
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

A BRANCH-AND-BOUND ALGORITHM FOR THE
NETWORK DIVERSION PROBLEM

by

Ozgur Erken

December 2002

 Thesis Advisor: R. Kevin Wood
 Second Reader: Matthew Carlyle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
 A Branch-and-bound Algorithm for the Network Diversion Problem
6. AUTHOR(S) Erken, Ozgur

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In the network diversion problem (NDP), we must find a minimum-weight set of edges in a directed graph

(,)G V E= whose deletion forces all s-t communication to pass through one or more diversion edges in a

diversion set DE . We develop and test a specialized branch-and-bound algorithm for this NP-complete problem.

The algorithm is based on partitioning the solution space with respect to edges in certain s-t cuts and yields a non-

standard, non-binary enumeration tree. The algorithm is coded in Java version 1.4 and run on a 1.5 MHz Pentium

IV computer with 384 megabytes of RAM. An instance of NDP on a grid graph with 2502 vertices, 9900 edges

and one diversion edge is solved in 5.66 seconds; the same problem with 10 diversion edges is solved in only 0.84

seconds.

15. NUMBER OF
PAGES

55

14. SUBJECT TERMS
Networks, Cuts, Network Diversion, Simple Path, Enumeration, Branch-and-bound

 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

A BRANCH-AND-BOUND ALGORITHM FOR THE NETWORK DIVERSION
PROBLEM

Ozgur Erken
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 2002

Author: Ozgur Erken

Approved by: R. Kevin Wood

Thesis Advisor

 Matthew Carlyle

Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In the network diversion problem (NDP), we must find a minimum-weight set of

edges in a directed graph (,)G V E= whose deletion forces all s-t communication to pass

through one or more diversion edges in a diversion set DE . We develop and test a

specialized branch-and-bound algorithm for this NP-complete problem. The algorithm is

based on partitioning the solution space with respect to edges in certain s-t cuts and yields

a non-standard, non-binary enumeration tree. The algorithm is coded in Java version 1.4

and run on a 1.5 MHz Pentium IV computer with 384 megabytes of RAM. An instance

of NDP on a grid graph with 2502 vertices, 9900 edges and one diversion edge is solved

in 5.66 seconds; the same problem with 10 diversion edges is solved in only 0.84

seconds.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PROBLEM DEFINITION AND ITS APPLICATIONS 1
B. BACKGROUND.. 2
C. THESIS OUTLINE... 2

II. GENERAL METHODOLOGY... 3
A. DEFINITIONS AND NOTATION.. 3
B. THE NEW BRANCH-AND-BOUND METHODOLOGY.......................... 3

III. IMPLEMENTATION... 11
A. NEW BRANCH-AND-BOUND ALGORITHM .. 11
B. CORRECTNESS OF THE ALGORITHM .. 15
C. REFINEMENTS TO ALGORITHM C .. 16
D. PATHOLOGICAL CASES.. 19

IV. COMPUTATIONAL RESULTS ... 25
A. TEST NETWORKS .. 25

1. Grid Networks ... 25
1. Star-Mesh Networks ... 26

B. RESULTS... 27
1. Unweighted Networks ... 27
2. Weighted Networks ... 30

C. INTERPRETATION .. 32

V. CONCLUSIONS AND RECOMMENDATIONS.. 33

LIST OF REFERENCES ... 35

INITIAL DISTRIBUTION LIST .. 37

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Algorithm C: A branch-and-bound algorithm to solve the network
diversion problem when { }D dE e= .. 12

Figure 2. Sample Graph.. 14
Figure 3. Enumeration tree for the graph of Figure 2... 15
Figure 4. Illustrating the TwoPathsHeuristic() to find a feasible solution for NDP....... 17
Figure 5. An improved and generalized version of Algorithm C for 1DE > 18
Figure 6. A separable graph G with separation vertices b, e, and i............................... 19
Figure 7. The graph of Figure 6 modified to (,)G s t+ . .. 20
Figure 8. The nonseparable components of the graph (,)G s t+ from Figure 7. 20
Figure 9. The reduced graph G′′ after nonseparable decomposition. 21
Figure 10. The directed representation of G′′ (Figure 9) used in Algorithm C. 22
Figure 11. Representation of the diversion edge { , }i k in G′′ using a Wheatstone

bridge... 23
Figure 12. An unweighted, undirected grid network with H 3= and L 4= 26
Figure 13. An undirected star-mesh network with H 8= and L 2= 26

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Problem statistics and computational results for Algorithm C on
unweighted, undirected grid networks .. 28

Table 2. Problem statistics and computational results for Algorithm C on
unweighted, undirected star-mesh networks. .. 29

Table 3. Problem statistics and computational results for Algorithm C on weighted,
undirected grid networks. .. 30

Table 4. Problem statistics and computational results for Algorithm C on weighted,
undirected star-mesh networks.. 31

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to express my appreciation to my advisor Professor Kevin Wood for

his advice, guidance and patience throughout my course of study. Also, for his support, I

wish to thank Professor Matthew Carlyle.

Special thanks go to my wife, Arzu. Without her love, support and

encouragement, I would be lost.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

In this thesis we consider the network diversion problem (NDP) in a directed

graph (,)G V E= . The objective of NDP is to cut links in G, using minimal resources, in

order to force all flow from “source vertex” s to “sink vertex” t over at least one link in

specified set of links.

NDP arises in the context of intelligence gathering when trying to force an

opponent to communicate over a specified set of links in a communication network. It

may also be relevant in warfare, if one wishes to force an opponent to travel over

vulnerable links by destroying links of the opponent’s transportation network. Finally,

the solution to NDP may also be useful for finding a simple s-t path in a directed graph

that contains a specified edge (link).

NDP has been modeled and solved as a binary integer program, but this approach

has not proved very successful for problems of even moderate size.

An s-t cut in G is a set of edges whose removal from G disconnects all directed

s-t paths. NDP is stated as the problem of finding a minimum-weight, minimal s-t cut

that contains a diversion edge. We focus on the problem that has a single diversion edge

(,)e u v= , and use that procedure as a subroutine to solve the multiple-edge problem.

In our study, we develop a branch-and-bound approach to NDP that relaxes the

requirement of minimality in the cut identified. This approach first identifies a

minimum-weight s-t cut that contains the diversion edge by “quasi-including” that edge

in all cuts. An edge (,)u v is quasi-included by adding two artificial, infinite-weight

edges, one from s to u and one from v to t, so that every finite-weight s-t cut in G

contains (,)u v . If this initial cut is a minimal cut, NDP is solved. Otherwise, we

partition the feasible region of NDP using the quasi-inclusion and exclusion technique to

create an appropriate branching scheme for NDP. An edge is excluded from a cut by

setting its weight to infinity so that no relevant, finite-weight s-t cut contains that edge.

We use a non-binary branching scheme where there may be as many branches

below a node in the enumeration tree as there are edges in a locally-minimum-weight cut.

The algorithm backtracks whenever a minimal cut is identified or when the weight of the

locally minimum-weight, non-minimal cut exceeds the weight of the incumbent solution.

 xvi

The new branch-and-bound algorithm is implemented in the Java 1.4

programming language, and tested using a 1.5 GHz Pentium IV computer with 384

megabytes of RAM operating under Windows XP. In a 50 by 50 grid network with 2502

vertices, and 9900 edges with random weights, an optimal solution to NDP containing a

randomly chosen link is found in 5.66 seconds; the same problem with 10 randomly

chosen links is solved in 0.84 seconds.

