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ABSTRACT 
 
 
 
In the network diversion problem (NDP), we must find a minimum-weight set of 

edges in a directed graph ( , )G V E=  whose deletion forces all s-t communication to pass 

through one or more diversion edges in a diversion set DE .  We develop and test a 

specialized branch-and-bound algorithm for this NP-complete problem.  The algorithm is 

based on partitioning the solution space with respect to edges in certain s-t cuts and yields 

a non-standard, non-binary enumeration tree.  The algorithm is coded in Java version 1.4 

and run on a 1.5 MHz Pentium IV computer with 384 megabytes of RAM.  An instance 

of NDP on a grid graph with 2502 vertices, 9900 edges and one diversion edge is solved 

in 5.66 seconds; the same problem with 10 diversion edges is solved in only 0.84 

seconds. 
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EXECUTIVE SUMMARY 
 
In this thesis we consider the network diversion problem (NDP) in a directed 

graph ( , )G V E= .  The objective of NDP is to cut links in G, using minimal resources, in 

order to force all flow from “source vertex” s to “sink vertex” t over at least one link in 

specified set of links. 

NDP arises in the context of intelligence gathering when trying to force an 

opponent to communicate over a specified set of links in a communication network.  It 

may also be relevant in warfare, if one wishes to force an opponent to travel over 

vulnerable links by destroying links of the opponent’s transportation network.  Finally, 

the solution to NDP may also be useful for finding a simple s-t path in a directed graph 

that contains a specified edge (link). 

NDP has been modeled and solved as a binary integer program, but this approach 

has not proved very successful for problems of even moderate size. 

An s-t cut in G  is a set of edges whose removal from G  disconnects all directed 

s-t paths.  NDP is stated as the problem of finding a minimum-weight, minimal s-t cut 

that contains a diversion edge.  We focus on the problem that has a single diversion edge 

( , )e u v= , and use that procedure as a subroutine to solve the multiple-edge problem. 

In our study, we develop a branch-and-bound approach to NDP that relaxes the 

requirement of minimality in the cut identified.  This approach first identifies a 

minimum-weight s-t cut that contains the diversion edge by “quasi-including” that edge 

in all cuts.  An edge ( , )u v  is quasi-included by adding two artificial, infinite-weight 

edges, one from s to u and one from v to t, so that every finite-weight s-t cut in G  

contains ( , )u v .  If this initial cut is a minimal cut, NDP is solved.  Otherwise, we 

partition the feasible region of NDP using the quasi-inclusion and exclusion technique to 

create an appropriate branching scheme for NDP.  An edge is excluded from a cut by 

setting its weight to infinity so that no relevant, finite-weight s-t cut contains that edge. 

We use a non-binary branching scheme where there may be as many branches 

below a node in the enumeration tree as there are edges in a locally-minimum-weight cut.  

The algorithm backtracks whenever a minimal cut is identified or when the weight of the 

locally minimum-weight, non-minimal cut exceeds the weight of the incumbent solution. 



 xvi 

The new branch-and-bound algorithm is implemented in the Java 1.4 

programming language, and tested using a 1.5 GHz Pentium IV computer with 384 

megabytes of RAM operating under Windows XP.  In a 50 by 50 grid network with 2502 

vertices, and 9900 edges with random weights, an optimal solution to NDP containing a 

randomly chosen link is found in 5.66 seconds; the same problem with 10 randomly 

chosen links is solved in 0.84 seconds. 
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I. INTRODUCTION  

The network diversion problem involves cutting links in a network, using the least 

effort possible, to force the user of the network to communicate or travel over certain 

“exploitable” links.  The problem arises in the context of intelligence gathering but may 

also have warfighting applications.  This thesis develops a new, exact methodology for 

solving this NP-complete problem. 

A. PROBLEM DEFINITION AND ITS APPLICATIONS  

We consider a directed network (graph) ( , )G V E=  composed of a set of vertices 

V  and a set of directed edges E V V⊆ × .  Two vertices are distinguished, a source 

vertex s  and a sink vertex t .  A special diversion set DE E⊂  is defined; each De E∈  is 

a diversion edge.  Each edge ( , )e u v E= ∈  has a weight (interdiction cost) 0ew ≥  

associated with it; this is the cost or amount of effort required to attack and destroy the 

edge.  We assume that 0ew =  for all De E∈ , and 0ew >  otherwise.  A (directed) path 

in G  is a sequence of edges connecting two vertices, with all edges pointing in the same 

direction.  The network diversion problem (NDP) is:  Find a minimum-weight set of 

edges C  such that all s-t paths in ( , \ )G C V E C− ≡  must contain at least one edge of 

DE .  In other words, if no edges in C  can be used, all flow from s to t must pass through 

one or more diversion edges.   

NDP is stated more conveniently by defining a minimal s-t cut.  This is a minimal 

set of edges C  whose removal from G  disconnects all directed s-t paths.  A minimum-

weight, minimal s-t cut, C E⊆ , that contains at least one edge De E∈  is an optimum 

solution for NDP. 

The intelligence-gathering applications of NDP are obvious.  However, there may 

also be warfighting applications in which an “interdictor” will interdict (attack and 

destroy) links of his opponent’s logistics network and force that opponent to move 

materiel or troops over certain links, i.e., diversion edges, that are vulnerable to 

subsequent attack. 
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A theoretical application of NDP arises in finding a simple (loopless) directed 

path from s to t that contains a specified edge de ; this problem is shown to be NP-

complete by Fortune, Hopcroft and Wyllie (1980).  A feasible solution to NDP exists, 

with { }D dE e=  (and with 1ew =  for all \ De E E∈ , say), if and only if a feasible 

solution to the path-finding problem exists. 

B. BACKGROUND 

NDP has been studied by Curet (2001).  He develops an integer-programming 

model (IP) for the problem but finds that IP difficult to solve.  He uses heuristics and 

Lagrangian relaxation to solve the problem approximately.  The Lagrangian bound could 

be embedded in a branch-and-bound algorithm for solving the problem exactly, but this is 

not implemented.  Clearly, the problem is only partially solved: This thesis develops and 

implements a general methodology for solving NDP exactly. 

C. THESIS OUTLINE 

The remainder of this thesis is organized as follows:  Chapter II describes our 

general branch-and-bound approach for solving NDP.  Chapter III explains the algorithm 

in detail.  Chapter IV presents computational results and Chapter V summarizes of our 

findings. 
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II. GENERAL METHODOLOGY 

This chapter first reviews basic definitions and notation that will be used 

throughout this thesis.  Subsequently, we outline a general branch-and-bound approach 

for solving the Network Diversion Problem. 

