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Abstract: This article proposes a new segmentation scheme to 
detect cerebral structures in MRI acquisitions using numerical 
information contained in the image and expert knowledge 
brought by a specialist. This process is divided in three steps: 
first, information contained in the MR image is extracted using a 
fuzzy clustering algorithm, and theoretical information 
concerning the structure to segment is modeled using possibility 
theory. Information fusion is then processed, followed by a 
decision step ending the structure segmentation. Heads of 
caudate nuclei and putamens are segmented using this method. 
Results are promising and validation is performed using both 
numerical indexes and assessment by an expert. This method 
can be applied to any cerebral structure in an MR image, 
provided that it can be described in terms of shape, direction 
and distance by an expert and that the contrast and resolution of 
the MRI are sufficient. 
Keywords: Striatum segmentation, MRI, data fusion. 
 

INTRODUCTION 
Cerebral structures segmentation in medical imaging has 
numerous clinical applications. It can provide assistance tools 
for pathologies forecast [1] and follow up [2]. It can also be 
used as an help to surgery and radiotherapy [3] or to obtain an 
anatomical reference for functional studies [4]. 
Various segmentation methods are inventoried in literature, 
many of them requiring an operator intervention. For 
example, region growing [5] for tumors detection or 
deformable contours [6,7] for hippocampus segmentation 
need to be initialized. In [8,9] interactive methods using 
mathematical morphology are proposed; other methods (e.g. 
neural networks [10] or a modified k-nearest neighbors rule 
[11]) require a learning step. Finally, some segmentation 
methods are fully automatic. For example those using data 
fusion to aggregate information stemming from images 
(numerical data) [12], or theoretical knowledge and numerical 
data [3,13]. Géraud [14], in particular, proposes a 
segmentation method using anatomical knowledge and 
information extracted from an atlas. 
In this article, we propose to mimic the way the clinician 
looks for a cerebral structure in an MRI using an automatic 
segmentation method. He synthesizes the information brought 
by the image and his own knowledge (shape, matter, distance, 
direction) to locate the structure. The segmentation scheme is 
divided in three steps: first the representation of numerical 
(image) and contextual (expert) information in the same 
theoretical frame, then its fusion and last the decision step. 
 

MATERIAL AND METHODS 
1- MR Images 
Fifteen MR images (3D SPGR T1-weighted images, using a 
GE 1.5 Tesla with a head coil, La Pitié Salpêtrière, Paris) 
have been acquired, coded using a 256×256 matrix 
(0.85×0.85×1.5 mm3 voxels) and saved in 128×128 format 
(2×2×2 mm3 voxels). The studied subjects were 48.9 ± 8.2. 

2- Cerebral structures of interest 
The method is illustrated with the segmentation of putamens 
(P) and heads of caudate nuclei (HCN). These structures are 
affected by numerous diseases such like Parkinson’s disease 
or schizophrenia. 
Caudate nuclei (CN) are gray matter coma-shaped structures 
coiling up the thalami and going down behind them. The 
HCN is ovoid, rather bulky and bulges into the lateral wall of 
the lateral ventricles (LV) frontal horn. P are pyramidal-
shaped gray matter structures and constitute the side part of 
the lenticular nuclei. P and CN carry out, among others, 
motor functions. Fig. 1 shows these structures of interest. 
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Fig. 1  View of the structures of interest on a T1-weighted MRI 

Theoretical knowledge concerning these structures has been 
collected from an expert and represented within the same 
theoretical framework. It has then been fused in order to 
segment P and HCN in MR images. 
 
3- Possibility theory and data fusion 

Data fusion in medical imaging 
Data fusion is defined here as an aggregation of conflicting, 
ambiguous, supplementary and/or redundant information, 
allowing more accurate or less uncertain data interpretation. 
Fusion has to manage uncertainties and inaccuracies, like a 
specialist does while observing several medical images, to 
avoid inconsistencies. 
 

Possibility theory 
Information treated in medical imaging is often inaccurate 
(“HCN is close to LV frontal horn”) and uncertain (e.g. noise 
in MR acquisitions). Possibility theory has been introduced 
by Zadeh in 1978 [15] and developed by Dubois and Prade 
[16] to allow inaccuracy and uncertainty treatment in a non-
probabilistic way. This is why possibility theory seems us to 
be well adapted to medical data representation. 
 
4- Modeling and fusion of information 
While modeling information, possibility theory allows taking 
into account the fact that shape and volume of the structures 
vary from one subject to another according to his age, sex and 
pathologies. It is possible to segment structures of interest 
using reference structures which can easily be spotted (called 
landmarks). Information was provided by an expert (Dr 
Marie-Odile Habert, La Pitié Salpêtrière, Paris, France) in 
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addition to data extracted from the MRI. Each piece of 
information has been modeled as a fuzzy map to be fused. 
 