1

I. INTRODUCTION

The network diversion problem involves cutting links in a network, using the least

effort possible, to force the user of the network to communicate or travel over certain

“exploitable” links. The problem arises in the context of intelligence gathering but may

also have warfighting applications. This thesis develops a new, exact methodology for

solving this NP-complete problem.

A. PROBLEM DEFINITION AND ITS APPLICATIONS

We consider a directed network (graph) (,)G V E= composed of a set of vertices

V and a set of directed edges E V V⊆ × . Two vertices are distinguished, a source

vertex s and a sink vertex t . A special diversion set DE E⊂ is defined; each De E∈ is

a diversion edge. Each edge (,)e u v E= ∈ has a weight (interdiction cost) 0ew ≥

associated with it; this is the cost or amount of effort required to attack and destroy the

edge. We assume that 0ew = for all De E∈ , and 0ew > otherwise. A (directed) path

in G is a sequence of edges connecting two vertices, with all edges pointing in the same

direction. The network diversion problem (NDP) is: Find a minimum-weight set of

edges C such that all s-t paths in (, \)G C V E C− ≡ must contain at least one edge of

DE . In other words, if no edges in C can be used, all flow from s to t must pass through

one or more diversion edges.

NDP is stated more conveniently by defining a minimal s-t cut. This is a minimal

set of edges C whose removal from G disconnects all directed s-t paths. A minimum-

weight, minimal s-t cut, C E⊆ , that contains at least one edge De E∈ is an optimum

solution for NDP.

The intelligence-gathering applications of NDP are obvious. However, there may

also be warfighting applications in which an “interdictor” will interdict (attack and

destroy) links of his opponent’s logistics network and force that opponent to move

materiel or troops over certain links, i.e., diversion edges, that are vulnerable to

subsequent attack.

2

A theoretical application of NDP arises in finding a simple (loopless) directed

path from s to t that contains a specified edge de ; this problem is shown to be NP-

complete by Fortune, Hopcroft and Wyllie (1980). A feasible solution to NDP exists,

with { }D dE e= (and with 1ew = for all \ De E E∈ , say), if and only if a feasible

solution to the path-finding problem exists.

B. BACKGROUND

NDP has been studied by Curet (2001). He develops an integer-programming

model (IP) for the problem but finds that IP difficult to solve. He uses heuristics and

Lagrangian relaxation to solve the problem approximately. The Lagrangian bound could

be embedded in a branch-and-bound algorithm for solving the problem exactly, but this is

not implemented. Clearly, the problem is only partially solved: This thesis develops and

implements a general methodology for solving NDP exactly.

C. THESIS OUTLINE

The remainder of this thesis is organized as follows: Chapter II describes our

general branch-and-bound approach for solving NDP. Chapter III explains the algorithm

in detail. Chapter IV presents computational results and Chapter V summarizes of our

findings.

3

II. GENERAL METHODOLOGY

This chapter first reviews basic definitions and notation that will be used

throughout this thesis. Subsequently, we outline a general branch-and-bound approach

for solving the Network Diversion Problem.

A. DEFINITIONS AND NOTATION

An s-t cut in directed graph (,)G V E= is a set of edges C such that

(, \)G C V E C− ≡ contains no s-t paths. A non-minimal cut is a cut in which one of its

proper subsets forms another cut. The weight or capacity of a cut C is () e
e C

w C w
∈

=∑ .

The value of a max flow from s to t in G equals the capacity of a minimum-weight s-t

cut in G according to the maximum-flow minimum-cut theorem (Ford and Fulkerson

1962, pp. 11-14).

A rooted (enumeration) tree, T, is a directed connected graph that contains no

cycles, and has a distinguished initial node, called the root, which does not have any

incoming edges. There is a simple directed path from the root node to all other nodes of

a tree. The nodes on the simple path from a given node i to the root node are called

ancestors of node i. All the nodes that can be reached from a node i by going along any

simple directed path are descendants of node i. The root is said to be on level 0. Any

other node i in T is at some level {1,2,...}l ∈ which equals the length (number of edges)

of the path from the root node to node i.

B. THE NEW BRANCH-AND-BOUND METHODOLOGY

We propose a completely new branch-and-bound algorithm for solving NDP, a

procedure that is not based on an IP formulation and its linear-programming (LP)

relaxation. Another unique feature of the methodology is that the associated enumeration

tree is not a binary tree, but may have as many branches below a node as there are edges

in an s-t cut. Our description below begins by considering a binary branching scheme,

however.

4

Consider a typical, binary IP:

(BIP) * = minz
x

cx (1)

 s.t. A =x b (2)

 { }0,1 J∈x . (3)

This is usually solved through its LP relaxation which replaces the integer value

restrictions (3) with 0 1≤ ≤x :

(BIPR) minz =
x

cx (4)

 s.t. A =x b (5)

 0 1≤ ≤x . (6)

BIPR is solved for x̂ . If the solution is integer, we have solved BIP; if not, we select

some fractional ˆ jx and “branch” to solve two problems:

(BIPRa) minaz =
x

cx (7)

 s.t. A =x b (8)

 0 1≤ ≤x (9)

 0jx = , (10)

and

(BIPRb) minbz =
x

cx (11)

 s.t. A =x b (12)

 0 1≤ ≤x (13)

 1jx = . (14)

5

An enumeration tree is formed in which each problem has the same constraints

and objective function as BIPR except for some additional bounds on certain components

of x. This branching procedure is repeated recursively, using upper- and lower-bounding

information, to create a convergent algorithm. The leaves of the tree represent

subregions of the complete feasible region of BIP. Each subproblem can produce two

more problems in the enumeration tree when we branch on one of the noninteger

components of their solution. In order to find an optimal solution to BIP, the

enumeration tree must be monotonic, i.e., the objective value of each subproblem in the

tree is no better than that of any of its ancestors. The objective value for the best integer

solution found so far, called the incumbent solution, is kept as an upper bound on *z .

Whenever a node is reached whose objective value is no better than the incumbent

solution, the tree is pruned at that node. The tree can also be pruned at any node if an

infeasible solution arises from all the restrictions that have been added. In this approach,

we hope that we quickly find a good integer solution to BIP through one of its restricted

LP relaxations.

Now, let us consider an analogous solution procedure for NDP. Assume that

{ }D dE e= ; cases with more than one diversion edge will be discussed later. Let ′C

denote the set of minimal s-t cuts in G, let ′′C denote the set of non-minimal s-t cuts, and

let = ′ ′′∪C C C . We state NDP through this formulation:

(NDP) * min eC e C

z w
∈

= ∑ (15)

 s.t. de C∈ (16)

 C ′∈ C (17)

This formulation simply says that we are looking for a minimum-weight, minimal s-t cut

in G that contains the diversion edge de . If minimality of the optimal cut *C is not

enforced, it is possible for *
dC e− to be a cut and thus no s-t communication at all would

be possible in *()dG C e− − (Curet 2001). We would have failed to solve the problem

in this case.