A. DEFINITIONS AND NOTATION 

An s-t cut in directed graph ( , )G V E=  is a set of edges C  such that 

( , \ )G C V E C− ≡  contains no s-t paths.  A non-minimal cut is a cut in which one of its 

proper subsets forms another cut.  The weight or capacity of a cut C  is ( ) e
e C

w C w
∈

=∑ .  

The value of a max flow from s to t in G  equals the capacity of a minimum-weight s-t 

cut in G according to the maximum-flow minimum-cut theorem (Ford and Fulkerson 

1962, pp. 11-14). 

A rooted (enumeration) tree, T, is a directed connected graph that contains no 

cycles, and has a distinguished initial node, called the root, which does not have any 

incoming edges.  There is a simple directed path from the root node to all other nodes of 

a tree.  The nodes on the simple path from a given node i to the root node are called 

ancestors of node i.  All the nodes that can be reached from a node i by going along any 

simple directed path are descendants of node i.  The root is said to be on level 0.  Any 

other node i in T is at some level {1,2,...}l ∈  which equals the length (number of edges) 

of the path from the root node to node i. 

B. THE NEW BRANCH-AND-BOUND METHODOLOGY 

We propose a completely new branch-and-bound algorithm for solving NDP, a 

procedure that is not based on an IP formulation and its linear-programming (LP) 

relaxation.  Another unique feature of the methodology is that the associated enumeration 

tree is not a binary tree, but may have as many branches below a node as there are edges 

in an s-t cut.  Our description below begins by considering a binary branching scheme, 

however. 
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Consider a typical, binary IP: 

 

(BIP)  * = minz
x

cx  (1) 

            s.t. A =x b  (2) 

                     { }0,1 J∈x . (3) 

 

This is usually solved through its LP relaxation which replaces the integer value 

restrictions (3) with 0 1≤ ≤x : 

 

(BIPR)  minz =
x

cx  (4) 

           s.t. A =x b  (5) 

            0 1≤ ≤x . (6) 

 

BIPR is solved for x̂ .  If the solution is integer, we have solved BIP; if not, we select 

some fractional ˆ jx  and “branch” to solve two problems: 

 

(BIPRa) minaz =
x

cx  (7) 

             s.t. A =x b  (8) 

              0 1≤ ≤x  (9) 

                     0jx = , (10) 

 

and 

 

(BIPRb) minbz =
x

cx  (11) 

             s.t. A =x b  (12) 

              0 1≤ ≤x  (13) 

                     1jx = . (14) 
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An enumeration tree is formed in which each problem has the same constraints 

and objective function as BIPR except for some additional bounds on certain components 

of x.  This branching procedure is repeated recursively, using upper- and lower-bounding 

information, to create a convergent algorithm.  The leaves of the tree represent 

subregions of the complete feasible region of BIP.  Each subproblem can produce two 

more problems in the enumeration tree when we branch on one of the noninteger 

components of their solution.  In order to find an optimal solution to BIP, the 

enumeration tree must be monotonic, i.e., the objective value of each subproblem in the 

tree is no better than that of any of its ancestors.  The objective value for the best integer 

solution found so far, called the incumbent solution, is kept as an upper bound on *z .  

Whenever a node is reached whose objective value is no better than the incumbent 

solution, the tree is pruned at that node.  The tree can also be pruned at any node if an 

infeasible solution arises from all the restrictions that have been added.  In this approach, 

we hope that we quickly find a good integer solution to BIP through one of its restricted 

LP relaxations. 

Now, let us consider an analogous solution procedure for NDP.  Assume that 

{ }D dE e= ; cases with more than one diversion edge will be discussed later.  Let ′C  

denote the set of minimal s-t cuts in G, let ′′C  denote the set of non-minimal s-t cuts, and 

let = ′ ′′∪C C C .  We state NDP through this formulation: 

 

(NDP)  * min eC e C

z w
∈

= ∑  (15) 

        s.t. de C∈  (16) 

         C ′∈ C  (17) 

 

This formulation simply says that we are looking for a minimum-weight, minimal s-t cut 

in G  that contains the diversion edge de .  If minimality of the optimal cut *C  is not 

enforced, it is possible for *
dC e−  to be a cut and thus no s-t communication at all would 

be possible in *( )dG C e− −  (Curet 2001).  We would have failed to solve the problem 

in this case. 
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We do propose, however, to solve NDP by considering a relaxation of the 

problem in which non-minimal cuts are allowed: 

 

(NDPR)  min eC e C

z w
∈

= ∑  (18) 

        s.t. de C∈  (19) 

               ( )C ′ ′′∈ ∪ =C C C  (20) 

 

We derive NDPR from NDP by removing the minimality restriction (17), similar to the 

relaxation of BIP to BIPR.  We solve NDP using a branch-and-bound procedure based on 

NDPR, analogous to solving BIP through branch-and-bound with BIPR.  However, the 

details of branching, bounding, and monotonicity do change. 

We will be solving NDPR through its dual, a max-flow problem.  Furthermore, in 

the primal problem, not all cuts of ′′C  are feasible, and the actual set of feasible, non-

minimal cuts will change as our branch-and-bound algorithm proceeds.  However, we are 

always working with valid partitions of subsets of ′′C , so the following discussion about 

the correctness of the branch-and-bound algorithm is essentially correct. 

The graph G  with diversion edge ( , )de u v=  “quasi-included” is denoted 

dG e⊕ .  The edge de  is quasi-included in a cut by adding two artificial, infinite-weight 

edges, one from s to u and one from v to t.  Since any minimum-weight cut must intersect 

at least one of the edges in the path ( , )s u , ( , )u v , ( , )v t , and since any minimum-weight 

cut of interest must have finite weight, we are assured that de  is an element of any 

minimum-weight cut in dG e⊕ . 

NDPR can be solved by modifying G  into dG e⊕ , and by then finding a min-

weight cut 0C  in dG e⊕  through standard techniques.  (That is, find a maximum s-t 

flow in dG e⊕  using weights ew  as edge capacities, and then identify a minimum cut, in 

O( )E  time, by finding a cut that is saturated by that maximum flow.)  0C  will also be a 

cut of G , and if it is a minimal cut in G , NDP is solved. 
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Unfortunately, the quasi-inclusion method modifies the graph G  into dG e⊕  so 

that a minimal, min-weight cut in dG e⊕  may be a non-minimal cut in G  (Balcioglu 

and Wood 2003).  Thus, 0 1 2{ , ,..., }kC e e e=  may not solve our problem.  Now, consider 

partitioning the space of feasible solutions based on a particular edge ae .  It will be 

convenient to select ae  from the initial non-minimal cut identified, i.e., 0a de C e∈ − .  In 

this case, we create subproblems analogous to BIPRa and BIPRb by alternately including 

or excluding ae  from the initial non-minimal cut: 

 

(NDPRa)  mina eC e C

z w
∈

= ∑  (25) 

        s.t. de C∈  (26) 

               C ′ ′′∈ ∪C C  (27) 

               ae C∈ , (28) 

 

and 

 

(NDPRb)  minb eC e C
z w

∈

= ∑  (21) 

        s.t. de C∈  (22) 

               C ′ ′′∈ ∪C C  (23) 

               ae C∉ . (24) 

 

NDPRa and NDPRb represent subproblems in which ae  is quasi-included or 

excluded, respectively. 

