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Abstract

In order to assist in the development of automation techniques for target recognition within
SAR imagery, we have implemented an evaluation platform, the ATR Workbench. This
will allow researchers and Geospatial Image Analysts (GIAs) to investigate the capabilities
of various commercial and experimental applications, singly or in combination, as applied
to the target recognition process. The platform will enable studies to determine which
aspects improve GIA performance when automated, which methods best improve classifier
performance, as well as which methods work better for particular environments and target
class definitions.

The ATR Workbench was developed, using several open source tools, to provide a plat-
form independent bridge between Automatic Target Detection (ATD) applications and tar-
get classifiers. It is capable of importing several kinds of ATD reports, of applying different
feature extraction and preprocessing algorithms and of implementing various aspects of Au-
tomatic Target Recognition (ATR) applications while importing, displaying and reporting
their results. Each step may be automated or operated interactively, as required. Initially,
this capability is demonstrated on imagery based upon the public MSTAR data set.

Résumé

Afin d’aider au développement de techniques d’automatisation pour la reconnaissance des
cibles a I'aide de I'imagerie RSO, nous avons mis au point une plate-forme d’évaluation
appelée ATR Workbench. Cet outil permettra aux chercheurs et aux analystes d’images
géospatiales (AIG) d’étudier les possibilités offertes par diverses applications commer-
ciales et expérimentales, de maniére individuelle ou regroupée, pour le processus de recon-
naissance des cibles. Cette plate-forme permettra d’effectuer des études afin de déterminer
quels aspects, quand ils sont automatisés, améliorent le travail des AIG, quelles méthodes
améliorent la performance des algorithmes de classification, et quelles méthodes conviennent
le mieux selon I’environnement et les définitions des classes de cibles.

L’ATR Workbench a été mis au point 4 |’aide de plusieurs outils du domaine public, afin d’en
faire une passerelle, indépendante des plates-formes informatiques, entre les application de
détection automatique des cibles (DAC) et les algorithmes de classification des cibles. Il
peut importer plusieurs types de rapports DAC, appliquer différents paramétres d’extraction
d’entités et algorithmes de prétraitement et appliquer divers aspects des applications de
reconnaissance automatiques des cibles (RAC) tout en important, affichant et rapportant
leurs résultats. Chaque étape peut étre automatisée ou exécutée de maniere interactive, au
besoin. Au début, ces possibilités seront démontrées avec une imagerie basée sur I’ensemble
de données MSTAR, qui sont du domaine public.
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Executive summary

Currently, analysis of radar imagery is primarily achieved through the efforts of human
geospatial and image analysts. Synthetic Aperture Radar (SAR) imagery is a projection
of range data onto a plane parallel to the sensor line of sight, rather than perpendicular as
occurs with human vision, photography and EO/IR imagery. Extensive training, experience
and effort are therefore already required to achieve good analysis of SAR imagery. For
this reason, among others, computer automation of some or all of the analysis is becoming
increasingly desired to allow operational personnel to concentrate their efforts elsewhere,
so long as the performance and efficiency of the analysis can be maintained or improved.

The core technologies underlying the automation of target recognition, such as pattern
recognition, machine vision, artificial intelligence, etc., are still considered to be in their
infancy and are subject to active research on fundamental principles. As a result, no theory
of Automatic Target Recognition (ATR) has yet been successfully derived, and is unlikely to
be until the foundations of the enabling technologies are themselves well understood. The
lack of a theory is problematic for implementing any ATR application, because without one
there can be no quantitative prediction of performance. However, qualitative prediction may
be achieved by building up empirical evidence and experience with a given application.

To this end, MacDonald Dettwiler and Associates worked under contract with DRDC Ot-
tawa to develop a software tool linking SAR target classifiers with target detectors, enabling
interactive or automated application of each step of the target recognition process. This
so-called ATR Workbench integrates various ATR software with intermediate processing
algorithms through a single user interface that will allow target selection, orientation, seg-
mentation and classification to be implemented by the user or by one or more automation
module. The ATR Workbench interfaces with external applications, including the OMW
ship detector, the HNeT classification engine and various Matlab-based components.