6

We do propose, however, to solve NDP by considering a relaxation of the

problem in which non-minimal cuts are allowed:

(NDPR) min eC e C

z w
∈

= ∑ (18)

 s.t. de C∈ (19)

 ()C ′ ′′∈ ∪ =C C C (20)

We derive NDPR from NDP by removing the minimality restriction (17), similar to the

relaxation of BIP to BIPR. We solve NDP using a branch-and-bound procedure based on

NDPR, analogous to solving BIP through branch-and-bound with BIPR. However, the

details of branching, bounding, and monotonicity do change.

We will be solving NDPR through its dual, a max-flow problem. Furthermore, in

the primal problem, not all cuts of ′′C are feasible, and the actual set of feasible, non-

minimal cuts will change as our branch-and-bound algorithm proceeds. However, we are

always working with valid partitions of subsets of ′′C , so the following discussion about

the correctness of the branch-and-bound algorithm is essentially correct.

The graph G with diversion edge (,)de u v= “quasi-included” is denoted

dG e⊕ . The edge de is quasi-included in a cut by adding two artificial, infinite-weight

edges, one from s to u and one from v to t. Since any minimum-weight cut must intersect

at least one of the edges in the path (,)s u , (,)u v , (,)v t , and since any minimum-weight

cut of interest must have finite weight, we are assured that de is an element of any

minimum-weight cut in dG e⊕ .

NDPR can be solved by modifying G into dG e⊕ , and by then finding a min-

weight cut 0C in dG e⊕ through standard techniques. (That is, find a maximum s-t

flow in dG e⊕ using weights ew as edge capacities, and then identify a minimum cut, in

O()E time, by finding a cut that is saturated by that maximum flow.) 0C will also be a

cut of G , and if it is a minimal cut in G , NDP is solved.

7

Unfortunately, the quasi-inclusion method modifies the graph G into dG e⊕ so

that a minimal, min-weight cut in dG e⊕ may be a non-minimal cut in G (Balcioglu

and Wood 2003). Thus, 0 1 2{ , ,..., }kC e e e= may not solve our problem. Now, consider

partitioning the space of feasible solutions based on a particular edge ae . It will be

convenient to select ae from the initial non-minimal cut identified, i.e., 0a de C e∈ − . In

this case, we create subproblems analogous to BIPRa and BIPRb by alternately including

or excluding ae from the initial non-minimal cut:

(NDPRa) mina eC e C

z w
∈

= ∑ (25)

 s.t. de C∈ (26)

 C ′ ′′∈ ∪C C (27)

 ae C∈ , (28)

and

(NDPRb) minb eC e C
z w

∈

= ∑ (21)

 s.t. de C∈ (22)

 C ′ ′′∈ ∪C C (23)

 ae C∉ . (24)

NDPRa and NDPRb represent subproblems in which ae is quasi-included or

excluded, respectively.

NDPRa can be solved using ()d aG e e⊕ ⊕ . In this case, a new cut Ĉ in

()d aG e e⊕ ⊕ , which is a solution to NDPRa, is found by applying the max-flow min-

cut theorem.

8

NDPRb can be solved by “excluding” ae from all cuts of dG e⊕ . The graph

dG e⊕ with edge ae excluded is denoted ()d aG e e⊕ . The edge ae is excluded from

all cuts by setting its weight to infinity. No relevant minimum-weight s-t cut contains ae

because the solution to NDP must be a cut with finite weight. In this case, a new cut Ĉ

in ()d aG e e⊕ , which is a solution to NDPRb, is found by applying the max-flow

min-cut theorem.

NDPRa and NDPRb illustrate a general technique, using quasi-inclusion and

exclusion, to partition the solution space of NDPR. A convergent branch-and-bound

algorithm can be created through repeated applications of the partitioning scheme

analogous to a branch-and-bound algorithm to solve BIP. Each subsequent node in the

enumeration tree corresponds to a restriction (quasi-inclusion or exclusion of an edge) of

the problem above it, and thus we maintain monotonicity of the objective function, which

is required for branch-and-bound. Monotonicity also derives from the fact that the

maximum flow in G , which equals the capacity of the cut identified at each node, is

never decreasing, because quasi-inclusion adds infinite-weight edges and exclusion

increases the capacity on an edge.

The enumeration tree formed by using this partitioning scheme leads to the

problem of repeatedly generating the same cut. NDPRa gives back the same solution as

NDPR because the edge ae is already an edge of 0C . We use a generalized, non-binary

partitioning scheme to avoid this.

Every node in the enumeration tree obtained in the generalized partitioning

scheme will have as many subproblems as there are edges in the current cut. All the

subproblems below the current non-minimal cut 0 1 2{ , ,..., }kC e e e= are derived by

establishing a partition of the solution space of cuts C through the relationship

1 1 2 1 2 3

1 2 1

1

[] [] []
... [...]
[...].

k k

k

e e e e e e
e e e e

e e
−

= ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∩
∪ ∪ ∩ ∩ ∩ ∩ ∩
∪ ∩ ∩ ∩

C C C C
C

C

(25)

9

Here, 1 2 1[...]k ke e e e−∩ ∩ ∩ ∩ ∩C denotes the set of all cuts that include 1e through

1ke − , and exclude ke , which is implemented through 1 1{ ,..., }k kG e e e−⊕ .

An optimal solution to NDP must occur in one of the subsets of the partition,

although it cannot occur in 1[...]ke e∩ ∩ ∩C , because we have already established that

any cut in this set must be non-minimal. (0C is non-minimal and any cut in this subset is

a superset of 0C and can thus be ignored.) In other words, including all the edges e1

through ke in a new cut leads to repeated generation of the same cut which we know to

be non-minimal.

So, in this instance, our branch-and-bound algorithm will create k branches by

forcing quasi-inclusion and exclusion of the indicated edges from the initial cut. When a

minimum-weight, minimal s-t cut contains de is found, we can use its weight as a bound

to trim branches of the tree in the usual manner. A branch is also trimmed at any node if

an infeasible solution arises from all the edges that have been included in or excluded

from a current node, i.e., an infinite maximum flow is detected. Note that in solving an

IP by LP-based branch-and-bound, we allow fractional solutions and “hope for”

integrality. In our procedure for solving NDP, we allow non-minimality and hope for

minimality.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. IMPLEMENTATION

This chapter introduces a simple implementation of the new branch-and-bound

algorithm for solving NDP, along with a pseudo-code description of the algorithm and its

demonstration on a sample graph. After establishing the correctness of this simple

implementation, a generalized implementation is stated with a number of refinements.

Finally, some pathological cases and approaches to their solutions are discussed.

A. NEW BRANCH-AND-BOUND ALGORITHM

This section describes how the new branch-and-bound methodology will be

implemented to solve NDP. We assume that { }D dE e= and that we are given a directed

network. Note that an undirected network can be transformed to a directed network by

replacing each undirected edge by two directed anti-parallel edges whose weights are

identical to the weight of the undirected edge (Ahuja et al. 1993, pp. 39).

Algorithm C (Figure 1) to solve NDP is based on the near-min-cut enumeration

procedure, Algorithm B, in Balcioglu and Wood (2003). It is stated in simple terms for

clarity; we discuss a number of practical enhancements later in this chapter.

12

Figure 1. Algorithm C: A branch-and-bound algorithm to solve the network diversion
problem when { }D dE e= .