NDPRa can be solved using ( )d aG e e⊕ ⊕ .  In this case, a new cut Ĉ  in 

( )d aG e e⊕ ⊕ , which is a solution to NDPRa, is found by applying the max-flow min-

cut theorem. 
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NDPRb can be solved by “excluding” ae  from all cuts of dG e⊕ .  The graph 

dG e⊕  with edge ae  excluded is denoted ( )d aG e e⊕ .  The edge ae  is excluded from 

all cuts by setting its weight to infinity.  No relevant minimum-weight s-t cut contains ae  

because the solution to NDP must be a cut with finite weight.  In this case, a new cut Ĉ  

in ( )d aG e e⊕ , which is a solution to NDPRb, is found by applying the max-flow 

min-cut theorem. 

NDPRa and NDPRb illustrate a general technique, using quasi-inclusion and 

exclusion, to partition the solution space of NDPR.  A convergent branch-and-bound 

algorithm can be created through repeated applications of the partitioning scheme 

analogous to a branch-and-bound algorithm to solve BIP.  Each subsequent node in the 

enumeration tree corresponds to a restriction (quasi-inclusion or exclusion of an edge) of 

the problem above it, and thus we maintain monotonicity of the objective function, which 

is required for branch-and-bound.  Monotonicity also derives from the fact that the 

maximum flow in G , which equals the capacity of the cut identified at each node, is 

never decreasing, because quasi-inclusion adds infinite-weight edges and exclusion 

increases the capacity on an edge. 

The enumeration tree formed by using this partitioning scheme leads to the 

problem of repeatedly generating the same cut.  NDPRa gives back the same solution as 

NDPR because the edge ae  is already an edge of 0C .  We use a generalized, non-binary 

partitioning scheme to avoid this. 

Every node in the enumeration tree obtained in the generalized partitioning 

scheme will have as many subproblems as there are edges in the current cut.  All the 

subproblems below the current non-minimal cut 0 1 2{ , ,..., }kC e e e=  are derived by 

establishing a partition of the solution space of cuts C through the relationship 

 

1 1 2 1 2 3

1 2 1

1

[ ] [ ] [ ]
... [ ... ]
[ ... ].

k k

k

e e e e e e
e e e e

e e
−

= ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∩
∪ ∪ ∩ ∩ ∩ ∩ ∩
∪ ∩ ∩ ∩

C C C C
C

C
 

(25) 
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Here, 1 2 1[ ... ]k ke e e e−∩ ∩ ∩ ∩ ∩C  denotes the set of all cuts that include 1e  through 

1ke − , and exclude ke , which is implemented through 1 1{ ,..., }k kG e e e−⊕ . 

An optimal solution to NDP must occur in one of the subsets of the partition, 

although it cannot occur in 1[ ... ]ke e∩ ∩ ∩C , because we have already established that 

any cut in this set must be non-minimal.  ( 0C  is non-minimal and any cut in this subset is 

a superset of 0C  and can thus be ignored.)  In other words, including all the edges e1 

through ke  in a new cut leads to repeated generation of the same cut which we know to 

be non-minimal. 

So, in this instance, our branch-and-bound algorithm will create k branches by 

forcing quasi-inclusion and exclusion of the indicated edges from the initial cut.  When a 

minimum-weight, minimal s-t cut contains de  is found, we can use its weight as a bound 

to trim branches of the tree in the usual manner.  A branch is also trimmed at any node if 

an infeasible solution arises from all the edges that have been included in or excluded 

from a current node, i.e., an infinite maximum flow is detected.  Note that in solving an 

IP by LP-based branch-and-bound, we allow fractional solutions and “hope for” 

integrality.  In our procedure for solving NDP, we allow non-minimality and hope for 

minimality. 
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III. IMPLEMENTATION 

This chapter introduces a simple implementation of the new branch-and-bound 

algorithm for solving NDP, along with a pseudo-code description of the algorithm and its 

demonstration on a sample graph.  After establishing the correctness of this simple 

implementation, a generalized implementation is stated with a number of refinements.  

Finally, some pathological cases and approaches to their solutions are discussed. 

A. NEW BRANCH-AND-BOUND ALGORITHM 

This section describes how the new branch-and-bound methodology will be 

implemented to solve NDP.  We assume that { }D dE e=  and that we are given a directed 

network.  Note that an undirected network can be transformed to a directed network by 

replacing each undirected edge by two directed anti-parallel edges whose weights are 

identical to the weight of the undirected edge (Ahuja et al. 1993, pp. 39). 

Algorithm C (Figure 1) to solve NDP is based on the near-min-cut enumeration 

procedure, Algorithm B, in Balcioglu and Wood (2003).  It is stated in simple terms for 

clarity; we discuss a number of practical enhancements later in this chapter. 
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Figure 1.   Algorithm C:  A branch-and-bound algorithm to solve the network diversion 
problem when { }D dE e= . 

Algorithm C 
INPUT: A directed graph ( , )G V E= , ,s t V∈ , diversion edge de , and edge weights 

>w 0  except that 0
dew = . 

OUTPUT: A min-weight, minimal s-t cut Ĉ  containing de , i.e., a solution to NDP. 

GLOBAL VARIABLES: z ← ∞ ; Ĉ ← ∅ ; 
begin 

{ }dE e+ ← ;    /* set of edges to be included */ 
E− ← ∅ ;       /* set of edges to be excluded */ 
EnumerateC(G , s, t, w, E+ , E− ); 
print Ĉ ;    /* If Ĉ = ∅ , the problem is infeasible */ 

end. 
 