As an R&D tool, the ATR Workbench is in a state that will allow: a) the impact of automa-
tion on target recognition methodologies currently used by the Canadian Forces (CF) to
be examined, b) the development of standardized empirical evaluation techniques for SAR
ATR applications in terms of effectiveness on CF capabilities, ¢) effectiveness evaluation of
specific SAR ATR algorithms, d) better exposure of operational personnel to the capabili-
ties of various automation processes as part of demonstrations of end-to-end ATR systems,
e) a baseline for the operational community to provide feedback on further research, de-
velopment and implementation issues concerning SAR imagery analysis and exploitation,
and f) opportunities for operational personnel to develop confidence in the application of
specific SAR ATR algorithms to specific operational tasks, amongst others. Further devel-
opment of the software is expected to allow the ATR Workbench to be configured to provide
the prototype for any number of future ATR systems that could be implemented by the CF
to enable automation for operational target recognition requirements.

R.A. English, S.J. Rawlinson, N.M. Sandirasegaram. 2002. Development of an ATR
Workbench for SAR Imagery. DRDC Ottawa TR 2002-155. Defence R&D Canada -
Ottawa.
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Sommaire

A I’heure actuelle, I’analyse des imageries radar est essentiellement le fait de personnes
spécialistes en images et en caractéristiques géospatiales. Les images prises par radar a
syntheése d’ouverture (RSO) consistent en une projection de données en distance sur un
plan paralléle a la ligne de visée du capteur, plutdt qu’a la perpendiculaire comme c’est
le cas avec la vision humaine, la photographie ou I'imagerie EO/IR. Pour bien analyser
les images RSO, une formation poussée, de ’expérience et un certain effort sont requis.
C’est pourquoi, entre autres, I’automatisation informatisée totale ou partielle de 1’analyse
est hautement souhaitable, afin de permettre au personnel opérationnel de concentrer ses
efforts ailleurs, en autant que I’on puisse maintenir ou améliorer le rendement et ’efficience

de I’analyse.

Les technologies de base sous-jacentes & I’automatisation de la reconnaissance des cibles,
comme la reconnaissance des formes, la vision machine, I’intelligence artificielle, etc., en
sont encore 2 leurs premiers balbutiements et font I’objet de recherches fondamentales. Par
conséquent, on ne dispose pas encore d’une théorie bien établie de la reconnaissance au-
tomatique des cibles (RAC), et il est probable que ce sera le cas tant que les fondements
mémes de ces technologies ne seront pas eux-mémes bien compris. I'absence d’une telle
théorie pose donc un probléme pour I'implémentation de toute application RAC, car il est
impossible de faire des prévisions quantitatives pour ’efficacité d’une telle application.
Toutefois, il est possible de faire des prévisions qualitatives en acquérant des preuves em-
piriques et de I’expérience avec une application donnée.

A cette fin, MacDonald Dettwiler and Associates ont mis au point, dans le cadre d’un
contrat avec RDDC Ottawa, un outil logiciel qui fait le pont entre les algorithmes de classi-
fication de cibles sur les images RSO et les détecteurs de cibles, permettant ainsi I’exécution
interactive ou automatique de chaque étape du processus de reconnaissance des formes.
Cet outil, appelé ATR Workbench integre divers logiciels de RAC et des algorithmes de
traitement intermédiaire, grice a une seule interface utilisateur permettant a celui-ci ou 2
un ou plusieurs modules d’automatisation de s€lectionner, orienter, segmenter et classi-
fier les cibles. I’ ATR Workbench assure une interface avec des applications externes, dont
le détecteur de navires OMW, le moteur de classification HNeT et diverses composantes
basées sur Matlab.