Algorithm C
INPUT: A directed graph (,)G V E= , ,s t V∈ , diversion edge de , and edge weights

>w 0 except that 0
dew = .

OUTPUT: A min-weight, minimal s-t cut Ĉ containing de , i.e., a solution to NDP.

GLOBAL VARIABLES: z ← ∞ ; Ĉ ← ∅ ;
begin

{ }dE e+ ← ; /* set of edges to be included */
E− ← ∅ ; /* set of edges to be excluded */
EnumerateC(G , s, t, w, E+ , E−);
print Ĉ ; /* If Ĉ = ∅ , the problem is infeasible */

end.

Procedure EnumerateC(G , s, t, w, E+ , E−)
begin

′ ←w w ; G G′ ← ;
for (each edge (,)e u v E−= ∈) (,)w u v′ ← ∞ ;
for (each edge (,)e u v E+= ∈) begin

add artificial edge (,)s u to G′ and let (,)w s u′ ← ∞ ;
add artificial edge (,)v t to G′ and let (,)w v t′ ← ∞ ;

endfor;
/* G′ and ′w are now interpreted to include artificial edges */
/* MaxFlow() below finds a min-weight s-t cut 0C in G′ , and its weight z , but subject

to edges E− being excluded from the cut, and edges E+ being quasi-included.
It uses a maximum-flow algorithm to do this. */
[]0, (, , ,)z C MaxFlow G s t′ ′← w ;
if ()z z≥ return;
if (0C is a minimal s-t cut in G) then

0Ĉ C← ; z z← ;
return;

endif;
for (each edge 0 \e C E+∈) begin

{ }E E e− −← ∪ ;
EnumerateC(G , s, t, w, E+ , E−);
if ()z z≥ return;

\ { }E E e− −← ; { }E E e+ +← ∪ ;
endfor;
return;

end.

13

The algorithm starts by assuming no initial solution, i.e., Ĉ = ∅ and z = ∞ . The

diversion edge de is added to E+ because any solution must contain de . Then, the

algorithm calls the procedure EnumerateC which attempts to find a min-weight s-t cut

containing de .

The procedure EnumerateC first modifies G into G′ by changing the weight of

each edge being excluded to infinity and by adding two artificial, infinite-weight edges

for each edge being quasi-included. Then, it finds an initial min-weight s-t cut 0C in G′ ;

its weight z is a local lower bound, i.e., a lower bound subject to the restrictions defined

through E+ and E− . 0C is also an s-t cut in G. If the local lower bound z is greater

than upper bound z , the algorithm backtracks because no solution better than the

incumbent can be found given the current restrictions (or any superset of them which

would occur below in the tree). If a minimal s-t cut whose weight is less than upper

bound z is found, i.e., a feasible solution to NDP is found, then this cut is kept as an

incumbent solution, and z is updated. The algorithm also backtracks in this case

because the weight of any other s-t cut below the current cut in the monotonic

enumeration tree can be no better than the incumbent solution. In other cases, the

algorithm calls itself recursively, creating a branch for each edge in 0 \C E+ , i.e., a

branch for each edge in the current cut yet fixed (forced in). For each branch, it finds a

new min-weight s-t cut that contains the edges being quasi-included and does not contain

the edges being excluded according to the generalized partitioning scheme. The

algorithm terminates when all of the branches are pruned through bounding arguments or

through infeasibility. The algorithm is clearly finite since the depth of the enumeration

tree is at most E .

14

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

s t

u v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s t

u v

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

s t

u v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s t

u v

Figure 2. Sample Graph. The diversion edge is 10 (,)e u v= . All edge weights are 1
except that

10
0ew = .

To illustrate Algorithm C, consider the enumeration tree in Figure 3, which

corresponds to solving NDP on the graph of Figure 2. The algorithm first finds an initial

min-weight s-t cut 1 2 10 11{ , , , }e e e e (node 1) in 10dG e G e⊕ = ⊕ at the root node at level

0. This is a non-minimal cut because it contains the minimal cut 1 2{ , }e e . Thus, the

algorithm must partition the solution space of cuts based on the edges 1 2 11{ , , }e e e .

After partitioning, the algorithm finds a minimal cut at node 2 5 6 9 10 11{ , , , , }e e e e e in

its first branch marked by 1e . It keeps this cut as an incumbent solution, sets 4z = and

backtracks (as it always does when it finds a feasible solution). The second branch,

1 2(,)e e , yields a non-minimal cut 1 7 10 11{ , , , }e e e e (node 3). The local lower bound is

3z = so the algorithm cannot backtrack. At this node then, it branches to 7e and finds a

minimal cut (node 4) better than the incumbent. It keeps this cut as the incumbent

solution and backtracks while setting 3z = . Nodes 5 and 6 are pruned by bounding,

without exploration, because the corresponding local lower bounds cannot be better than

z , i.e., no recursive call is made for nodes 5 and 6 because of the third return statement.

Finally, the algorithm terminates with the optimal solution *
1 9 10 11{ , , , }C e e e e= .

15

10{ }DE e=

1 2 10 11e e e e

1 7 10 11e e e e

1 9 10 11e e e e

5 6 9 10 11e e e e e

1e 1 2,e e 1 2 11, ,e e e

7e 7 11,e e

Level 0

Level 1

Level 2

1

2 3

4 5

6

not explored

not explored

10{ }DE e=

1 2 10 11e e e e

1 7 10 11e e e e

1 9 10 11e e e e

5 6 9 10 11e e e e e

1e 1 2,e e 1 2 11, ,e e e

7e 7 11,e e

Level 0

Level 1

Level 2

1

2 3

4 5

6

not explored

not explored

Figure 3. Enumeration tree for the graph of Figure 2.

B. CORRECTNESS OF THE ALGORITHM

To state that Algorithm C correctly solves the Network Diversion Problem, it

suffices to show that (a) the algorithm would enumerate all feasible cuts containing the

specified diversion edge if backtracking occurs only by infeasibility, and (b) the

enumeration tree maintains monotonicity of the objective function.

Balcioglu and Wood (2003) give a proof that all s-t cuts in a graph can be found

by using this partitioning scheme with an initial min-weight s-t cut. In our methodology,

we begin to partition by quasi-including the diversion at the root node of the enumeration

tree; but this is the same technique that Balcioglu and Wood (2003) use in their

enumeration algorithm, to force inclusion of edges. Hence, Algorithm C with no “value-

based backtracking” must enumerate all minimal cuts containing de .

When the solution space is partitioned recursively, the weight of an edge in G

has been increased to infinity or two infinite-weight edges have been added to G at each

node of the enumeration tree. The weight of a cut below a current node never decreases

because this process never reduces the maximum flow in G. Therefore, we conclude that

the enumeration tree is monotonic.

16

C. REFINEMENTS TO ALGORITHM C

Algorithm C can be refined in a number of ways for improved efficiency and

greater generality:

1. Algorithm C, as stated above, repeats much work for the sake of clarity, but

the actual implementation avoids this for efficiency. For instance, the implementation

does not modify the original graph from scratch at each node of the enumeration tree (by

using E+ and E−). Rather, once an edge is quasi-included or excluded from all cuts at

some node in the enumeration tree, it is automatically quasi-included or excluded from all

descendant-node problems, with no additional work required.

