Proceedings — 23rd Annual Conference— IEEE/EMBS Oct.25-28, 2001, Istanbul, TURKEY

A MODIFIED CABLE FUNCTION FOR REPRESENT THE EXCITATION OF
PERIPHERAL NERVES BY TRANSVERSE FIELD INDUCED BY PULSED

MAGNETIC FIELD
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Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Abstract-The classical cable equation has been used to
represent the excitation of peripheral nerves by longitudinal
field. But it can not predict the excitation of peripheral nerves
by transverse field. A modified cable equation is presented to
represent the excitation of peripheral nerves in transverse field.
It is in close agreement with Struijk's empirical data of the
magnetic stimulation myelinated nerve in vitro. The modified
cable equation can be used to represent the response of
peripheral nerves in arbitrary electric field.
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I. INTRODUCTION

The classic cable equation has been used to represent the
excitation of long and straight peripheral nerves in electric
field. It predicates that excitation occurs near the maximum
of the negative first spatial gradient E =— E / x in the

direction of a x-axial fiber. Here, the electric field parallel to
fiber is referred as longitudinal field £, and the electric field

perpendicular to fiber as transverse field E, . The excitation

of peripheral nerves by transverse fields has been found for a
long time, but it has been attributed to tissue unhomogeneities
or bends in the nerve. In 1999, Struijk found that the
myelinated nerve could be excited by transverse field induced
by pulsed magnetic stimulation without the affect of tissue
unhomogeneities and bends in the nerve [1]. It sufficiently
proves that the classical cable function does not completely
explain the excitation of peripheral nerves and additional
mechanisms must be involved. In the paper, a modified cable
equation for mammalian myelinated fibers is presented,
which contains both the effect of longitudinal field and the
effect of transverse field.

II. MODELS

The research on the response of cell to external field
demonstrates that the response is a two-stage process, which
consists of the initial polarization (first stage) and the actual
change of physiology state (second stage) [2]. Here, the
response of peripheral nerves to transverse electric field is
also considered as two-stage process so as to establish the
model. The steady-state solution of initial polarization serves
as the initial condition of the second stage that governs the
subsequent evolution of membrane potential.

A. Initial polarization:

In the McNeal model [3], a myelinated axon is segmented
into cylinders. Since the myelin is assumed to be a perfect
insulator, axons have active membrane parts only at the nodes
of Ranvier (NR). Therefore, the ionic currents enter into the
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Fig.1 Idealized representation of a NR with radius
R in a transverse steady uniform electric field.

»

axon just at NR and only the NR should be taken into account
during initial polarization.

Consider an idealized cylinder model of NR with radius R
in a transverse steady uniform electric field shown in Fig.1.
The field E is parallel to x-axis, the o represents the polar
angle, and the axis of the NR is along z-axis. The x-axis and
y-axis are in the radial direction of the NR. Intra- and extra-
cellular regions are assumed purely resistive, with
conductivities 8, and J,. Hence, intra- and extra-cellular
potentials satisfy Laplace's equations.

0%,=0  r<R (1)
0%,=0  r>R )
at =R the normal current is continuous, therefore
av R N
c —2 4] =pe=0.0V;=nq-0.0%
" Lion { e } '{ i I}x 3)
r=R

where i is the ionic current density determined by a

complex dynamics of the excitable membrane, n is the unit
normal outward from the NR, ¢, is the membrane
capacitance per area, ¥, is the transmembrane potential.
V,=V,-V.-V, r=R 4
where V. is the resting potential. It is assumed that the

m

membrane is polarized uniformly along z-axis. Then the
solutions of (1) and (2) are independent of z-axis, and in
cylindrical coordinate they are as the following:

r>R %)

V. = Arcosa r<R (6)

where 4 and B are the coefficient determined by (3) and (4).
In the CRRSS model [6] (active model), the ionic current i,

is determined by (7)—(9):

B
V,=-Ercosa +—cosa

Liw = gNamzh(Vm _VNa) +g1(Vm _VI) (7)
cz—r:l:am(l—m)—ﬁmm )
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D =, (1= By
where all the parameters can be found in [4].
The initial polarization is governed by (1)—(9). Since the
analytic solution is not available, a numerical solution is

given. The steady value of ¥, is shown in Fig. 2. Since the

)

V as a function

polarization is symmetrical to the x-axis, the 7,
of a are shown with a varying from 0 to 7. The "o" and

"+" represent the ¥, with the field intensity E equaling
500¥/m and 200V /m , respectively. Fig.2 demonstrates that

the transmembrane potential ¥  varies from positive

m

(depolarization) at the end facing the cathode to negative
(hyperpolarization) at the end facing the anode, V', is zero

where a equaling /2 .

B. Modified cable function

In fact, the whole membrane of NR is divided into several
membrane patches in the initial polarization stage, i.e. the
above equations just represent the polarization of membrane
patches to external field, simultaneously the current entering
the NR drove by the external field is ignored. Based on (3),
there is normal current through the membrane while the
external field is turn on. The current density is,

i=-0,0V, (10)
where the positive direction of current is referred to be
outward from the NR. In the second stage, the net current
entering the NR drove by the external field must not be
ignored. There is outward current at the depolarized area
while inward current at the hyperpolarized area. The net
inward current flowing through the membrane is computed
by integrating over the surface of the membrane.

l

1
= [o.00.ds (11)

where S is the surface area of NR. As to the numerical
solution of active model, (16) is modified as the following:

) 12 "
=— 12
Loet n Z L ( )

where i* is the current density with a equaling 27/n . If

net

the n =64, it will take quite a few minutes to work out the i ,

+ :E=200V/m
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Fig.2 Transmembrane potential ¥, of steady state

during initial polarization as a function of o

Table 1 Fitting coefficients
Coefficient Value
11.0712
-6.9939

0.3783
3.4018E-3
1.7612E-5
-5.4459E-8
9.9395E-11
-9.8828E-14
4.1292E-17

o -

w

- o o
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using a computer. So a fitting expression is applied here with
the standard deviation of 15.84ud/cm® .

i,=A+BE+B,E*+BE’+B,E*
+B,E°+B,E°+B,E” +B,E®
where 4 and B, —B, are the fitting coefficients shown in

table 1.
Now, the modified cable function is obtained by adding the
net inward current into the classical cable function,

(13)

e Pelt)s i (05 G o -10)- 20, )+ 1) (1)
5+ G 10)- 20,0 o 10)

net

where i

net

(n) is the net inward current density at the » th node,
G, is the inter-nodal conductance, S is the area of the
surface of NR, S =2mRl, I is the length of NR, R is the axon
radius. The term of i, (n,t) represents the effect of transverse
field component and the term of
g [V.(n-10)-2V.(n,6)+V.(n+1,¢)] represents the effect of

longitudinal field component. Equation (14) suggests that the
sufficient condition to excite the axon is an enough spatial
gradient or an enough transverse field or an enough sum of
both.

III.VERIFYING FOR THE MODEL

Krassowska [2] has obtained
transmembrane potential AV,

m

the change of the
=2E_Rcosa of cylinder cell by

transverse field during initial polarization, without taking
account of the ionic current. Here, R 1is the radius of the
cylinder cell. And based on Krassowska's results, Ruohonen
[5][6] has introduced an additional term AV, =2E_ Rcosa to

the classical cable equation to represent the response of
peripheral nerves to transverse field.

v v oE
Az_azzm _Vm:Ta—t"”fZR(’]a—ZH—ED) (15)

where, —2E_R is the transmembrane potential where o
equaling 7. In (15), Ruohonen assumed that the polarization
result of the whole membrane is -2E_R. The simulation
result of CRRSS active model in Fig.2 demonstrates that the
transmembrane  potential in  hyperpolarization area
(3/2m=a=m/2) does not equal 2E Rcosa. In Fig.2, the
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position 1
X
nerve
7

position 2

Fig 3 The top view of the position of coils and nerve.

transmembrane potential (7, =2RE_ cosa ) as a function of o
is shown as the line-1 with E, equaling 5007 /m and line-2
with E_ equaling 200V /m, respectively. It demonstrates that

the depolarization results of both models are in close
agreement, but the hyperpolarization results have great
difference. So it is not appropriate to ignore the ionic current
to compute the initial polarization of NR in transverse field.
In 1999, Struijk found that the myelinated nerve could be
excited in transverse field induced by pulsed magnetic field
[4]. The top view of the positions of the coil and the nerve are
shown in Fig 3. The nerve is excited by longitudinal nerve
when the coil at the position 1 while the nerve is excited by
transverse field when the coil at the position 2. The excitation
thresholds were measured at the different stretch of the nerve.
Here, the Ruohonen’ cable function and the new cable
function presented above will be verified by the Struijk's
empirical data. Equation (14) shows that i (z)S should

equals G,[V,(n=1,6)-2V.(n,c)+V,(n +1,¢)] if the nerves generate

the same response by the two kinds of stimulation at the same
stretch of the nerve, as well as, in the (15) ndE,/dz should

equal E,. The above four terms referred to
as: E = Ga [Ve (}’l _l’t)_ZVe (}’l,t)+ Vt(n +1’t)] ’ FZ = inm (}’I)S 4
F,=noE,/dz ,F, =E,, respectively. The unbound model

are

based on reciprocity theory is used to calculate the
distribution of the induced field at the nerve [6]. The results
are shown in table 2, it demonstrate that the new cable
function is in agreement with the empirical data with the
relative error 9.9% while 53% of Ruohonen's cable function.

IV. DISCUSSION
The effect of transverse to the excitation of peripheral

nerve has been ignored because the classical cable equation
can represent the excitation of peripheral nerve and the

transverse component is weaker than the longitudinal
component in electric stimulation. More attention has been
paid to the effect with the development of magnetic nerve
stimulation. Ruohonen has used the modified continuous
cable function to represent the effect of transverse field in the
experiment of magnetic stimulation median nerve [5][6]. The
above discussion shows that the Ruohonen's model is
imperfect for myelinated nerve. Firstly, the Ruohonen's
model is a continuous cable function but the myelinated
nerve should be represented with a discrete cable function.
Secondly, he ignored the ionic current when computing the
polarization of NR. The modified cable function of mine is a
discrete cable function and is obtained using the active
CRRSS model. Above all things, the function is in close
agreement with the empirical results in vitro.
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Table 2 The comparison of the results of the two models

New cable function

Ruohonen's cable function

Stretch

0 F F relative error F F relative
) l : (%) ’ ! error(%)
(pd) (pd) (V/m) (V/m)

0 1.21E-3 1.06E-3 12.4 1.4725E2 2.23E2 514

1.46E-3 1.36E-3 6.8 1.78E2 2.74E2 539
15 1.39E-3 1.47E-3 5.7 1.6875E2 2.95E2 74.8
20 1.87E-3 1.57E-3 16 2.275E2 3.12E2 37.1
25 1.91E-3 1.75E-3 8.4 2.325E2 3.43E2 47.5
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