Numerical information extracted from MRI 
Five tissue classes (background, cerebrospinal fluid (CSF), 
white matter, gray matter and subcutaneous fat) were 
extracted from the MR image using a possibilistic clustering 
algorithm on voxels wavelet coefficients [18]. This algorithm 
created five fuzzy “matter maps” in which one voxel gray 
level represented its membership to the considered tissue. 
 

Segmentation of the landmarks 
Fuzzy maps were then used to segment the anatomical 
landmarks. The frontal horn of LV and the inter-hemispheric 
plane (Fig. 2) are the landmarks used to model contextual 
information. LV were extracted from a binary CSF map 
(obtained by thresholding the fuzzy CSF map) using 
mathematical morphology operations. The rough location of 
the inter-hemispheric plane was then calculated by 
maximizing Pearson’s correlation coefficient between the two 
halves of the image. The patients were supposed to be always 
placed in the MR scan so that the inter-hemispheric plane 
roughly corresponded to the vertical plane in the axial slices. 

   
MRI LV Inter-hemispheric plane 

Fig. 2  Results of landmarks segmentation on an axial slice 
 

Information concerning directions 
We had to model by a fuzzy set a vague sentence like “the 
structure S1 is in the direction D with respect to S2” where S2 
was an already segmented structure. D was represented in 
spherical coordinates and we used fuzzy mathematical 
morphology [19] to obtain a fuzzy map in which one voxel 
gray level represented its membership to the domain “in 
direction D with respect to S2” [14] (Fig. 3). 
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“Rather on the left of the 

frontal horn of the left LV” 
Fig. 3  Example of fuzzy direction map 

 
Information concerning distances 

The piece of information to be modeled here was a vague 
sentence like “the structure S1 is at distance F(d) from S2” 
where F(d) was a linguistic modifier (“almost”, “inferior to”, 
“superior to”) applied to distance d. We used the method 
described in [3] to create the fuzzy distance map with respect 
to S2 (see Fig. 4). 
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Fig. 4  Example for distance  modeling 

 

Representation of shape information 
To create a fuzzy model of structure shapes, we used a binary 
segmentation of P and HCN on 14 co-registered MR images. 
In this model (Fig. 5), one voxel gray level represented its 
frequency of appearance in the considered structure. During 
the segmentation process, this map was roughly registered on 
the MRI and fused with the other fuzzy maps. 

 
Fig. 5  Example of fuzzy shape map 

 
Data fusion and decision step 

Fusion allows extracting redundancies, complementarities and 
ambiguities from data. Here, we illustrate data fusion by the 
aggregation of information resulting of two sources (it can be 
applied with n sources [16,17]). This information is 
represented by memberships concerning events on a given 
voxel. Data aggregation is performed with a binary operator 
managing conflicts and redundancies. In [17], a review and 
classification of fusion operators is proposed. 
For the fusion step, we used two operators which can easily 
be extended to the n sources case: max (complementary 
information) and min (redundant information) operators. The 
fusion step resulted in a fuzzy map in which gray levels were 
the memberships to the required structure with respect to the 
whole set of numerical and contextual data. The last step was 
the decision step. Only surest voxels were conserved: we used 
an α-cut to eliminate voxels having a membership inferior to 
0.8 (empirically determined threshold). 
The whole fusion process is summarized in Fig. 6. 
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Fig. 6  Data fusion process for putamens segmentation 
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Quantitative indexes for the validation of the method  
P and HCN have been manually segmented on each image we 
had automatically processed. The efficiency of the method 
was evaluated by comparison with manual segmentation, 
using three numerical indexes [22]. 
The first one is a similarity index computed from the relative 
error in volume estimation (the reference volume was the 
expert’s one): 
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where VT (resp. VC) is the expert-segmented (resp. 
automatically-segmented) volume. 
The second index is a spatial accuracy term, assessing the 
relative overlapping of the computed structure SC with respect 
to the reference one ST: 
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The last index is a mean distance (in millimeters) from the 
segmented structure to the manually expert one: 
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Where ||.|| denotes the Euclidean norm and PC (resp. PT) is a 
generic point of SC (resp. ST). 
 

RESULTS 
The fusion process was implemented on a compatible PC 
(AMD K7 700 MHz) using C language and an image 
processing library developed in our laboratory [20]. HCN 
were segmented in about 45 seconds and P in approximately 
55 seconds. This program is now being transferred on clinical 
image processing consoles using the MIRAGE system 
(SEGAMI Corporation) 
 
1- Segmentation of the putamens 
According to our expert P are “two gray matter pyramidal 
structures, at approximately 28 mm of the LV, 72mm of the 
inter-hemispheric plane and in slightly posterior direction 
(left and right) with regard to the frontal horn of LV”. Fig. 7 
shows the P segmented on the slices of interest and 
superimposed in the MRI. 
 