2. A max flow in a parent-node graph is always feasible for all its child-node

graphs. This makes identification of a min-cut in the child nodes significantly faster,

through a small number of flow augmentations, because we do not have to identify a max

flow and thus a min cut from scratch.

3. Most branch-and-bound algorithms can be improved by adding a heuristic that

finds a feasible initial solution so that the algorithm begins with z < ∞ . Nodes of the

enumeration tree can often be trimmed quickly this way, rather than having to wait for

the algorithm to stumble upon a feasible solution and corresponding finite upper bound.

The problem of finding a minimal cut containing a specific edge is an NP-complete

problem (Caryle and Wood 2002). Thus, the following heuristic is not guaranteed to

work (Curet 2001); in practice it usually does, however. Let (,)de u v= :

a. Using breadth-first search (BFS), find a shortest path (minimum number

of edges) from s to u that traverses neither v nor t. Let 1E be the set of

edges in that path.

b. Using BFS, attempt to find a shortest path from v to t that does not use any

vertex on the first shortest path. If such a path is found, let its edges be

denoted 2E .

c. If two paths can be found, a min-weight cut in 1 2()G E E∪ will be a

minimal cut containing de (Curet 2001).

17

We implement the heuristic as a subroutine TwoPathsHeuristic(G, s, u, v, t, w)

which returns a finite upper bound z if successful, and returns ∞ otherwise. Figure 4

gives an example.

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

s t

u v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s t

u v

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

s t

u v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s t

u v

Figure 4. Illustrating the TwoPathsHeuristic() to find a feasible solution for NDP. A
shortest s-u path is first identified as 1 1 3{ , }E e e= . Then, a shortest v-t path, which does
not use any vertex on the first shortest path, is identified as 2 12 9{ , }E e e= . Finally, a
minimal cut 2 4 5 6 10 11{ , , , , , }C e e e e e e′ = is computed in 1 2()G E E∪ , and () 5w C′ = is
kept as an initial upper bound for NDP when 10{ }DE e= .

4. We may wish to solve NDP when 1{ ,..., }D pE e e= , i.e., when 1DE > . This

is easily accomplished by running Algorithm C with 1de e= , then with 2de e= , etc., and

taking the best solution from among the p solutions. However, it is clear that we can

improve that procedure by using bounding information and partial solutions from one

subproblem to the next. Furthermore, if DE is large, it may be worthwhile to first find a

min-weight cut C′ in G and simply check to see if some diversion edge is contained in

that cut. (Recall that 0ew = for all De E∈ , and all other edges have positive weights.

Thus, if DE is large, it seems intuitively likely that one of the edges in DE will turn up

18

in a min-weight cut.) If it does, NDP has been solved by just a single min-cut (max-flow)

calculation. If not, the flow just found is still a useful point from which to begin the

algorithm.

The improved and generalized implementation of Algorithm C to solve NDP when

1DE > is shown in Figure 5.

Figure 5. An improved and generalized version of Algorithm C for 1DE > .

Algorithm C
INPUT: A directed graph (,)G V E= , ,s t V∈ , diversion edges DE , and edge

weights >w 0 except that 0w = for all De E∈ .
OUTPUT: A min-weight, minimal s-t cut containing at least one d De E∈ , i.e., a

solution to NDP.
GLOBAL VARIABLES: z ← ∞ ; Ĉ ← ∅ ;
begin

()0 0, (, , ,)w C C MaxFlow G s t←   w

if (0 DC E∩ ≠ ∅) then print 0C and halt;
for (each edge De E∈) begin

{ }dE e+ ← ;
u ← tail vertex of de ; v ← head vertex of de ;

0[,] (, , , , ,)z C TwoPathsHeuristic G s u v t← w ;
if (z z<) then

z z← ; 0Ĉ C← ;
endif;

endfor;
for (each edge De E∈) begin

{ }dE e+ ← ; /* set of edges to be included */
E− ← ∅ ; /* set of edges to be excluded */
EnumerateC(G , s, t, w, E+ , E−);

endfor ;
print Ĉ ; /* If Ĉ = ∅ , the problem is infeasible */

end.

Procedure EnumerateC(G , s, t, w, E+ , E−)
begin

Same as in Figure 1 ;
end.

19

D. PATHOLOGICAL CASES

We call an edge that is not contained in any simple s-t path in G an extraneous

edge. A pathological case arises when all diversion edges are extraneous edges for NDP:

In this case, a solution to NDP does not exist but Algorithm C “solves” the problem

correctly and returns Ĉ = ∅ . However, the algorithm may perform a huge number of

iterations in such cases. Pathological cases cannot occur, however, if the extraneous

edges in a network are identified and marked as “ineligible” to be diversion edges.

Before examining pathological cases, we need to define some concepts associated

with undirected graphs. Any vertex in a connected undirected graph whose removal

results in a disconnected graph is called a separation vertex. A graph containing a

separation vertex is called separable, and a graph that does not contain such a vertex is

called nonseparable. A subgraph G′ of G that contains no separation vertices is a

nonseparable component of the original graph.

Even (1979, pp. 57-62) gives an algorithm, based on depth-first search (DFS), for

finding all the nonseparable components and the separation vertices of a given graph in

O()E time. Consider the separable graph G in Figure 6 to find its nonseparable

components.

eb

c

d

a

i k

l

m

jf

g h

s teb

c

d

a

i k

l

m

jf

g h

s t

Figure 6. A separable graph G with separation vertices b, e, and i.

First, we modify G into (,)G s t+ by adding an artificial edge from s to t in

order to keep s and t in the same nonseparable component. See Figure 7. The

nonseparable components (Figure 8) are then found with Even’s algorithm.

20

eb

c

d

a

i k

l

m

jf

g h

s teb

c

d

a

i k

l

m

jf

g h

s t

Figure 7. The graph of Figure 6 modified to (,)G s t+ .

eb

c

d

a

i k

l

m

j

s t

i

g h

e

f1G′
2G′

3G′

eb

c

d

a

i k

l

m

j

s t

i

g h

e

f1G′
2G′

3G′

Figure 8. The nonseparable components of the graph (,)G s t+ from Figure 7.

The extraneous edges in the graph can now be determined easily: All edges of

any separable component of (,)G s t+ , except for the component containing both s and t,

are extraneous. For instance, the nonseparable components 2G′ and 3G′ of (,)G s t+ do

not contain both s and t. Therefore, the edges (,)e f , (,)i g , (,)g h , and (,)h i from 2G′

and 3G′ are extraneous, and are not allowed to be diversion edges. Thus, we are

effectively operating on the reduced graph G′′ of Figure 9.

21

eb

c

d

a

i k

l

m

j

s teb

c

d

a

i k

l

m

j

s t

Figure 9. The reduced graph G′′ after nonseparable decomposition. The artificial edge
(,)s t is removed because it is not useful any more.

The nonseparable decomposition process applied to undirected graphs is

guaranteed to identify all extraneous edges, and this process is also valid for finding

extraneous edges of a directed graph if it is treated as being undirected. But the

nonseparable decomposition process may not identify all extraneous edges in a directed

graph. In fact, there is no known polynomial-time algorithm to detect all extraneous

edges in a directed graph (Fortune, Hopcroft and Wyllie 1980). This is the same NP-

complete problem as finding a simple directed path from s to t that contains a specified

edge. Therefore, extraneous edges in large directed graphs may cause Algorithm C some

difficulties.

