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MOTOR CONTROL OF A LIMB SEGMENT
ACTUATED BY ARTIFICIAL MUSCLES
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2Department of Electrical and Computer Engineering, INSA, Toulouse, France

3Department of Signal and Image Processing, ENST, Paris, France

Abstract-In this article we present a biologically inspired motor
control scheme based on sensory-motor interaction modalities
within the Central Nervous System, and its application to the
control of a single joint limb segment actuated by two pneumatic
McKibben muscles.  The embedded Artificial Neural Network
(ANN) module's architecture, whose functioning is regulated by
reinforcement learning, is similar to the connectivity of cerebel-
lar cortex.  Various biologically plausible learning schemes,
which enable functional plasticity in the cerebellar cortex,
are discussed.  The simulation and experimental results are then
reported.
Keywords - Motor control, brain models, artificial neural net-
works, reinforcement learning, artificial muscles.

I. INTRODUCTION

This article addresses the problem of how the cerebellum
processes premotor orders so that the fast movements, which
have a shorter duration than the sum of the transmission and
processing delays in the motor and sensory pathways, can be
accurate.  By definition, fast movements cannot be regulated
in closed-loop using the sensory signals, but must be driven
in open-loop, by motor orders that must be computed as the
movement proceeds and take into account the dynamical and
geometrical characteristics of the limb to be moved.  This can
be mathematically stated as the problem of inverting the bio-
mechanical function of the limb.

In previous articles [1,2,3], we presented a circuit that al-
lows estimation of an inverse function by avoiding an explicit
inversion operation.  The model was first tested by simula-
tions of eye and forearm movements [4].  According to an
anatomical interpretation, the predictive elements of the
model would be embedded in the cerebellar cortex, and the
function of the whole Cerebellum would be to compute ap-
proximate inversions.  Therefore, the second step consisted of
replacing the elements which are interpreted as parts of the
cerebellar cortex by an ANN architecture whose blueprint is
copied from the well-known connectivity of the cerebellar
cortex [5,6].

The present work is intended first to equip the model with
a circuit that would represent the inferior olive and then to
apply various learning mechanisms that differ from each
other with the inclusion of different parts of the cerebellar
cortex in the calculation of an error signal on the inferior ol-
ive.  A single joint robot limb actuated by two artificial
McKibben pneumatic muscles [7] was chosen to mimic the
human forearm movements. The expanded model was trained
until the desired movement was accurately performed both by
the simulations and by replacing the peripheral part with the
real robot limb in order to realize real time learning [8,9].

II. MODEL OF MOTOR CONTROL

A. General circuit

The general circuit is shown in Fig. 1A.  Blocks noted g1
and g2 represent the bio-mechanical functions of two antago-
nist muscles actuating a limb segment whose dynamics is
represented by G.  The elements encircled with a rectangle
drawn in dashed lines are interpreted as representing the
cerebellar cortex which would be able to compute the esti-
mates g* , G* of kinematic variables g and G before the
movement is launched but after the motor transmission delays
∆1 and ∆2.  The summing elements from which issue Q1 and
Q2 are interpreted as representing the cerebellar nuclei.  The
regulating pathways via the Inferior Olive are drawn here in
dashed lines to recall that no learning takes place in the initial
cybernetic circuit.  The input signal being the premotor ve-
locity profile DΘ& of the desired movement, this circuit is able
to compute the actual position Θ A [4].

Fig.1. Cybernetic circuits proposed for motor control of two antagonist mus-
cles.  Empty arrows represent positive (excitatory) connections and black
dots negative (inhibitory) connections.  (A) The initial cybernetic circuit, (B)
the circuit equipped by the ANN architecture and the Inferior Olive.
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B. Embedding the ANN in the control circuit

Fig. 1B represents a modified version of the initial circuit
having the learning ability thanks to the embedded ANN.  For
the sake of biological plausibility, the architecture of the
ANN representing the cerebellar cortex was chosen to be
similar to the anatomical connectivity [5] as shown in Fig. 2.

Fig.2. The ANN's architecture representing the cerebellar cortex.  Adaptive
weights are noted ω and symbolized by black triangles while the transmis-
sion delays are noted δ.  Stellate and Basket cells are not represented and the
ratios of various cell types were not respected.

This ANN whose functioning is detailed in [8,9] is ex-
pected to learn how to estimate an internal representation of
the peripheral part's dynamics (i.e. the experimental appara-
tus), under supervision of a teaching signal.

C. Learning driven by a teaching signal issued from inferior olive

According to the proposed anatomical interpretation, this
signal would represent climbing fiber activity issued from the
inferior olive which is modeled in this work as shown in
Fig.3 to detect over- or under-shoots of movements and cor-
rect ongoing movements.  The teaching signal sent to the
neural network (Fig. 2) is a square pulse of fixed unit ampli-
tude and of 5 ms duration, which thus did not encode the am-
plitude of the error.

Fig.3. Circuit representing the inferior olive.
To keep information about synapse activity during the-

movement (credit assignment problem), a synaptic eligibility
is calculated by a first-order low-pass filter as in  (1).

)()( tgrte
dt
de

ii
i

i =+τ (1)

Then the learning rule becomes:
)()()(, tetFGi iPgr ⋅⋅−=∆ ηω (2)

where η is a small and positive learning rate and FG(t) is the
teaching signal carried by the climbing fibers and calculated
according to the four following conditions:

• Condition A: The error calculation takes only into
account the difference between the desired and achieved
final positions.