Outil de R et D, le ATR Workbench permettra, dans son état actuel, les tiches suivantes : a)
étudier I'impact de I’automatisation sur les méthodes de reconnaissance des formes ac-
tuellement utilisée par les Forces canadiennes (FC); b) mettre au point des techniques
d’évaluation empirique normalisées pour les applications RAC avec images RSO, en termes
de leur efficacité pour les capacités des FC; c) évaluer I’efficacité des algorithmes RAC
spécifiques pour les images RSO ; d) mieux faire connaitre au personnel opérationnel les
possibilités des divers processus d’automatisation dans le cadre de démonstrations de systeémes
RAC entierement automatisés ; e) offrir un systéme de référence au personnel opérationnel
pour qu’il puisse faire connaitre ses observations et commentaires sur les orientations fu-
tures touchant la recherche, le développement et I’implémentation des syst¢émes d’ana-
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lyse et d’exploitation de I'imagerie RSO ; f) offrir au personnel opérationnel la possibilité
d’acquérir une certaine confiance dans I’application d’algorithmes RAC RSO spécifiques.

On prévoit que le développement du logiciel permettra de configurer I’ ATR Workbench afin
d’en faire un prototype pour tout nombre de futurs systtmes RAC que les FC pourraient
implémenter, compte tenu de ses exigences en reconnaissance opérationnelle des cibles.

R.A. English, S.J. Rawlinson, N.M. Sandirasegaram. 2002. Development of an ATR Work-
bench for SAR Imagery. DRDC Ottawa TR 2002-155. R & D pour la défense Canada —
Ottawa.

DRDC Oftawa TR 2002-155 v




vi

This page intentionally left blank.

DRDC Ottawa TR 2002-155



Table of contents

ADSITACt . . . . . . . e e e e e i
Résumé . . . . . . . . . e i
Executive SUMmMAary . . . . . . . . . . . . . it e iii
Sommaire . . . . . . . ... e e iv
Table of contents . . . . . . .. . .. ... L vii
Listof figures . . . . . . . . . . . . X
Listoftables. . . . . . . . .. . . . . . X
Acknowledgements . . . . . ... ... e xi
1 INOdUCHON . . .« o o o e e et e e 1
1.1 Background . . . . . ... ... ... 1

1.2 Scope of the Problem . . . . . ... ... ... ... ... ... ... 3

1.2.1  Criteria for ATR in SAR imagery . . .. .......... 3

1.2.2  Criteria for ATR Workbench Software . . . . .. ... ... 5

2 Method . . . . . . . . . 6
2.1 Software Design . . . . . . . . . . . ... .. 6

22 GUL ... 7

221 PyGTK . ... ... . . 8

222 OpenEV. . ... ... ... 8

223 LayoutandControls . .. .................. 8

23 Detection. . . . .. .. .. .. ... 11

2.3.1 Ocean Monitoring Workstation . . . . . ... ... ... .. 11

232 FuseBox:LandATD . ... ................. 11

24 Preliminaries for the Classification of Ground Vehicles . . . . . .. 12

25 The Classifiers . . . . . . .. . . ... . ... ... ... ... 15

DRDC Ottawa TR 2002-155 vii



2.5.1 Training and Design Criteria . . . . . ... ... ...... 15

252 HNeT . ... ... . 18

253 MLPNeuralNetwork . . . . . ... ... .......... 18

3 Results . . . . . . . . 20
31 Detection. . . . . . ... ... ... 20

32 Pre-Processing Algorithm Variations . . . . . ... ... ... ... 21

33 Classifier Performance . . . . . . .. ... ... .. ......... 21

4 Demonstration . . . . . . . . . . .. .. 24
4.1 Outline . . . .. ... ... 24

42 Operation of the ATR Workbench . . . . . ... ... ........ 25

5 Conclusions. . . . .. .. ... L e 28
51 Summary . . . . ... 28

52 Future Work . . . . .. .. ... ... 29
References . . . . . . . . . . .. 31
ACTONYIS . . . . . . . . o e e e 35
ANNEXES . . . . . . . e e e e e 36
A ATR Workbench Functional Design . . . . . .. ... ... ......... 36
Al Introduction . . . . ... ... ... 36