Our algorithm does not include a nonseparable decomposition procedure because

the networks that we test do not contain any nonseparable components. But it may be

worthwhile to implement this process because many real-world networks may contain

extraneous edges.

If an undirected network is being analyzed, we do not know in which direction an

interdiction edge (,)de u v= should appear in the optimal solution. That is, we do not

know if all s-t paths in * (,)G C u v− + traverse from u to v or from v to u. We can solve

the problem, in theory, by quasi-including the directed edge (,)de u v= and running the

algorithm, then quasi-including the directed edge (,)de v u= and running the algorithm

again, and then selecting the best of the two solutions as the optimal solution to NDP.

However, it is possible that the “optimal solution” for one of the orientations is *C = ∅ .

In this case, the algorithm may fail to find an optimal solution in a reasonable amount of

time for large networks. There is a simple way to deal with this issue.

22

Recall that an undirected edge is represented by two anti-parallel directed edges in

Algorithm C. Figure 10 shows the representation of G′′ from Figure 9, which would be

used in Algorithm C.

eb

c

d

a

i k

l

m

j

s teb

c

d

a

i k

l

m

j

s t

Figure 10. The directed representation of G′′ (Figure 9) used in Algorithm C.

Let us refer to the undirected edge (,)i k in G′ as { , }i k . The flow from s to t in

the directed representation of G′′ travels over either (,)i k or (,)k i . The removal of

either (,)i k or (,)k i represents that the edge { , }i k in G′′ is in a cut. If the edge (,)i k is

chosen to represent the diversion edge, then an optimum solution exists for NDP. On the

other hand, if the edge (,)k i is chosen, then no feasible solution is obtained to NDP:

Algorithm C might fail to return the answer *C = ∅ in a reasonable amount of time for

larger networks with similar structure.

To avoid this, we replace the edge { , }i k with a directed Wheatstone bridge as

shown in Figure 11. The edge 1 2(,)v v that takes place of the edge { , }i k with identical

weight is assigned as the diversion edge, i.e., two artificial, infinite-weight edges 1(,)s v

and 2(,)v t are added to the directed representation of G′′ . In this case, all finite-weight

cuts in the new graph must contain the edge 1 2(,)v v . Because of that, we conclude the

edge { , }i k always occurs in a cut oriented in whichever direction is appropriate.

23

eb

c

d

a

i k

l

m

j

s t

v1

v2

∞

∞

∞
∞

eb

c

d

a

i k

l

m

j

s t

v1

v2

∞

∞

∞
∞

Figure 11. Representation of the diversion edge { , }i k in G′′ using a Wheatstone
bridge.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. COMPUTATIONAL RESULTS

This chapter provides computational results for Algorithm C on a set of structured

test problems. The algorithm is written using the Java 1.4 programming language. All

tests are performed on a personal computer with a 1.5 GHz Pentium IV processor, 384

MB of RAM and running under the Windows XP operating system.

A. TEST NETWORKS

Topology is the physical configuration of connections comprising a network, i.e.,

it is the shape of the network. We use two common topologies in communications

networks to test Algorithm C. These topologies ensure high reliability because of their

high.

1. Grid Networks

A grid topology consists of a network where the vertices may be viewed as being

points on the L H× integer lattice in the non-negative quadrant. Each vertex is connected

to other vertices, which are positioned in the lattice directly to its north, south, east, and

west. There are two additional vertices, a source and a sink vertex, which are positioned

at the west and east side of the network, respectively. All westernmost vertices are

connected to the source vertex, and all easternmost vertices are connected to the sink

vertex. The number of vertices in a grid network is H L 2V = × + , and the number of

edges is 4 H L 2 LE = × × − × . Edges incident to s and t have infinite weights and cannot

be interdicted and cannot be diversion edges. Figure 12 shows an example of a small

grid network.

26

s t

∞

∞

∞

∞

∞

∞s t

∞

∞

∞

∞

∞

∞

Figure 12. An unweighted, undirected grid network with H 3= and L 4= . The
undirected edges between two vertices represent two anti-parallel directed edges, and
their weights are 1.

A grid topology, or something close to it, is often used in Wide Area Networks

(WANs) where reliability is important (Harris 1999).

1. Star-Mesh Networks

A star-mesh network (Miller 2001) is created if H “rays” of L vertices, each

connected by an additional center vertex, are cross-connected as well as radially

connected. The source vertex s is the center vertex. The sink vertex t is chosen from the

vertices which are positioned at the outer most ring of the network to increase the

distance between s and t as much as possible. The number of vertices in a star-mesh

network is H L 1V = × + , and the number of edges is 4 H LE = × × . Figure 13 shows an

example of a star-mesh network. Star-mesh networks are often used in local area

networks (LANs) (Sharma 1990, pp. 9-12) where the central vertex controls all the

vertices in the network.

s

t

s

t

Figure 13. An undirected star-mesh network with H 8= and L 2= .

27

B. RESULTS

We use a grid network generator (GGFGEN) written in Java by Balcioglu and

Wood (2003) to generate grid networks. We have coded a star-mesh network generator

(STARGEN) in Java to generate star-mesh networks. The input parameters of the

generators, H and L, determine the size of the generated network.

We test Algorithm C on unweighted and weighted networks separately. A

network is “unweighted” if all interdictable edges e have 1ew = . In our weighted

networks, ew for each interdictable edge is randomly drawn from the discrete uniform

distribution on []1,5 . For both weighted and unweighted grid networks, the edges

incident to s and t have infinite weights.

The sizes of networks generated are systematically increased to observe the

performance of the algorithm. Each network is also tested as DE increases; the set DE

is chosen randomly from E .

1. Unweighted Networks

Table 1 presents problem and solution statistics for Algorithm C applied to

solving NDP in unweighted, undirected grid networks. For all networks in the table, the

algorithm gives an optimal solution in less than one second: The TwoPathHeuristic()

always finds the optimal solution, and this solution is proven optimal at the root node of

the enumeration tree. Indeed, with some thought about the structure of these problems,

we can see that they can be solved by inspection.

Table 2 presents processing times on unweighted, undirected star-mesh networks.

In this network type, processing times, upper bounds, and optimal solutions change

suddenly depending on the diversion edges and sink vertex which are chosen randomly.

Increased numbers of non-minimal cuts in the enumeration tree imply longer processing

times. In fact, some of these problems, and the weighted problems for star-mesh

networks, cannot be solved to optimality in a reasonable amount of time. In these cases,

we have identified ε-optimal solutions, for rather large values of ε > 0 , by replacing

both instances of “if ()z z≥ then” with “if ((1 ε))z z+ ≥ then.”

28

Network |V| |E| |ED| zUB zLB w(C*)
Number

Non-minimal
Cuts

Number
Minimal

Cuts

Total Time
(sec.)

