
Abstract-This paper introduces a novel spike detection algorithm 
based on the use of Walsh Transforms. The algorithm focuses on 
the assessment of characteristics in the Electroencephalogram 
(EEG) signal that  reveal the presence of a spike feature. The 
mathematical formulation of the algorithm is introduced and 
results obtained from the analysis of data from 7 epileptic 
patients are presented. 
Keywords - EEG analysis, interictal spike detection, Walsh 
transform  

 
I. INTRODUCTION1 

 
Electroencephalogram (EEG) recordings provide dynamic 
evidence of ongoing electrical activity in the brain. EEG is 
particularly useful in determining the presence, extent and 
origins of neurological disorders, such as epilepsy. The 
abnormal brain activity in between epileptic seizures, 
captured by the EEG as interictal spikes is frequently used as 
a valuable source of information towards the characterization 
of the patient’s illness and possible courses of action. It is in 
this context that automated methods for the identification of 
these interictal spikes are of great help to the clinicians, as a 
helpful pre-screening tool to reduce the large volume of 
patient EEG data obtained from long-term monitoring, and as 
an objective, unbiased evaluation of the signals from the 
patient. This paper describes the definition of a new spike 
detection algorithm that uses the Walsh Transformation to 
assess some of the characteristics of the EEG signals and 
looks for a match with those characteristics that are 
commonly associated with interictal spike activity. 
 

II. METHODOLOGY 
 
Traditionally, the two characteristics that are considered as 
most reliable in the detection of spikes and sharp transients 
are the fast rise and decay of the spike, and the sharpness of 
its peak, which may be measured by the first and second 
derivatives of the signal, respectively [3, 4]. The spatio-
temporal context of the EEG is also taken into account in 
several of the pattern recognition or rule-based systems used 
for spike detection [5, 8, 9]. 
 
The algorithm introduced here attempts to decorrelate the 
input EEG signals into orthogonal bases with different orders 
(degrees of sharpness) and different dimensions (degrees of 
fuzziness) using the Walsh transformation, in order to detect 
interictal spikes. The algorithm uses the transformation as a 
means to assess the degree in which the basic characteristics 
of spikes are present within a window of observation in the 
EEG signals.  
                                                                 
1 This work was sponsored by NSF Grants:  EIA-9812636 
and EIA-9906600, the NSF Graduate Research Fellowship of 
Ms. Danmary Sanchez and ONR Grant N00014-99-1-0952.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Criteria used in characterizing interictal spikes  
 
Although interictal spikes differ greatly from one patient to 
the next, and even within recordings from the same patient, 
many spikes follow a general characterizing pattern. This 
general waveform is simulated in Figure 1.  
 
As a result of the information provided by neuroscientists at 
Miami Children’s Hospital (MCH) and our literature search 
in this field, the following list of primordial criteria was 
established, with reference to Figure 1, as necessary to 
declare the existence of an interictal spike: 

 
1. The interictal spike is considered to be the waveform 

RPF , with two half waves RP  and PF . 
2. Both the rising and falling slopes of the spike are 

very steep.  
3. The spike is characterized by a sharp peak P, 

which is due to a sudden change in polarity of the 
voltage signal recorded. This sharpness occurs in 
both the time domain and the spatial domain. 

4. The sharpness of the spike is continuous, i.e. the 
spikes must “display sharpness in both narrow and 
wide intervals of observation” [2]. 

 
B. Algorithm Development 
 

The Walsh Transform is a well-known orthogonal 
transformation with many applications in signal and image 
processing. The Walsh matrix is an n by n symmetric and 
orthogonal matrix consisting of +1 and –1 as its elements to 
constitute square waveforms as its basis functions [6]. The 
matrix obtained from the Walsh transformation kernel may be 
expanded to any dimension N = 2n. 
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Fig. 1. Simulated spike used to describe the morphology of  
interictal spikes. 
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For the ordered Walsh kernel matrix, the Walsh operator r
Nω  

of rth order and length N is defined based on the sequency 
value and dimension N considered. The order r is given by 
the sequency of the vector, and refers to the type of 
differentiation used between sample points. The dimension N 
refers to the degree of fuzziness in this type of differentiation. 
Considering the time dependent input signal )(tf , the 
Walsh transformation r

NW  is given by the convolution of 
r
Nω  and )(tf  as: 

)(tfW r
N

r
N ∗=ω          (1) 

If we consider the Walsh operator of 1st order and length 2, 
1
2ω , we realize that it is equal to the discrete mathematical 1st 

derivative, d1, which can be thought of as the differences 
between adjacent sampled points: 

11
2 ]11[ d=−=ω           (2) 

On the other hand, if we consider the Walsh operator of 2nd 
order and length 4, 2

4ω , we realize that it is not equal, but 
equivalent, to the discrete mathematical 2nd derivative, d2, 
which can be thought of as the difference between two 2-
point differences of three adjacent points, or the difference 
between two contiguous first derivatives: 

]121[]1111[ 22
4 −=≅−−= dω          (3) 

At this point, we can make the generalization that 1
Nω  is 

equivalent to d1, and 2
Nω  is equivalent to d2 (in the sense 

noted above) for any length N, with N being the degree of 
fuzziness in the differentiation. This equivalency means that 
they perform the same operation when convolved with the 
input signal, but they take into account different number of 
points from the input signal, depending on the length N. In 
other words, with a larger N, the degree of fuzziness of these 
derivatives is larger, and thus different characteristics of the 
input signal may be appreciated. With this generalization we 
may also say that the Walsh operators 1

Nω  and 2
Nω  may be 

used as operators for the first and second derivatives, 
respectively, with advantages noted in the orthogonality of 
the vectors and in the simplicity of their computation [1]. 
 
