definition  is based on the generalization of the derivative
of order n
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to noninteger values of n.  Ts is the sampling  period (t = kTs)

and q−1
 is the  backward shift operator (q-1x(kTs) = x((k-

1)Ts))). Using the series expansion of( )1 1− −q n  we get the

following expression for D x tn ( )
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where the coefficients ai are given by the following  recurrent
relation
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We note in the formula (2) the presence of all past signal
samples. For a causal signal, i.e. x(k) = 0 for k < 0, and fixed
Ts, the relation (2) gives a sampled signal
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(the constant Ts is omitted) approximating the derivative of
noninteger n. The smaller the sampling period Ts is, the better
the  approximation is. The relation (4) may be implemented
taking advantage of recurrent property (3) which avoids
explicit computation of coefficients ai and their storage in
memory.
In the relation (4), signal y(k) can be considered as the output
of the fractional digital filter whose transfer function is
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III.  VARIANCE REDUCTION OBTAINED BY LINEAR
PREDICTION

The linear prediction of  order P uses the relation

                �( ) ( )x k c x k ii
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                                   (6)

for predicting the  sample x(k) by a linear combination of the
P previous samples. The constants ci, 1≤ i ≤ P, are the
coefficients of prediction. The difference 
                      e k x k x k( ) ( ) �( )= −                           (7)

called prediction error or residual signal, is the signal to be
quantized for the purpose of signal compression. If the
original signal x(k) is correlated enough and the coefficients ci

are correctly chosen, the variance of error e(k) is smaller than
that of the original signal. The coefficients ci are chosen such

that the mean squared error { }σe E x x2 2= −( �) is minimum.

The minimal value of the variance residual signal σe
2 is given

by the following relation [7]
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where σ x
2  is the variance of the signal x(k) and ρx i( )  its

autocorrelation coefficients. The ratio of the variances

             

G

c i

P
x

e

i x
i

P

=

= −










=

−

∑

σ
σ

ρ

2

2

1

1

1

,min

( )     

                                 (9)

or  the prediction gain, expresses the achieved variance
reduction by linear prediction of order P. By choosing the
amplitude range of the quantizer some multiple factor of the
standard deviation of the residual signal, the number of

quantized levels is divided byGP if the quantization step is

maintained constant. This results in reduction of the number of
bits per sample ( 1 bit reduction per 6 dB variance reduction).
Linear prediction has been used by Ruttimann and Pipberger
[8] for ECG compression. They showed that the variance
reduction could not be substantially improved using P > 2
since the correlation between adjacent samples of the ECG
signal is low.

IV.  FURTHER VARIANCE REDUCTION BY
FRACTIONAL DIGITAL DIFFERENTIATION

         We used fractional digital differentiation with negative
order which increases correlation in the signal to reduce the
variance residual signal obtained by linear prediction. Fig.1
shows block diagram of the system used to enhance variance
reduction. The output signal  y(k) is divided by its standard

deviation σ y and then multiplied by the standard deviation

σ x of the input signal  x(k) in order to have the same variance

σ x
2  for both signals u k( ) and x(k). In this case, the ratio of

minimum values of the residual signals variances is given by
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Autocorrelation coefficients ρx i( ) andρu i( )  of x(k) and u(k)

verify the inequality   ρ ρx ui i( ) ( )<  for 1≤ i ≤ P.

V. ILLUSTRATIVE APPLICATIONS

Fig. 2 shows an ECG segment of 10 s duration taken from
MIT/BIH arrhythmia database and the results obtained using a
fractional digital differentiator with order n = -0.1, -0.3 and -
0.45. Prediction order P = 2 and sampling frequency is 360
Hz. It can be seen the lower the order n is, the higher the
dynamic range of residual signals decreases. In all cases, the
error is more important at QRS complexes because of their
rapid variations. The estimated prediction  gain (9) is 17.41,
18.57, 21.40, et 24.45 dB respectively for n  = 0, -0.1, -0.3 et -
0.45. With n = -0.45, the savings in bits per sample is greater
than one. Using the same ECG with sampling frequency of
500 Hz, derived by  par interpolation and decimation of the
original signal [9], the prediction gain estimated is 22.20,
23.53, 26.62, and 29.81 dB. The prediction gain estimated
increases but the savings in bits per sample do not. Other
experiments on ECG with various morphologies enable saving
up to two bits. Although higher values of P can be considered
since the signal correlation is increased, we have only used P
= 2 ; the selection of this value being based on the pioneer
work [8].

VI.  DISCUSSION

In this paper we proposed a procedure based on  fractional
digital differentiation with negative order for the reduction of
prediction error variance. After mean removal, the signal is
applied to the input of a fractional digital differentiation in
order to increase the correlation in the signal. The
differentiated signal is reduced to the same variance as that of
the original signal. From applications to ECG signals it is
shown that savings of more than one bit per residual signal
sample can obtained. Works presently in course aim to use this
procedure for  ECG compression by exploiting properties of
strong correlation in fractionally differentiated signals to
reduce the residual signal variance and invertibility of the
fractional differentiation to reconstruct the original signal.
Besides, this system only includes one parameter, the order of
differentiation. And this is a solid argument in favor of the
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                                             Fig. 1. Block diagram of the system used to reduce the variance of prediction error
                                                                           using fractional digital differentiation.
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                            Fig. 2. a) original ECG and b) corresponding residual signal. c),e) and g) differentiated signals
                                                  with n = -0.1,  -0.3 and -0.45, d),f),h) corresponding residual signals.
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use of this discrete-time system for data compression.
Although values of n close to -0.5 assure a better reduction of
the residual signal variance, they introduce, however, more
distortions in the reconstructed signal that its values near zero
since the amplification of the quantization noise by the
noninteger derivative with a positive order is much more
important when the order of differentiation is high. An
important part of the amplified quantization noise may be
reduced by a low pass filtering. Assimilating the output signal
of fractional differentiator with positive order to a white
noise, an ideal low pass filter of cut off frequency fc permits
to divide its variance by Fs/2fc where Fs is the sampling
frequency. The hypothesis of whiteness of the amplified
quantization noise is better verified for lower values of n.
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