1 13 13 13 0 0 0.00
2 9 9 9 0 0 0.02
3 9 9 9 0 0 0.02
4 10 10 10 0 0 0.02
5 10 10 10 0 0 0.02

GRIDNET
10×10 102 380

10 9 9 9 0 0 0.02
1 19 19 19 0 0 0.02
2 19 19 19 0 0 0.03
3 19 19 19 0 0 0.03
4 19 19 19 0 0 0.05
5 19 19 19 0 0 0.05

GRIDNET
20×20 402 1560

10 19 19 19 0 0 0.06
1 30 30 30 0 0 0.03
2 30 30 30 0 0 0.06
3 29 29 29 0 0 0.06
4 29 29 29 0 0 0.06
5 29 29 29 0 0 0.06

GRIDNET
30×30 902 3540

10 29 29 29 0 0 0.08
1 39 39 39 0 0 0.08
2 39 39 39 0 0 0.09
3 40 40 40 0 0 0.09
4 39 39 39 0 0 0.11
5 39 39 39 0 0 0.11

GRIDNET
40×40 1602 6320

10 39 39 39 0 0 0.16
1 49 49 49 0 0 0.13
2 50 50 50 0 0 0.13
3 49 49 49 0 0 0.14
4 49 49 49 0 0 0.16
5 49 49 49 0 0 0.17

GRIDNET
50×50 2502 9900

10 49 49 49 0 0 0.19

Table 1. Problem statistics and computational results for Algorithm C on unweighted,
undirected grid networks. GRIDNET H×L denotes a grid network with H rows of L
vertices. zUB is the upper bound obtained from the TwoPathsHeuristic() procedure. zLB
shows the weight of the cut at the root node of the enumeration tree. The columns “Number
Non-minimal Cuts” and “Number Minimal Cuts” give the number of non-minimal cuts and
minimal cuts in the enumeration tree, respectively. Here, the algorithm does not need to
perform any enumeration, and therefore these entries are all zero. The total number of nodes
in the enumeration tree is the sum of these numbers plus one.

29

Network |V| |E| |ED| zUB zLB w(C*)
Number

Non-minimal
Cuts

Number
Minimal

Cuts

Total Time
(sec.)

1 6 6 6 0 0 0.00
2 8 6 8 6 0 0.02
3 11 6 11 234 0 0.08
4 7 6 7 4 0 0.02
5 10 6 10 132 0 0.05

STARNET
10×10 101 400

10 4 4 4 0 0 0.02
1 2 2 2 0 0 0.02
2 10 6 10 74 0 0.17
3 14 6 14 3963 0 6.45
4 17 6 17 110608 0 197.30
5 13 6 13 3456 0 6.16

STARNET
20×20 401 1600

10 9 6 9 107 0 0.25
1 29 6 29 (0.75)* 27449 0 170.39
2 11 6 11 163 0 0.81
3 27 6 27 (0.50)* 210612 0 1068.39
4 29 6 16 (0.75)* 83083 1 455.78
5 16 6 16 56305 0 298.16

STARNET
30×30 901 3600

10 23 6 23 (0.25)* 102270 0 551.97
1 39 6 39 (1.25)* 70205 0 710.28
2 10 6 10 74 0 0.87
3 21 6 21 (0.25)* 113284 0 1173.43
4 30 6 30 (1.00)* 15569 0 177.23
5 21 5 21 (0.50)* 195531 0 2050.08

STARNET
40×40 1601 6400

10 23 6 23 (0.75)* 14551 0 154.69
1 26 6 26 (0.50)* 3960 0 74.22
2 39 6 39 (1.50)* 20212 0 344.90
3 21 6 21 (0.50)* 4960 0 84.83
4 28 6 28 (1.00)* 5330 0 91.27
5 49 6 49 (2.50)* 7190 0 127.28

STARNET
50×50 2501 10000

10 3 3 3 0 0 0.84

Table 2. Problem statistics and computational results for Algorithm C on unweighted, undirected
star-mesh networks. STARNET H×L denotes a star-mesh network with H rays of L vertices
each. The difference between zUB and zLB is much larger for the more difficult problems.

* This problem could not be solved to optimality in a reasonable amount of time, so an ε-optimal solution is given.
The value of ε is given in parentheses.

30

2. Weighted Networks

Tables 3 and 4 present problem and solution statistics on weighted, undirected

grid and star-mesh networks, respectively. We use the same diversion sets on

unweighted and weighted networks. Integer edge weights are generated randomly on

[]1,5 .

Network |V| |E| |ED| zUB zLB w(C*)
Number

Non-minimal
Cuts

Number
Minimal

Cuts

Total Time
(sec.)

1 38 28 35 146 1 0.06
2 22 22 22 0 0 0.02
3 20 20 20 0 0 0.02
4 24 24 24 0 0 0.02
5 26 26 26 0 0 0.03

GRIDNET
10×10 102 380

10 19 19 19 0 0 0.03
1 48 42 48 1913 0 4.38
2 48 48 48 0 0 0.03
3 48 43 48 635 0 1.48
4 37 37 37 0 0 0.05
5 37 37 37 0 0 0.06

GRIDNET
20×20 402 1560

10 39 39 39 0 0 0.06
1 82 80 82 62 0 1.02
2 79 77 79 48 0 0.83
3 73 73 73 0 0 0.08
4 75 75 75 0 0 0.09
5 76 76 76 0 0 0.09

GRIDNET
30×30 902 3540

10 73 73 73 0 0 0.11
1 84 84 84 0 0 0.13
2 89 89 89 0 0 0.14
3 88 93 88 0 0 0.16
4 90 89 90 8 0 0.81
5 87 87 87 0 0 0.17

GRIDNET
40×40 1602 6320

10 85 85 85 0 0 0.20
1 123 121 123 50 0 5.66
2 122 121 122 28 0 3.05
3 112 112 112 0 0 0.25
4 112 112 112 0 0 0.25
5 111 111 111 0 0 0.28

GRIDNET
50×50 2502 9900

10 119 117 118 3 1 0.84

Table 3. Problem statistics and computational results for Algorithm C on weighted,
undirected grid networks. The problems that have some non-minimal cuts and no minimal
cut show that the feasible solution (zUB) found in the TwoPathsHeuristic() is optimal. The
problems with some non-minimal and minimal cuts show that the optimal solution is found
in the enumeration tree.

31

Network |V| |E| |ED| zUB zLB w(C*)
Number

Non-minimal
Cuts

Number
Minimal

Cuts

Total Time
(sec.)

1 23 19 23 4 0 0.02
2 35 21 32 131 1 0.06
3 35 15 21 29 3 0.03
4 12 12 12 0 0 0.02
5 25 16 19 21 2 0.03

STARNET
10×10 101 400

10 9 9 9 0 0 0.02
1 13 13 13 0 0 0.02
2 35 20 35 926 0 2.19
3 29 14 29 405 0 0.91
4 41 15 36 21139 3 47.09
5 24 17 24 49 0 0.16

STARNET
20×20 401 1600

10 28 14 25 675 2 1.42
1 69 21 69 (0.50)* 19068 0 137.75
2 21 18 21 6 0 0.17
3 66 24 66 (0.50)* 19001 0 153.12
4 61 18 40 (0.50)* 27971 1 203.89
5 38 16 38 8771 0 40.34

STARNET
30×30 901 3600

10 56 16 56 (0.50)* 18711 0 135.36
1 97 16 97 (1.25)* 19978 0 315.90
2 21 16 21 9 0 0.33
3 49 13 49 (0.25)* 62458 0 925.06
4 87 11 87 (1.25)* 23710 0 376.97
5 62 15 62 (0.50)* 53018 0 829.11

STARNET
40×40 1601 6400

10 50 10 50 (0.50)* 20310 0 315.41
1 115 21 115 (1.50)* 8774 0 203.16
2 118 17 118 (2.00)* 5090 0 127.12
3 54 21 54 (0.25)* 26486 0 673.65
4 84 16 84 (1.00)* 21363 0 513.34
5 118 18 118 (2.00)* 13662 0 365.40

STARNET
50×50 2501 10000

10 57 15 57 (0.50)* 11930 0 322.52

Table 4. Problem statistics and computational results for Algorithm C on weighted, undirected
star-mesh networks.