After further analysis of the behavior of r

NW  in relation to 
typical, bi-phasic interictal spikes, we were able to establish 
the following observations: (1) The results from 1

NW  yield 
two peaks for each spike. The first peak is associated with the 
rising-side slope, and the second peak is associated with the 
falling-side slope. The amplitude of each peak in 1

NW  is an 
indicator of the steepness of the slope, where a higher peak 
means a steeper slope. (2) The results from 2

NW  yield a peak 
associated to the peak location of the spike. The amplitude of 
this peak in 2

NW  is an indicator of the sharpness of the apex 
of the spike, where a higher peak means a sharper apex. 
 
In order to extract an interictal spike from the background 
signal, we developed a set of integrated mathematical 
expressions based on the Walsh operators. Criterion 4 defined 
in the previous section states that an interictal spike must 

exhibit continuous sharpness. In other words, it must be sharp 
in narrow as well as in wider intervals of observation. This 
implies that an actual interictal spike must result in high 
values for the peaks in 1

NW  and 2
NW  for several lengths N. 

 
To analyze that required multi-scale sharpness, we consider 
the outputs of these Walsh operators but using different 
scales by means of the different lengths of the operators 1

NW  
and 2

NW . In this case we use N = 4, 8, and 16 as the number 
of points analyzed in the input data. This type of approach 
was also used in a study by Barreto [2] for the detection of 
interictal spikes in ECoG, but using Lagrange derivatives to 
measure the EEG sharpness.  
 
In order to account for several intervals of observation, the 
algorithm we developed takes the results at different scales 
and then adds them together to detect the presence of 
sharpness under different scaling. This is expressed 
mathematically as: 

W  r = rrr WWW 1684 ++                 (4) 

for r = 1, 2. The motivation in this operation is to extract all 
potential transitions using different scales for assessing 
sharpness, in an additive way. In other words, if sharpness of 
the signal is identified in any of rW4 , rW8 , or rW16 , resulting 
in high-amplitude peaks, this will yield the recognition of a 
sharp signal in W r as well. 
 
On the other hand, actual interictal spikes must also exhibit 
high local sharpness. The best way to measure this is through 
the convolution of the actual mathematical first and second 
derivatives, with the time signal f (t) as: 

)(*11 tfdD =  and )(*22 tfdD =     (5) 

which take into account only 2 and 3 data points of the input 
signal, respectively. 
 
Since the interictal spike must exhibit high degrees of 
sharpness in both the narrow and wider intervals, we need to 
combine the resulting measures of sharpness in both 
intervals. This is achieved with a point-by-point 
multiplication between the actual mathematical derivative, 
given by rD , and the addition of the Walsh transformations 
of different length N, given by rrr WWW 1684 ++ . Therefore, 
the term W  r becomes a function of the derivatives and of the 
Walsh transformation, as:  

W r ( r
N

r WD , ) ][ 1684
rrrr WWWD ++⋅=   (6) 

for r = 1,2. So, individually, these functions for orders 1 and 
2 will be described as:  

(a) W )( 1
16

1
8

1
4

11 WWWD ++⋅=  , and  

(b) W )( 2
16

2
8

2
4

22 WWWD ++⋅=                     (7) 

The objective of this point-to-point product is to selectively 
reinforce the parts of the signal that resulted in large outputs 



from the derivative (D) and composite Walsh (W4 + W8 + 
W16) transforms.  
 
By observing the responses of the Walsh transformations, we 
noted that at points where an interictal spike is defined, two 
prominent peaks occur in W  1, delimiting the duration of the 
spikes, and one prominent peak occurs in W  2, corresponding 
to the sharp apex of the spike.  
 
After applying these mathematical expressions to the 
epileptogenic EEG from different patients, we confirmed that 
the results in W r emphasize the presence of a signal that 
meets both of the main characteristics of the interictal spike: 
sustained steep slopes and sharp peak. At this point, dynamic 
thresholds were set in order to eliminate the W r responses of 
low amplitude in both the temporal and spatial domains. The 
thresholds were set to be dynamic to take into consideration 
the variations in amplitude and frequency of the background 
activity.  
 