A2 System Overview . . . . . .. . .. ... 36

A21 OMW . . e 36

A.2.2 Target Orientation/Centering . . . . .. ... ........ 36

A23 HNeT . ... ... ... .. ... 36

A.2.4 Graphical User Interface (GUL) . . . . .. .. ... ... .. 36

A3 System Requirements . . . . . ... ... ... ... ........ 38

viii DRDC Ottawa TR 2002-155




B Technology Evaluation for ATR Workbench and Toolkit . . . . . ... ... 39

B.1 Introduction . . ... ... ... ... ... 39

B.2 Requirements . . . . ... ... ... ... ... ... ... 39

B.3 Other Goals and Guidelines . . . . ... ... ... ......... 40

B4 Evaluation . . . .. . ... ... .. ... .. 40

B41 Matlab. . . .. .. ... ... 40

B42 IDL . ... ... . e 40

B.43 OpenEV (Python, Gtkand OpenEV) . . . . . . . ... ... 41

B44 Java . ... ... 42

C Pseudo-Classes . . . . . . . . . . . i 43

DRDC Oftawa TR 2002-155 ix



List of figures

1 Geometry for remote sensingatank. . . . . . .. .. ... ... ... 2
2 Module System Design . . . . . ... ... ... . 6
3 ATR Workbench GUI Dependencies . . . . . .. .. ... .......... 8
4 Screen capture of ATR Workbench GUI and Setupmenu . . . . . .. .. .. 9
5 ATD applications called by the ATR Workbench. . . . ... ... ... ... 12
6 Orientation of an image of a tank using a Radon transform method. . . . . . 14
7 HNeT results for a T-72 classifier applied to the MSTAR test data. . . . . . . 19
8 Multi Layer Perceptron Neural Network . . . . . . .. ... ... ...... 20
9 ROC curves for the MSTAR Baseline, MLP Neural Net and HNeT classifiers. 23
10 Demo: new image loaded into the ATR Workbench. . . . . ... ... . .. 24
11 Panel function overview. . . . . ... .. .. [ 25
12 Demo: target selection. . . . . . . . ... ... 25
13 Demo: (left) target type selection menu, (right) class type setup menu. . . . . 26
14 Demo: importing a target list from an external ATD application. . . . . . . . 26
15 Demo: displaying ATR module classificationresults. . . . . ... ... ... 27
16 Demo: orienting animagechip. . . . . ... .. ... ... ... ..., 27
Al GUI Prototype Design . . . . . . . . . . . ... . ... 37
List of tables
1 Training images for the standard MSTAR evaluation method. . . . . . . .. 16
2 Orientation Algorithm VariationsResults . . . . ... ... ... ... ... 21
3 Confusion Matrices for the MSTAR baseline, MLP Neural Net and HNeT
classifiers. . . . . . . . ... 22
4 Sample report file showing ATR Workbench analysis . . . . . ... ... .. 28
X DRDC Ottawa TR 2002-155



Acknowledgements

The authors would like to thank Dr. Jeff Secker for his support in providing descriptions
of his upcoming FuseBox: Land ATD software, for making available a simulated Fuse-
Box detection list generated on the demonstration image used herein and his many useful
comments and observations.

The efforts of the Open Source software community are also appreciated, especially those
providing support for OpenEV, Python, PyGTK and GTK.

DARPA, the COMPASE Center and AFRL have made publically available significant parts
of their MSTAR data set along with their standard evaluation method, which has become a
invaluable tool for the ATR R&D community.

DRDC Ottawa TR 2002-155 Xi




This page intentionally left blank.