* This problem could not be solved to optimality in a reasonable amount of time, so an ε-optimal solution is given.
The value of ε is given in parentheses.

32

C. INTERPRETATION

In the grid networks, the difference between the weight of the feasible solution

found by TwoPathHeuristic() (upper bound) and the weight of the solution found at the

root node of the enumeration tree (the minimum-weight cut in dG e⊕) is small so that

the algorithm does not need to enumerate many cuts. In fact, dG e⊕ is likely to yield an

optimal solution in the grid networks because s and t are highly connected.

In the star-mesh networks, the typical initial minimum-weight cut from dG e⊕ is

the non-minimal cut that cuts edges incident to t, plus the diversion edge. But the optimal

solution will usually have many more edges in it. There is a large gap between the upper

bound and the initial cut. Because of this, the algorithm must enumerate a large number

of cuts.

33

V. CONCLUSIONS AND RECOMMENDATIONS

The network diversion problem (NDP) arises when a set of links in a network

must be removed using the least effort in order to force the user of the network to

communicate or travel over a specified set of links between two designated vertices. This

NP-complete problem may have intelligence-gathering and warfighting applications. In

this thesis, we have developed and implemented a general branch-and-bound

methodology to solve NDP.

NDP can be modeled as a binary integer problem (IP), but the literature indicates

that these IPs are difficult to solve. Therefore, we introduce a new methodology, a

general branch-and-bound approach, to solve NDP. The methodology is not based on

solving linear-programming relaxations. Rather, the minimality of the cuts identified is

relaxed. In this methodology, the algorithm first finds a minimum-weight s-t cut

containing the diversion edge which is quasi-included. If this initial cut is non-minimal,

then a monotonic enumeration tree is formed by forcing quasi-inclusion and exclusion of

edges from the current cut. An edge (,)u v is quasi-included in a cut by adding two

artificial, infinite-weight edges, one from s to u and one from v to t. An edge is excluded

from a cut by setting its weight to infinity. The associated enumeration tree is non-binary

since it may have as many branches below a node as there are edges in an s-t cut.

The algorithm has been improved by incorporating certain internal efficiencies,

and by adding a heuristic to find a good initial feasible solution. When there is more than

one diversion edge, the solution to the problem can be found by solving NDP for each

diversion edge separately, and taking the best of those solutions. However, by using

bounding information and partial solutions from one subproblem to the next, faster

solutions are obtained. In fact, it is often easier to find a solution when the number of

diversion edges is large.

We have tested our algorithm on two common communication-network

topologies, grid and star-mesh topologies; with diversion edges chosen randomly. We

increased the size of networks and the size of the diversion-edge set systematically to

observe the performance of the algorithm. Grid networks were tested with up to 2502

vertices and 9900 edges (a 50 by 50 grid network). An optimal solution to NDP for all

34

sizes of grid networks is obtained in seconds. For example, in an unweighted grid

network with 2502 vertices and 9900 edges (a) the algorithm returns an optimal solution

in 0.125 seconds when 1DE = , and (b) it takes only 0.172 seconds to get an optimal

solution when 5DE = .

We have also tested star-mesh networks with up to 2501 vertices and 10000 edges

(a 50 by 50 star-mesh network). An optimal solution to NDP is obtained in a reasonable

amount of time for networks as large as 20 by 20. Only some of the larger networks can

be solved optimally.

Although the Algorithm C works efficiently for certain test networks, its overall

run time and efficiency can be improved in different ways. For example, if the number of

non-minimal cuts in an enumeration tree of a NDP can be decreased, the algorithm will

be more efficient, and run faster. To accomplish this, the quasi-inclusion technique that

creates non-minimal cuts should be investigated for improvement or replacement.

Another practical improvement for computation times on some large networks

can no doubt be obtained by solving the initial maximum-flow problem using a more

efficient algorithm, e.g., binary blocking flow algorithm (Goldberg and Rao 1998).

For problems like the star-mesh networks, we may wish to partition based on

some set of edges other than those in the current minimum-weight cut. For instance,

branching on edges in a path from the diversion edge to s or t may prove more effective.

35

LIST OF REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., (1993), Network Flows, Prentice Hall,
New Jersey.

Balcioglu, A., and Wood, K., (2003), “Enumerating Near-Min s-t Cuts,” in Network
Interdiction and Stochastic Integer Programming, D. Woodruff, editor, Kluwer
Academic Publishers, Boston, pp. 21-49.

Carlyle, M., and Wood, K., (2002), Interview between M. Carlyle and K. Wood
Operations Research Department Naval Postgraduate School, Monterey, California, and
the author, 10 August.

Curet, N. D., (2001), “The Network Diversion Problem,” Military Operations Research,
Vol. 6, pp. 35-44.

Even, S., (1979), Graph Algorithms, Computer Science Press, Potomac, Maryland.

Ford, L. R., and Fulkerson, D. R., (1962), Flows in Networks, Princeton University Press,
Princeton, New Jersey.

Fortune S., Hopcroft J., and Wyllie J., (1980), “The Directed Subgraph Homeomorphism
Problem,” Theoretical Computer Science, Vol. 10, pp. 111-121.

Goldberg, A. V., and Rao, S., (1998), “Beyond the Flow Decomposition Barrier,”
Journal of the ACM, Vol. 45, pp. 783-797.

Harris, M. P., (1999), “Network Topologies.”
[http://www.delmar.edu/Courses/ITNW2313/ network.htm].

Miller, L. E., (2001), “Catalog of Network Connectivity Models.”
[http://w3.antd.nist.gov/wctg/netanal/netanal_netmodels.html].

Sharma, R. L., (1990), Network Topology Optimization, Van Nostrand Reinhold, New
York.

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia 22060

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California 93943

3. Professor R. Kevin Wood
Department of Operations Research, Code OR/Wd
Naval Postgraduate School
Monterey, California 93943

4. Professor Matthew Carlyle
Department of Operations Research, Code OR/Cm
Naval Postgraduate School
Monterey, California 93943

5. Deniz Kuvvetleri Komutanligi
Kutuphane
Bakanliklar, Ankara, TURKEY

6. Deniz Harp Okulu Komutanligi
Kutuphane
Tuzla, Istanbul, TURKEY

7. Bilkent Universitesi Kutuphanesi
Bilkent, Ankara, TURKEY

8. Orta Dogu Teknik Universitesi Kutuphanesi
 Balgat, Ankara, TURKEY

9. Bogazici Universitesi Kutuphanesi

Bebek, Istanbul, TURKEY

10. Dz. Utgm. Ozgur Erken
Deniz Kuvvetleri Komutanligi
Bakanliklar, Ankara, TURKEY