Procedure EnumerateC(G , s, t, w, E+ , E− ) 
begin 

′ ←w w ; G G′ ← ; 
for (each edge ( , )e u v E−= ∈ ) ( , )w u v′ ← ∞ ; 
for (each edge ( , )e u v E+= ∈ ) begin 

add artificial edge ( , )s u  to G′  and let ( , )w s u′ ← ∞ ; 
add artificial edge ( , )v t  to G′  and let ( , )w v t′ ← ∞ ; 

endfor; 
/* G′  and ′w  are now interpreted to include artificial edges */ 
/* MaxFlow() below finds a min-weight s-t cut 0C  in G′ , and its weight z , but subject 

to edges E−  being excluded from the cut, and edges E+  being quasi-included. 
It uses a maximum-flow algorithm to do this. */ 
[ ]0, ( , , , )z C MaxFlow G s t′ ′← w ; 
if ( )z z≥  return; 
if ( 0C  is a minimal s-t cut in G ) then 

0Ĉ C← ; z z← ; 
return; 

endif; 
for (each edge 0 \e C E+∈ ) begin 

{ }E E e− −← ∪ ; 
EnumerateC(G , s, t, w, E+ , E− ); 
if ( )z z≥  return; 

\ { }E E e− −← ; { }E E e+ +← ∪ ; 
endfor; 
return; 

end. 
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The algorithm starts by assuming no initial solution, i.e., Ĉ = ∅  and z = ∞ .  The 

diversion edge de  is added to E+  because any solution must contain de .  Then, the 

algorithm calls the procedure EnumerateC which attempts to find a min-weight s-t cut 

containing de . 

The procedure EnumerateC first modifies G  into G′  by changing the weight of 

each edge being excluded to infinity and by adding two artificial, infinite-weight edges 

for each edge being quasi-included.  Then, it finds an initial min-weight s-t cut 0C  in G′ ; 

its weight z  is a local lower bound, i.e., a lower bound subject to the restrictions defined 

through E+  and E− .  0C  is also an s-t cut in G.  If the local lower bound z  is greater 

than upper bound z , the algorithm backtracks because no solution better than the 

incumbent can be found given the current restrictions (or any superset of them which 

would occur below in the tree).  If a minimal s-t cut whose weight is less than upper 

bound z  is found, i.e., a feasible solution to NDP is found, then this cut is kept as an 

incumbent solution, and z  is updated.  The algorithm also backtracks in this case 

because the weight of any other s-t cut below the current cut in the monotonic 

enumeration tree can be no better than the incumbent solution.  In other cases, the 

algorithm calls itself recursively, creating a branch for each edge in 0 \C E+  , i.e., a 

branch for each edge in the current cut yet fixed (forced in).  For each branch, it finds a 

new min-weight s-t cut that contains the edges being quasi-included and does not contain 

the edges being excluded according to the generalized partitioning scheme.  The 

algorithm terminates when all of the branches are pruned through bounding arguments or 

through infeasibility.  The algorithm is clearly finite since the depth of the enumeration 

tree is at most E . 
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Figure 2.   Sample Graph.  The diversion edge is 10 ( , )e u v= .  All edge weights are 1 
except that 

10
0ew = . 

 

To illustrate Algorithm C, consider the enumeration tree in Figure 3, which 

corresponds to solving NDP on the graph of Figure 2.  The algorithm first finds an initial 

min-weight s-t cut 1 2 10 11{ , , , }e e e e  (node 1) in 10dG e G e⊕ = ⊕  at the root node at level 

0.  This is a non-minimal cut because it contains the minimal cut 1 2{ , }e e .  Thus, the 

algorithm must partition the solution space of cuts based on the edges 1 2 11{ , , }e e e . 

After partitioning, the algorithm finds a minimal cut at node 2 5 6 9 10 11{ , , , , }e e e e e  in 

its first branch marked by 1e .  It keeps this cut as an incumbent solution, sets 4z =  and 

backtracks (as it always does when it finds a feasible solution).  The second branch, 

1 2( , )e e , yields a non-minimal cut 1 7 10 11{ , , , }e e e e  (node 3).  The local lower bound is 

3z =  so the algorithm cannot backtrack.  At this node then, it branches to 7e  and finds a 

minimal cut (node 4) better than the incumbent.  It keeps this cut as the incumbent 

solution and backtracks while setting 3z = .  Nodes 5 and 6 are pruned by bounding, 

without exploration, because the corresponding local lower bounds cannot be better than 

z , i.e., no recursive call is made for nodes 5 and 6 because of the third return statement.  

Finally, the algorithm terminates with the optimal solution *
1 9 10 11{ , , , }C e e e e= . 
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10{ }DE e=

1 2 10 11e e e e

1 7 10 11e e e e

1 9 10 11e e e e

5 6 9 10 11e e e e e

1e 1 2,e e 1 2 11, ,e e e

7e 7 11,e e

Level 0

Level 1

Level 2

1

2 3

4 5

6

not explored

not explored

10{ }DE e=

1 2 10 11e e e e

1 7 10 11e e e e

1 9 10 11e e e e

5 6 9 10 11e e e e e

1e 1 2,e e 1 2 11, ,e e e

7e 7 11,e e

Level 0

Level 1

Level 2

1

2 3

4 5

6

not explored

not explored

 
Figure 3.   Enumeration tree for the graph of Figure 2. 

 

B. CORRECTNESS OF THE ALGORITHM 

To state that Algorithm C correctly solves the Network Diversion Problem, it 

suffices to show that (a) the algorithm would enumerate all feasible cuts containing the 

specified diversion edge if backtracking occurs only by infeasibility, and (b) the 

enumeration tree maintains monotonicity of the objective function. 

Balcioglu and Wood (2003) give a proof that all s-t cuts in a graph can be found 

by using this partitioning scheme with an initial min-weight s-t cut.  In our methodology, 

we begin to partition by quasi-including the diversion at the root node of the enumeration 

tree; but this is the same technique that Balcioglu and Wood (2003) use in their 

enumeration algorithm, to force inclusion of edges.  Hence, Algorithm C with no “value-

based backtracking” must enumerate all minimal cuts containing de . 

When the solution space is partitioned recursively, the weight of an edge in G  

has been increased to infinity or two infinite-weight edges have been added to G  at each 

node of the enumeration tree.  The weight of a cut below a current node never decreases 

because this process never reduces the maximum flow in G.  Therefore, we conclude that 

the enumeration tree is monotonic. 
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C. REFINEMENTS TO ALGORITHM C 

Algorithm C can be refined in a number of ways for improved efficiency and 

greater generality: 

1. Algorithm C, as stated above, repeats much work for the sake of clarity, but 

the actual implementation avoids this for efficiency.  For instance, the implementation 

does not modify the original graph from scratch at each node of the enumeration tree (by 

using E+  and E− ).  Rather, once an edge is quasi-included or excluded from all cuts at 

some node in the enumeration tree, it is automatically quasi-included or excluded from all 

descendant-node problems, with no additional work required. 

2. A max flow in a parent-node graph is always feasible for all its child-node 

graphs.  This makes identification of a min-cut in the child nodes significantly faster, 

through a small number of flow augmentations, because we do not have to identify a max 

flow and thus a min cut from scratch. 

3. Most branch-and-bound algorithms can be improved by adding a heuristic that 

finds a feasible initial solution so that the algorithm begins with z < ∞ .  Nodes of the 

enumeration tree can often be trimmed quickly this way, rather than having to wait for 

the algorithm to stumble upon a feasible solution and corresponding finite upper bound.  