Fig. 7  Results obtained for putamens segmentation 

2- Segmentation of the heads of caudate nuclei 
HCN are described as “Two gray matter egg-shaped 
structures, stuck on the frontal horn of the LV, and partially 
forming their outer limit” (see segmentation results on Fig. 8) 
 

Fig. 8  Results obtained for heads of caudate nuclei segmentation 

 
The quantitative evaluation of the method is presented with 
averaged indexes. The mean similarity index 1I  for the left P 
(resp. right) was 0.94±0.03 (resp. 0.93±0.03) and 0.92±0.02 
(resp. 0.90±0.04) for the left (resp. right) HCN. The mean 
spatial accuracy index, 2I , was 0.88±0.03 (resp. 0.88±0.04) 
for the left (resp. right) P and 0.85±0.06 (resp. 0.84±0.05) for 
the left (resp. right) HNC. Finally, the distance between 
manual and automatic outlines did not overtake 2mm for 90% 
of the considered structures, the worst result observed giving 
a 3mm distance. 
 
3- Volumes of the structures of interest 
Table 1 presents the mean volumes obtained for the 
automatically segmented structures. 
 

TABLE 1  
MEAN VOLUME AND STANDARD DEVIATION FOR THE 

SEGMENTED STRUCTURES 
 Mean volume (mm3) Standard deviation 
Left (resp. right) P 3837,71 (4138,29) 10,9% (8,5%) 
Left (resp. right) HCN 1992,57 (1995,43) 14,4% (12,5%) 

 
DISCUSSION 

The fusion process proposed here successfully segmented the 
P and HCN in 14 out of 15 MR images. The last image could 
not be automatically treated due to problems for the creation 
of tissue maps. For the 14 segmented images, contours were 
visually assessed by an expert. The mean similarity index 
indicates that the volume estimation agrees with that of the 
expert. The large value of the mean spatial accuracy index 
moreover confirms a good overlap between the structures. 
Finally, low distance indexes suggest that the shapes of the 
segmented structures are quite close to the ones delineated by 
the expert. The results are good enough to confirm the 
similarity between the reference and the segmented structures. 
We now intend to compute these indexes with regard to other 
experts (management of inter-operator variability). 
Cerebral structures volumes depend on many parameters: 
acquisition protocol, segmentation method, age and sex of the 
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subject. Consequently, there is no absolute reference for 
comparisons. However, volume estimations are consistent 
with the ones published by Schultz et al [2] (total volume: 
7720mm3±5.6% for P and 5940mm3±5.4% for CN on healthy 
subjects) and Harris et al (total volume: 7670mm3±12% for P 
and 4010mm3±12.7% for HCN on young patients suffering 
from Huntington disease). Gunning-Dixon et al [23] propose 
a study of striatum volume according to healthy subjects age, 
and sex. Mean volumes obtained are 4360mm3±14% (resp. 
4020mm3±14.9%) for the right (resp. left) P and 
3340mm3±15.6% (resp. 3430mm3±15.7%) for the right (resp. 
left) HCN. The authors also detect a right asymmetry of 8.2% 
between the P which is observed here too (7.5%). 
The segmentation method described here automatically 
reproduces the way a clinician proceeds to identify a cerebral 
structure. The use of fuzzy maps allows the management of 
possible inaccuracies in the representation of some 
knowledge, the collection of different pieces of information 
correcting these inaccuracies. It also allows the management 
of uncertainty and redundancy. Finally, it is easy to add new 
knowledge, e.g. information stemming from other image 
acquisitions, in the fusion process. 
Our process relies on the idea to establish anatomical 
references for quantitative studies concerning pathologies like 
Parkinson’s disease. Indeed, MR acquisitions are used for 
such studies to locate regions of interest in SPECT images. 
The segmentation process we propose here is much faster 
than manual segmentation and allows using the patient 
himself as anatomical reference. The use of a standard shape 
as anatomical reference for a pathological case supposes that 
the pathology doesn’t affect the shape and volume of the 
considered cerebral structure, which is not always true. 
 

CONCLUSION 
A new automatic method using data fusion for cerebral 
structures segmentation has been proposed. This method 
successfully segmented the heads of caudate nuclei and the 
putamens on 14 clinical MR acquisitions. Quantitative 
indexes used to evaluate the method indicate a low error rate 
both for spatial location and volume evaluation. This method 
can be extended to any structure segmentation provided that it 
can be described by spatial, shape and matter information and 
that contrast and resolution of the MRI are sufficient. 
Automatic cerebral structures segmentation opens wide 
perspectives both for an help to diagnosis and for assistance 
to surgery. 
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