• Condition B: The error calculation takes into ac-
count both the differences in position and in velocity.  To
represent the intermittent control by the inferior olive,
the teaching signal was kept silent during a latency delay
of 400 ms after each launch of the arm.

• Condition C: The error calculation is similar to that
of condition B, and in addition the short-term reduction
in Purkinje cell activity following the firing of the
climbing fiber is also taken into account.  The amplitude
of the ANN's output signal is multiplied by 0.9 during
the first 30 ms after the occurrence of the teaching signal.

• Condition D: The error calculation is similar to that
of condition C, and in addition the values of the signals
Q issued from the summing elements interpreted as the
cerebellar nuclei are reduced.  This was aimed at
coarsely modeling minimization of energy expenditure,
since signals Q encode partly the forces to be exerted by
the muscles.  A teaching signal was applied whenever the
values of Q exceeded a threshold empirically set, after
several trials, to a value of 10 (arbitrary units).

D. Actuator of two antagonistic McKibben muscles

An artificial McKibben pneumatic muscle, consisting of a
braided shell surrounding a rubber inner tube, is defined by
its length (l0), mean radius (r0) and braid angle (α0) when it is
not under pressure.  When compressed air is blown in, the
muscle contracts to generate an axial contraction force which
can be described in terms of the contraction rate (ε) [7].  The
initial circuit was finally modified so as to drive the experi-
mental apparatus shown in Fig.4 which consists of a me-
chanical segment actuated by two artificial McKibben mus-
cles whose dynamic behavior can be represented by (3) and
the values reported in Table 1.

Fig.4. Experimental apparatus with two McKibben muscles.
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Table 1: Simulation values

Parameter Value Parameter Value
l0 0.3m P0 2.5 bars
R 0.015m ε0 0.1
J 0.05 kg.m2 εmax 0.25
C 500 N.s fmax 20 kgf/bars

III. RESULTS

The training of the model was performed in two ways.
First the forearm movements were simulated by replacing the
peripheral system with the model of the robot limb segment
shown in Fig. 4.  Then, the experimental apparatus was used
to mimic by itself the same movements.  The results obtained
by performing four different learning schemes, A to D, in
either ways are shown in Fig. 5 and Fig. 6 respectively.

Fig. 5. Model's learning capacity on simulated robot limb movements.

Fig.  6.  Model's learning capacity on real robot limb movements.

Curves on the top of the Fig. 5 and 6 show the evolution of
the mean squared error as learning proceeds, while the curves
on the bottom show the results of the set of 10 movements
performed after learning of type D.  Solid and dashed lines
represent respectively desired and actual movements.  The
ANN was composed of twenty granular cells with time con-
stants randomly set in the range 1-6 ms, one Golgi cell and
one Purkinje cell with time constants of 10 ms.  Transmission
delays δ between cells were randomly set in the range 1-
10 ms.  The motor delays ∆1 and ∆2 were set to 50 ms. The
learning phase proceeded in 300 iterations on a predefined set
of 5 positive (counterclockwise) and 5 negative (clockwise)
horizontal movements, each being presented alternately at a
time.  Each movement lasted 5 seconds and all velocity pro-
files were centered on 2.5s. The amplitude range was ±
40 degrees.

The change in the calculation of the teaching signal con-
siderably affects the number of iterations needed for achiev-
ing the desired movement and the best result is obtained with
a learning scheme of type D in both testing cases.  Some in-
ternal signals measured on different sides of the circuits num-
bered respectively 1 and 2 during two movements of same
amplitude but with different velocities are illustrated in fig-
ures 7 and 8. On each figure, from left to right and from top
to bottom, the curves in the rectangles show desired (dashed
lines) and achieved (solid lines) angular displacements, time-
courses of signals issued from Purkinje cells, motor orders
and finally the force profiles measured by force sensors.

A
D

B, C
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Fig. 7.  Internal signals, during a slow movement. Except for the top right
corner, the curves plotted in dotted and solid lines represent the signals
measured on side 1 and 2 of the circuit shown in Fig.1B respectively.

Fig.

Fig. 8.  Internal signals during a fast movement. Except for the top right
corner, the curves plotted in dotted and solid lines represent the signals
measured on side 1 and 2 of the circuit shown in Fig.1B respectively.

IV. CONCLUSIONS

This model of the cerebellar pathways, although quite sim-
plified, suffices to control movements of a single segment,
actuated by means of artificial muscles endowed with non-
linear characteristics.  Its connectivity accounts essentially for
the divergence of information carried by the mossy fibers to
the granule cells and then the convergence of the latters' out-
puts conveyed by parallel fibers within the dendritic arbori-
zations of the Purkinje cells.  After learning, the output signal
of the ANN (i.e. Purkinje cells whose axons convey the out-
put signal of the cerebellar cortex to the cerebellar nuclei)
anticipates the velocity of the movement achieved by the mo-
bile segment.  As a consequence, the motor orders which re-
sult from the addition of the various premotor orders in the
motoneurons can be considered as encoding a “virtual tra-
jectory”, which is not calculated on purpose since it results
from the functioning of feedback loops consistent with anat-
omy and assumed to be internal to the CNS.

Altogether, the looped structure and the anticipative ability
allow both the model to invert the bio-mechanical functions
and to integrate the premotor velocity signals.  Notably,
movements of the same amplitude can be driven at different
velocities, and the time-courses of the forces exerted by the
pneumatic muscles resemble those of the electromyograms of
real muscles during arm movements at various velocities.
Thus, the merging of an ANN designed to account for cell
connectivity in a cybernetic model grounded on functional
principles, enables both the control of a simple robot and re-
production of physiological observations.
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