The problem of finding a minimal cut containing a specific edge is an NP-complete 

problem (Caryle and Wood 2002).  Thus, the following heuristic is not guaranteed to 

work (Curet 2001); in practice it usually does, however.  Let ( , )de u v= : 

a. Using breadth-first search (BFS), find a shortest path (minimum number 

of edges) from s to u that traverses neither v nor t.  Let 1E  be the set of 

edges in that path. 

b. Using BFS, attempt to find a shortest path from v to t that does not use any 

vertex on the first shortest path.  If such a path is found, let its edges be 

denoted 2E . 

c. If two paths can be found, a min-weight cut in 1 2( )G E E∪  will be a 

minimal cut containing de  (Curet 2001). 
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We implement the heuristic as a subroutine TwoPathsHeuristic(G, s, u, v, t, w) 

which returns a finite upper bound z  if successful, and returns ∞  otherwise.  Figure 4 

gives an example. 
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Figure 4.   Illustrating the TwoPathsHeuristic() to find a feasible solution for NDP.  A 
shortest s-u path is first identified as 1 1 3{ , }E e e= .  Then, a shortest v-t path, which does 
not use any vertex on the first shortest path, is identified as 2 12 9{ , }E e e= .  Finally, a 
minimal cut 2 4 5 6 10 11{ , , , , , }C e e e e e e′ =  is computed in 1 2( )G E E∪ , and ( ) 5w C′ =  is 
kept as an initial upper bound for NDP when 10{ }DE e= . 

 

4. We may wish to solve NDP when 1{ ,..., }D pE e e= , i.e., when 1DE > .  This 

is easily accomplished by running Algorithm C with 1de e= , then with 2de e= , etc., and 

taking the best solution from among the p solutions.  However, it is clear that we can 

improve that procedure by using bounding information and partial solutions from one 

subproblem to the next.  Furthermore, if DE  is large, it may be worthwhile to first find a 

min-weight cut C′  in G  and simply check to see if some diversion edge is contained in 

that cut.  (Recall that 0ew =  for all De E∈ , and all other edges have positive weights.  

Thus, if DE  is large, it seems intuitively likely that one of the edges in DE  will turn up 
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in a min-weight cut.)  If it does, NDP has been solved by just a single min-cut (max-flow) 

calculation.  If not, the flow just found is still a useful point from which to begin the 

algorithm. 

The improved and generalized implementation of Algorithm C to solve NDP when 

1DE >  is shown in Figure 5. 

 

Figure 5.   An improved and generalized version of Algorithm C for 1DE > . 

Algorithm C 
INPUT: A directed graph ( , )G V E= , ,s t V∈ , diversion edges DE , and edge 

weights >w 0  except that 0w =  for all De E∈ . 
OUTPUT: A min-weight, minimal s-t cut containing at least one d De E∈ , i.e., a 

solution to NDP. 
GLOBAL VARIABLES: z ← ∞ ; Ĉ ← ∅ ; 
begin 

( )0 0, ( , , , )w C C MaxFlow G s t←   w  

if ( 0 DC E∩ ≠ ∅ ) then print 0C  and halt; 
for (each edge De E∈ ) begin 

{ }dE e+ ← ; 
u ← tail vertex of de ; v ← head vertex of de ; 

0[ , ] ( , , , , , )z C TwoPathsHeuristic G s u v t← w ; 
if ( z z< ) then 

z z← ; 0Ĉ C← ; 
endif; 

endfor; 
for (each edge De E∈ ) begin 

{ }dE e+ ←  ;    /* set of edges to be included */ 
E− ← ∅  ;        /* set of edges to be excluded */ 
EnumerateC(G , s, t, w, E+ , E− ); 

endfor ; 
print Ĉ ;    /* If Ĉ = ∅ , the problem is infeasible */ 

end. 
 
Procedure EnumerateC(G , s, t, w, E+ , E− ) 
begin 

Same as in Figure 1 ; 
end. 
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D. PATHOLOGICAL CASES 

We call an edge that is not contained in any simple s-t path in G  an extraneous 

edge.  A pathological case arises when all diversion edges are extraneous edges for NDP:  

In this case, a solution to NDP does not exist but Algorithm C “solves” the problem 

correctly and returns Ĉ = ∅ .  However, the algorithm may perform a huge number of 

iterations in such cases.  Pathological cases cannot occur, however, if the extraneous 

edges in a network are identified and marked as “ineligible” to be diversion edges. 

Before examining pathological cases, we need to define some concepts associated 

with undirected graphs.  Any vertex in a connected undirected graph whose removal 

results in a disconnected graph is called a separation vertex.  A graph containing a 

separation vertex is called separable, and a graph that does not contain such a vertex is 

called nonseparable.  A subgraph G′  of G that contains no separation vertices is a 

nonseparable component of the original graph.  

Even (1979, pp. 57-62) gives an algorithm, based on depth-first search (DFS), for 

finding all the nonseparable components and the separation vertices of a given graph in 

O( )E  time.  Consider the separable graph G  in Figure 6 to find its nonseparable 

components. 
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Figure 6.   A separable graph G  with separation vertices b, e, and i. 
 

First, we modify G  into ( , )G s t+  by adding an artificial edge from s to t in 

order to keep s and t in the same nonseparable component.  See Figure 7.  The 

nonseparable components (Figure 8) are then found with Even’s algorithm. 
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Figure 7.   The graph of Figure 6 modified to ( , )G s t+ . 
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Figure 8.   The nonseparable components of the graph ( , )G s t+  from Figure 7. 
 

The extraneous edges in the graph can now be determined easily:  All edges of 

any separable component of ( , )G s t+ , except for the component containing both s and t, 

are extraneous.  For instance, the nonseparable components 2G′  and 3G′  of ( , )G s t+  do 

not contain both s and t.  Therefore, the edges ( , )e f , ( , )i g , ( , )g h , and ( , )h i  from 2G′  

and 3G′  are extraneous, and are not allowed to be diversion edges.  Thus, we are 

effectively operating on the reduced graph G′′  of Figure 9. 
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Figure 9.   The reduced graph G′′  after nonseparable decomposition.  The artificial edge 
( , )s t  is removed because it is not useful any more. 

 

The nonseparable decomposition process applied to undirected graphs is 

guaranteed to identify all extraneous edges, and this process is also valid for finding 

extraneous edges of a directed graph if it is treated as being undirected.  But the 

nonseparable decomposition process may not identify all extraneous edges in a directed 

graph.  In fact, there is no known polynomial-time algorithm to detect all extraneous 

edges in a directed graph (Fortune, Hopcroft and Wyllie 1980).  This is the same NP-

complete problem as finding a simple directed path from s to t that contains a specified 

edge.  Therefore, extraneous edges in large directed graphs may cause Algorithm C some 

difficulties. 