The dynamic threshold was set equal to twice the standard 
deviation about the mean, calculated for the signals in the 
local background. For the temporal dynamic threshold, we 
defined the local background activity to be a time window 
with duration of 3 seconds. In Figure 2 (a), we display a 5 
second EEG block collected at channels P3 through T6. Note 
that there is an interictal spike identified in electrode F 8. In 
Figure 2 (b), the W r signal obtained for the EEG in channel   
F 8 is displayed, as well as the W r signal obtained after the 
dynamic temporal threshold has been applied. If we apply the 
dynamic temporal threshold to all of the EEG channels 
shown in Figure 2 (a), we obtain the plots in Figure 2 (c) for 
the W 1 signals. It may be observed in these plots that, when 
comparing the peaks in W 1 for every electrode at the time 
instance where the spike is identified (almost 0.5 seconds into 
the segment), the highest peaks are those seen in F 8, which is 
precisely the location of the spike. This observation allows 
for the implementation of the dynamic spatial threshold, 
calculated across all electrodes at each specific instant of 
time. In Figure 2 (d), the signals obtained as a result of 
applying the spatial threshold are displayed again for all 
channels. We can see here that those peaks that were smaller 
than the background across the rest of the electrodes have 
already been eliminated. 
 
In order to refine the detection of spikes from these dynamic 
thresholds, a set of mathematical rules were applied to the W r 
signal in order to confirm the presence of the rest of the 
criteria that identify interictal spikes. These included checks 
for (1) total duration of the interictal spike or sharp wave to 
be from 20 to 200 milli-seconds, (2) amplitude of the spike to 
be above 20 micro-volts, (3) ratio of amplitude between the 
spike and the background activity to be greater than 1.6, and 
(4) reduction of artifacts such as EKG and background signal, 
among others. All of these checks were performed with the 
use of the W r signal, as opposed to the EEG signal itself. 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Sample EEG segment processed by the algorithm.  
(a) EEG signals P3 through T6. (b) Calculation of the W r on the F8 signal 
and application of the temporal dynamic threshold. (c) Temporal dynamic 
thresholds for all channels. (d) Spatial dynamic threshold for all channels. 
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III. RESULTS 

 
A. System Evaluation Setup 

 
The efficiency of the proposed interictal spike detection 
algorithm was tested with EEG data recorded from 7 patients 
at Miami Children’s Hospital, using the 10-20 Electrode 
System and a sampling rate of 500 samples/second, per 
channel. The 21 channel signals were recorded with respect 
to a reference electrode located close to the vertex. A 
NeuroScan Electrical Signal Imaging system, and the 
associated recording software were used to capture EEG from 
the patients in digital files. About 20 minutes of EEG from 
each patient were used for the evaluation of the algorithm. 
 
B. Evaluation Parameters and Results 
 
Prior to any processing by the proposed algorithm, two 
human experts, a clinical neuroscientist and a registered EEG 
technologist, scored the files electronically, upon review in 
the NeuroScan system. Each of them, independently, marked 
all instances of interictal spikes they found in the files.  For 
the initial assessment of the algorithm, a spike was 
acknowledged as a true event if at least one of the experts had 
marked it. There were a total of  TOT_SPK = 163 such 
spikes. After running the same files through the algorithm, 
the system identifications that matched the events found by 
either human expert were considered true positives (TP), and 
the rest were considered false positives (FP). Events marked 
by at least one expert, but not detected by the algorithm were 
identified as false negatives (FN). With these counts the 
sensitivity (TP/TOT_SPK) and the precision (TP / (TP + FP)) 
for the algorithm were calculated. They are shown in Table I. 

Table I. Performance of the spike detection algorithm 
(Note: Spikes acknowledged if marked by either expert) 

Set Sensitivity Precision 

All 7 patients 108/163    
= 0.66 

108/ (108 + 91) 
= 0.54 

 
IV.  DISCUSSION 

 
The results summarized in Table I are encouraging, 
particularly when we consider that this level of performance 
was obtained from direct analysis of the EEG signals 
themselves, within a short window of observation, and 
without reference to global considerations, such as the state 
of the subject, or other contextual clues. 
 
It should also be kept in mind that the sensitivity of the 
system, as reported in Table I, uses the broadest criterion for 
the acceptance of a true interictal event (at least one expert 
found it). If we were to apply a more stringent criterion, such 
that only events marked as spikes by both experts are 
accepted, then the sensitivity of the system with respect to 
this new “golden standard” would be much higher, 
approaching 89%. 
 
 

The algorithm also proved to be robust against the detection 
of  a number of biologically-generated artifacts, such as those 
induced by talking, jaw movement, muscle movement, eye 
blinking, eye movement, coughing, and swallowing. These 
were recorded from a non-epileptic subject, and successfully 
ignored by the algorithm. 
 
 

V. CONCLUSION 
 
The primary characterizing features of interictal spikes, 
enumerated in this paper, were embedded in our system for 
the extraction of the spikes from the background activity. We 
translated each of these characteristics into a mathematical 
formula such that we could implement them in the 
development of our algorithm. The spike detection algorithm 
developed through this study was based on the Walsh 
transformation, which is an orthogonal transformation that 
decomposes the signal into mutually independent 
constituents, each of which can be useful in the overall 
interpretation process of the EEG. Encouraging results were 
obtained from the application of the algorithm to EEG data 
from seven patients. 
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