Xii DRDC Ottawa TR 2002-155




1 Introduction

Creating intelligent systems capable of mimicking traits found in humans is a challenge that
researches have been working on for decades [1, 2]. There has been some limited success
in applying artificially intelligent systems to specific domains, and to recognition problems
in particular. For example, optical character recognition [3, 4], speech recognition [5, 6]
and, more recently, in face recognition [7, 8]. The field of automatic target recognition
(ATR) has many new challenges, but it is hoped that some of the knowledge gained from
these related domains can be successfully applied to ATR. The goal of this project has
been to develop tools for ATR research in Synthetic Aperture Radar (SAR) and to create a
baseline application that Defence R&D Canada (DRDC) clients and associates can discuss
and provide feedback on. It strives to be both a platform to promote dialog and a platform
to facilitate research.

This document will explain the problem from both the mathematical and technological
perspective. It will then describe the methods used to implement a solution, including the
technology architecture and implementation details. Finally, some results and the current
capabilities of the software tool will be discussed.

1.1 Background

Currently, analysis of radar imagery is primarily achieved through the efforts of human
Geospatial and Image Analysts (GIAs). Unlike photography, Electro-Optical (EO) or In-
frared (IR) sensors, which generate imagery on a plane perpendicular to the Line of Sight
(LoS) as occurs in human vision, SAR imagery is a projection onto a plane that is coinci-
dent with the LoS [9] as shown in Figure 1. Thus, interpretation of SAR imagery is not
intuitive for human analysts and will require significant concentration and care to properly
analyze the imagery. Extensive training, experience and effort are therefore already re-
quired to achieve good analysis of SAR imagery. For this reason, among others, computer
automation of some or all of the analysis is becoming increasingly desired in order to allow
personnel to concentrate their efforts elsewhere, so long as the performance and efficiency
of the analysis can be maintained or improved [10].

Many attempts at providing ATR for imagery have not been able to maintain performance
criteria over sufficiently general conditions [11]. The core technologies underlying the au-
tomation of recognizing targets in imagery, such as pattern recognition, machine vision,
artificial intelligence, etc., are still considered mostly in their infancy. Often the science
they are built upon is itself not well enough understood and subject to active research on
fundamental principles {12]. As a result, no theory of ATR has yet been successfully de-
rived, and is unlikely to be until the foundations of the enabling technologies are themselves
successfully understood [13].

The lack of an ATR theory is problematic for implementing any ATR application because
without a theory no prediction of performance can be derived. In other words, for a given
performance requirement, one cannot quantitatively determine in advance whether an appli-
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Vision-like image

Figure 1: Geometry for remote sensing a tank. Vision-like imagery is perpendicular to the
line of sight, giving an unobscured view of the tank (green bar). SAR imagery is a
projection onto the LoS, thereby mixing ground, tank and tree information.

cation will be able to do the job or not. Often, a given ATR application will perform suitably
well for a specific test, but then inexplicably fail under operational conditions different from
the test conditions [14]. The only way to know for certain whether an application will work
under any given set of conditions is to apply it to those conditions. However, a qualita-
tive prediction of an application’s performance may be achieved by building up empirical
evidence and GIA experience with it. Furthermore, it is envisioned that this qualitative
assessment will become a necessary part of the scientific development of the ATR applica-
tions themselves, providing a measure of improvement [15], at least until an ATR theory
becomes available.