Our algorithm does not include a nonseparable decomposition procedure because 

the networks that we test do not contain any nonseparable components.  But it may be 

worthwhile to implement this process because many real-world networks may contain 

extraneous edges. 

If an undirected network is being analyzed, we do not know in which direction an 

interdiction edge ( , )de u v=  should appear in the optimal solution.  That is, we do not 

know if all s-t paths in * ( , )G C u v− +  traverse from u to v or from v to u.  We can solve 

the problem, in theory, by quasi-including the directed edge ( , )de u v=  and running the 

algorithm, then quasi-including the directed edge ( , )de v u=  and running the algorithm 

again, and then selecting the best of the two solutions as the optimal solution to NDP.  

However, it is possible that the “optimal solution” for one of the orientations is *C = ∅ .  

In this case, the algorithm may fail to find an optimal solution in a reasonable amount of 

time for large networks.  There is a simple way to deal with this issue. 
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Recall that an undirected edge is represented by two anti-parallel directed edges in 

Algorithm C.  Figure 10 shows the representation of G′′  from Figure 9, which would be 

used in Algorithm C. 
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Figure 10.   The directed representation of G′′ (Figure 9) used in Algorithm C. 
 

Let us refer to the undirected edge ( , )i k  in G′  as { , }i k .  The flow from s to t in 

the directed representation of G′′  travels over either ( , )i k  or ( , )k i .  The removal of 

either ( , )i k  or ( , )k i  represents that the edge { , }i k  in G′′  is in a cut.  If the edge ( , )i k  is 

chosen to represent the diversion edge, then an optimum solution exists for NDP.  On the 

other hand, if the edge ( , )k i  is chosen, then no feasible solution is obtained to NDP: 

Algorithm C might fail to return the answer *C = ∅  in a reasonable amount of time for 

larger networks with similar structure. 

To avoid this, we replace the edge { , }i k  with a directed Wheatstone bridge as 

shown in Figure 11.  The edge 1 2( , )v v  that takes place of the edge { , }i k  with identical 

weight is assigned as the diversion edge, i.e., two artificial, infinite-weight edges 1( , )s v  

and 2( , )v t  are added to the directed representation of G′′ .  In this case, all finite-weight 

cuts in the new graph must contain the edge 1 2( , )v v .  Because of that, we conclude the 

edge { , }i k  always occurs in a cut oriented in whichever direction is appropriate. 
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Figure 11.   Representation of the diversion edge { , }i k  in G′′  using a Wheatstone 
bridge. 
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IV. COMPUTATIONAL RESULTS 

This chapter provides computational results for Algorithm C on a set of structured 

test problems.  The algorithm is written using the Java 1.4 programming language.  All 

tests are performed on a personal computer with a 1.5 GHz Pentium IV processor, 384 

MB of RAM and running under the Windows XP operating system. 

A. TEST NETWORKS 

Topology is the physical configuration of connections comprising a network, i.e., 

it is the shape of the network.  We use two common topologies in communications 

networks to test Algorithm C.  These topologies ensure high reliability because of their 

high. 

1. Grid Networks 

A grid topology consists of a network where the vertices may be viewed as being 

points on the L H×  integer lattice in the non-negative quadrant.  Each vertex is connected 

to other vertices, which are positioned in the lattice directly to its north, south, east, and 

west.  There are two additional vertices, a source and a sink vertex, which are positioned 

at the west and east side of the network, respectively.  All westernmost vertices are 

connected to the source vertex, and all easternmost vertices are connected to the sink 

vertex.  The number of vertices in a grid network is H L 2V = × + , and the number of 

edges is 4 H L 2 LE = × × − × .  Edges incident to s and t have infinite weights and cannot 

be interdicted and cannot be diversion edges.  Figure 12 shows an example of a small 

grid network. 
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Figure 12.   An unweighted, undirected grid network with H 3=  and L 4= .  The 
undirected edges between two vertices represent two anti-parallel directed edges, and 
their weights are 1. 

 

A grid topology, or something close to it, is often used in Wide Area Networks 

(WANs) where reliability is important (Harris 1999). 

1. Star-Mesh Networks 

A star-mesh network (Miller 2001) is created if H “rays” of L vertices, each 

connected by an additional center vertex, are cross-connected as well as radially 

connected.  The source vertex s is the center vertex.  The sink vertex t is chosen from the 

vertices which are positioned at the outer most ring of the network to increase the 

distance between s and t as much as possible.  The number of vertices in a star-mesh 

network is H L 1V = × + , and the number of edges is 4 H LE = × × .  Figure 13 shows an 

example of a star-mesh network.  Star-mesh networks are often used in local area 

networks (LANs) (Sharma 1990, pp. 9-12) where the central vertex controls all the 

vertices in the network. 

s

t

s

t
 

Figure 13.   An undirected star-mesh network with H 8=  and L 2= . 
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B. RESULTS 

We use a grid network generator (GGFGEN) written in Java by Balcioglu and 

Wood (2003) to generate grid networks.  We have coded a star-mesh network generator 

(STARGEN) in Java to generate star-mesh networks.  The input parameters of the 

generators, H and L, determine the size of the generated network. 

We test Algorithm C on unweighted and weighted networks separately.  A 

network is “unweighted” if all interdictable edges e  have 1ew = .  In our weighted 

networks, ew  for each interdictable edge is randomly drawn from the discrete uniform 

distribution on [ ]1,5 .  For both weighted and unweighted grid networks, the edges 

incident to s and t have infinite weights. 

The sizes of networks generated are systematically increased to observe the 

performance of the algorithm.  Each network is also tested as DE  increases; the set DE  

is chosen randomly from E . 

1. Unweighted Networks 

Table 1 presents problem and solution statistics for Algorithm C applied to 

solving NDP in unweighted, undirected grid networks.  For all networks in the table, the 

algorithm gives an optimal solution in less than one second:  The TwoPathHeuristic() 

always finds the optimal solution, and this solution is proven optimal at the root node of 

the enumeration tree.  Indeed, with some thought about the structure of these problems, 

we can see that they can be solved by inspection. 

Table 2 presents processing times on unweighted, undirected star-mesh networks.  

In this network type, processing times, upper bounds, and optimal solutions change 

suddenly depending on the diversion edges and sink vertex which are chosen randomly.  

Increased numbers of non-minimal cuts in the enumeration tree imply longer processing 

times.  In fact, some of these problems, and the weighted problems for star-mesh 

networks, cannot be solved to optimality in a reasonable amount of time.  In these cases, 

we have identified ε-optimal  solutions, for rather large values of ε > 0 , by replacing 

both instances of “if ( )z z≥  then” with “if ( (1 ε) )z z+ ≥  then.” 
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Network |V| |E| |ED| zUB zLB w(C*) 
Number 

Non-minimal 
Cuts 

Number 
Minimal 

Cuts 

Total Time 
(sec.) 

1 13 13 13 0 0 0.00 
2 9 9 9 0 0 0.02 
3 9 9 9 0 0 0.02 
4 10 10 10 0 0 0.02 
5 10 10 10 0 0 0.02 

GRIDNET 
10×10 102 380 

10 9 9 9 0 0 0.02 
1 19 19 19 0 0 0.02 
2 19 19 19 0 0 0.03 
3 19 19 19 0 0 0.03 
4 19 19 19 0 0 0.05 
5 19 19 19 0 0 0.05 

GRIDNET 
20×20 402 1560 

10 19 19 19 0 0 0.06 
1 30 30 30 0 0 0.03 
2 30 30 30 0 0 0.06 
3 29 29 29 0 0 0.06 
4 29 29 29 0 0 0.06 
5 29 29 29 0 0 0.06 

GRIDNET 
30×30 902 3540 

10 29 29 29 0 0 0.08 
1 39 39 39 0 0 0.08 
2 39 39 39 0 0 0.09 
3 40 40 40 0 0 0.09 
4 39 39 39 0 0 0.11 
5 39 39 39 0 0 0.11 

GRIDNET 
40×40 1602 6320 

10 39 39 39 0 0 0.16 
1 49 49 49 0 0 0.13 
2 50 50 50 0 0 0.13 
3 49 49 49 0 0 0.14 
4 49 49 49 0 0 0.16 
5 49 49 49 0 0 0.17 

GRIDNET 
50×50 2502 9900 

10 49 49 49 0 0 0.19 

 

Table 1.   Problem statistics and computational results for Algorithm C on unweighted, 
undirected grid networks.  GRIDNET H×L  denotes a grid network with H rows of L 
vertices.  zUB is the upper bound obtained from the TwoPathsHeuristic() procedure.  zLB 
shows the weight of the cut at the root node of the enumeration tree.  The columns “Number 
Non-minimal Cuts” and “Number Minimal Cuts” give the number of non-minimal cuts and 
minimal cuts in the enumeration tree, respectively.  Here, the algorithm does not need to 
perform any enumeration, and therefore these entries are all zero.  The total number of nodes 
in the enumeration tree is the sum of these numbers plus one.   
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Network |V| |E| |ED| zUB zLB w(C*) 
Number  

Non-minimal 
Cuts 

Number 
Minimal 

Cuts 

Total Time 
(sec.) 

1 6 6 6 0 0 0.00 
2 8 6 8 6 0 0.02 
3 11 6 11 234 0 0.08 
4 7 6 7 4 0 0.02 
5 10 6 10 132 0 0.05 

STARNET 
10×10 101 400 

10 4 4 4 0 0 0.02 
1 2 2 2 0 0 0.02 
2 10 6 10 74 0 0.17 
3 14 6 14 3963 0 6.45 
4 17 6 17 110608 0 197.30 
5 13 6 13 3456 0 6.16 

STARNET 
20×20 401 1600 

10 9 6 9 107 0 0.25 
1 29 6 29 (0.75)* 27449 0 170.39 
2 11 6 11 163 0 0.81 
3 27 6 27 (0.50)* 210612 0 1068.39 
4 29 6 16 (0.75)* 83083 1 455.78 
5 16 6 16 56305 0 298.16 

STARNET 
30×30 901 3600 

10 23 6 23 (0.25)* 102270 0 551.97 
1 39 6 39 (1.25)* 70205 0 710.28 
2 10 6 10 74 0 0.87 
3 21 6 21 (0.25)* 113284 0 1173.43 
4 30 6 30 (1.00)* 15569 0 177.23 
5 21 5 21 (0.50)* 195531 0 2050.08 

STARNET 
40×40 1601 6400 

10 23 6 23 (0.75)* 14551 0 154.69 
1 26 6 26 (0.50)* 3960 0 74.22 
2 39 6 39 (1.50)* 20212 0 344.90 
3 21 6 21 (0.50)* 4960 0 84.83 
4 28 6 28 (1.00)* 5330 0 91.27 
5 49 6 49 (2.50)* 7190 0 127.28 

STARNET 
50×50 2501 10000 

10 3 3 3 0 0 0.84 

 
 
 

Table 2.   Problem statistics and computational results for Algorithm C on unweighted, undirected 
star-mesh networks.  STARNET H×L  denotes a star-mesh network with H rays of L vertices 
each.  The difference between zUB and zLB is much larger for the more difficult problems. 

 
 
 
 
 

*  This problem could not be solved to optimality in a reasonable amount of time, so an ε-optimal  solution is given. 
The value of ε  is given in parentheses. 
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2. Weighted Networks 

Tables 3 and 4 present problem and solution statistics on weighted, undirected 

grid and star-mesh networks, respectively.  We use the same diversion sets on 

unweighted and weighted networks.  Integer edge weights are generated randomly on 

[ ]1,5 . 

Network |V| |E| |ED| zUB zLB w(C*) 
Number 

Non-minimal 
Cuts 

Number 
Minimal 

Cuts 

Total Time 
(sec.) 

1 38 28 35 146 1 0.06 
2 22 22 22 0 0 0.02 
3 20 20 20 0 0 0.02 
4 24 24 24 0 0 0.02 
5 26 26 26 0 0 0.03 

GRIDNET 
10×10 102 380 

10 19 19 19 0 0 0.03 
1 48 42 48 1913 0 4.38 
2 48 48 48 0 0 0.03 
3 48 43 48 635 0 1.48 
4 37 37 37 0 0 0.05 
5 37 37 37 0 0 0.06 

GRIDNET 
20×20 402 1560 

10 39 39 39 0 0 0.06 
1 82 80 82 62 0 1.02 
2 79 77 79 48 0 0.83 
3 73 73 73 0 0 0.08 
4 75 75 75 0 0 0.09 
5 76 76 76 0 0 0.09 

GRIDNET 
30×30 902 3540 

10 73 73 73 0 0 0.11 
1 84 84 84 0 0 0.13 
2 89 89 89 0 0 0.14 
3 88 93 88 0 0 0.16 
4 90 89 90 8 0 0.81 
5 87 87 87 0 0 0.17 

GRIDNET 
40×40 1602 6320 

10 85 85 85 0 0 0.20 
1 123 121 123 50 0 5.66 
2 122 121 122 28 0 3.05 
3 112 112 112 0 0 0.25 
4 112 112 112 0 0 0.25 
5 111 111 111 0 0 0.28 

GRIDNET 
50×50 2502 9900 

10 119 117 118 3 1 0.84 
 

Table 3.   Problem statistics and computational results for Algorithm C on weighted, 
undirected grid networks.  The problems that have some non-minimal cuts and no minimal 
cut show that the feasible solution (zUB) found in the TwoPathsHeuristic() is optimal.  The 
problems with some non-minimal and minimal cuts show that the optimal solution is found 
in the enumeration tree. 
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Network |V| |E| |ED| zUB zLB w(C*) 
Number  

Non-minimal 
Cuts 

Number 
Minimal 

Cuts 

Total Time 
(sec.) 

1 23 19 23 4 0 0.02 
2 35 21 32 131 1 0.06 
3 35 15 21 29 3 0.03 
4 12 12 12 0 0 0.02 
5 25 16 19 21 2 0.03 

STARNET 
10×10 101 400 

10 9 9 9 0 0 0.02 
1 13 13 13 0 0 0.02 
2 35 20 35 926 0 2.19 
3 29 14 29 405 0 0.91 
4 41 15 36 21139 3 47.09 
5 24 17 24 49 0 0.16 

STARNET 
20×20 401 1600 

10 28 14 25 675 2 1.42 
1 69 21 69 (0.50)* 19068 0 137.75 
2 21 18 21 6 0 0.17 
3 66 24 66 (0.50)* 19001 0 153.12 
4 61 18 40 (0.50)* 27971 1 203.89 
5 38 16 38 8771 0 40.34 

STARNET 
30×30 901 3600 

10 56 16 56 (0.50)* 18711 0 135.36 
1 97 16 97 (1.25)* 19978 0 315.90 
2 21 16 21 9 0 0.33 
3 49 13 49 (0.25)* 62458 0 925.06 
4 87 11 87 (1.25)* 23710 0 376.97 
5 62 15 62 (0.50)* 53018 0 829.11 

STARNET 
40×40 1601 6400 

10 50 10 50 (0.50)* 20310 0 315.41 
1 115 21 115 (1.50)* 8774 0 203.16 
2 118 17 118 (2.00)* 5090 0 127.12 
3 54 21 54 (0.25)* 26486 0 673.65 
4 84 16 84 (1.00)* 21363 0 513.34 
5 118 18 118 (2.00)* 13662 0 365.40 

STARNET 
50×50 2501 10000 

10 57 15 57 (0.50)* 11930 0 322.52 

 
 
 

Table 4.   Problem statistics and computational results for Algorithm C on weighted, undirected 
star-mesh networks.   

 

 

 

*  This problem could not be solved to optimality in a reasonable amount of time, so an ε-optimal  solution is given. 
The value of ε  is given in parentheses. 
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C. INTERPRETATION 

In the grid networks, the difference between the weight of the feasible solution 

found by TwoPathHeuristic() (upper bound) and the weight of the solution found at the 

root node of the enumeration tree (the minimum-weight cut in dG e⊕ ) is small so that 

the algorithm does not need to enumerate many cuts.  In fact, dG e⊕  is likely to yield an 

optimal solution in the grid networks because s and t are highly connected. 

In the star-mesh networks, the typical initial minimum-weight cut from dG e⊕  is 

the non-minimal cut that cuts edges incident to t, plus the diversion edge.  But the optimal 

solution will usually have many more edges in it.  There is a large gap between the upper 

bound and the initial cut.  Because of this, the algorithm must enumerate a large number 

of cuts. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The network diversion problem (NDP) arises when a set of links in a network 

must be removed using the least effort in order to force the user of the network to 

communicate or travel over a specified set of links between two designated vertices.  This 

NP-complete problem may have intelligence-gathering and warfighting applications.  In 

this thesis, we have developed and implemented a general branch-and-bound 

methodology to solve NDP. 

NDP can be modeled as a binary integer problem (IP), but the literature indicates 

that these IPs are difficult to solve.  Therefore, we introduce a new methodology, a 

general branch-and-bound approach, to solve NDP.  The methodology is not based on 

solving linear-programming relaxations.  Rather, the minimality of the cuts identified is 

relaxed.  In this methodology, the algorithm first finds a minimum-weight s-t cut 

containing the diversion edge which is quasi-included.  If this initial cut is non-minimal, 

then a monotonic enumeration tree is formed by forcing quasi-inclusion and exclusion of 

edges from the current cut.  An edge ( , )u v  is quasi-included in a cut by adding two 

artificial, infinite-weight edges, one from s to u and one from v to t.  An edge is excluded 

from a cut by setting its weight to infinity.  The associated enumeration tree is non-binary 

since it may have as many branches below a node as there are edges in an s-t cut. 

The algorithm has been improved by incorporating certain internal efficiencies, 

and by adding a heuristic to find a good initial feasible solution.  When there is more than 

one diversion edge, the solution to the problem can be found by solving NDP for each 

diversion edge separately, and taking the best of those solutions.  However, by using 

bounding information and partial solutions from one subproblem to the next, faster 

solutions are obtained.  In fact, it is often easier to find a solution when the number of 

diversion edges is large. 

We have tested our algorithm on two common communication-network 

topologies, grid and star-mesh topologies; with diversion edges chosen randomly.  We 

increased the size of networks and the size of the diversion-edge set systematically to 

observe the performance of the algorithm.  Grid networks were tested with up to 2502 

vertices and 9900 edges (a 50 by 50 grid network).  An optimal solution to NDP for all 
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sizes of grid networks is obtained in seconds.  For example, in an unweighted grid 

network with 2502 vertices and 9900 edges (a) the algorithm returns an optimal solution 

in 0.125 seconds when 1DE = , and (b) it takes only 0.172 seconds to get an optimal 

solution when 5DE = . 

We have also tested star-mesh networks with up to 2501 vertices and 10000 edges 

(a 50 by 50 star-mesh network).  An optimal solution to NDP is obtained in a reasonable 

amount of time for networks as large as 20 by 20.  Only some of the larger networks can 

be solved optimally. 

Although the Algorithm C works efficiently for certain test networks, its overall 

run time and efficiency can be improved in different ways.  For example, if the number of 

non-minimal cuts in an enumeration tree of a NDP can be decreased, the algorithm will 

be more efficient, and run faster.  To accomplish this, the quasi-inclusion technique that 

creates non-minimal cuts should be investigated for improvement or replacement. 

Another practical improvement for computation times on some large networks 

can no doubt be obtained by solving the initial maximum-flow problem using a more 

efficient algorithm, e.g., binary blocking flow algorithm (Goldberg and Rao 1998). 

For problems like the star-mesh networks, we may wish to partition based on 

some set of edges other than those in the current minimum-weight cut.  For instance, 

branching on edges in a path from the diversion edge to s or t may prove more effective. 
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