To achieve this end, it is necessary to establish a testbed for the automation processes to
be applied as a whole or in part in such a way that GIAs can obtain the required empirical
results and experience with a variety of ATR applications and subprocesses. This so-called
ATR Workbench is being developed towards achieving this goal by providing access to
multiple ATR methods via a single graphic user interface (GUI) implementation, in order to
classify targets originally detected manually within the ATR Workbench or as output from
an external ATD application. Initially, two ATR methods previously developed by DRDC
Ottawa are supported, along with interactive classification. As such, the ATR Workbench
can be considered to address 5 of the 35 requirements initially set for the much more am-
bitious Operational Digital Imagery Navigator (ODIN) project [16], but restricted to SAR
imagery. ODIN aimed to interface a multitude of Commercial Off-the-Shelf (COTS) anal-
ysis software for multiple sensors, data fusion and ATR to assist operational image analysis

for the Canadian Navy.
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The starting point for the ATR Workbench is a processed SAR image scene and possibly the
output from a pre-existing target detection program, which provides a list of target locations
within the image. DRDC Ottawa has been investigating several ATD applications, some
of which the ATR Workbench can use as ATD modules by supporting the import of the
applications’ report files.

The most mature of these is the Ocean Monitoring Workstation (OMW), which was de-
veloped in collaboration with Satlantic who is making the product commercially available
[17, 18]. The OMW is a detector for ships on the open ocean imaged by satellite SAR
SEnsors.

Another target detection application is under development by DRDC Ottawa as part of an
image fusion workstation [19]. Phenomenological segmentation of a scene is achieved and
the location of target segments reported. Currently, the fusion workstation operates under
MATLAB, also allowing an easy interface for the ATR Workbench.

At the other end of the system, DRDC Ottawa has designed classifiers for ground targets
[20, 21] that have been shown to successfully discriminate between the target classes de-
fined by the standard evaluation criteria published by the United States Air Force Research
Laboratory (AFRL) to be used with the publicly released set of Moving and Stationary
Target Acquisition and Recognition (MSTAR) images [22].

Using AND Corporation’s Holographic Neural Technology (HNeT) {23] as the classifier
engine, discrimination between target classes is achieved by determining invariant Fourier
coefficients from the magnitude imagery of the training vehicle. Other feature types, such as
Zernike moments and wavelet coefficients are under investigation, but have yet to attain as
successful results as the Fourier coefficients. Meanwhile, a Multi-Layer Perceptron (MLP)
Neural Network (NN) classifier has been developed by DRDC Ottawa to again discriminate
target classes using invariant Fourier coefficients [21].

A ship classifier using the HNeT engine and exploring Haar, wavelet and Zernike moment
invariants is under development using ship data collect by the DREO XDM SpotSAR radar
[241. This classifier will be incorporated into the ATR Workbench at a later date.

Thus, the challenge for constructing the ATR Workbench has been to implement appropriate
automated and manual techniques to preprocess parts of the imagery scene at each detection
location, so that the target can be evaluated by the user or sent to one or more classifier
modules. Compilation, display and reporting of the classification results then provides the
user the necessary information to qualitatively assess performance of the ATR applications.

1.2 Scope of the Problem
1.2.1 Criteria for ATR in SAR imagery

Fundamentally, the requirement for automating target recognition is to determine the ap-
propriate characteristic function, 7, for each target class, C, so that for any target object, ¢,
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we have
1, tec, (1.1)

xc(®) :{ 0, otherwise.

In the case of ATR on SAR imagery, we are removed from the above ideal case in that
we do not have access to the actual target object, but only to a limited number of images,
{I,’l}l,:/:l, each containing a representation of the object. Each image representation contains
only a subset of information about ¢, and that information is often merged with or modified
by information particular to the object’s surroundings (clutter) and the sensor (noise) at the
time of imaging.

In an attempt to re-establish separation of the target information from all other sources,
feature extraction is performed, i.e., specific properties { fm}‘,‘,f:] are calculated, according
to their expected dependency on ¢ alone,

fu () = fu(I,),  forall possible ny, n,. (1.2)

Thus, actual image ATR applications operate using a projection of the original characteristic
function onto the subspace of information spanned by the selected feature set. Hence,
instead of (1.1), we need to obtain a function

. 1, ,
e (f1(1,’l),fz(1,’1),--‘,fm(l,’,),---)2{ 0 heise. (1.3)

valid for every image I},. Unfortunately, it may be that (1.3) does not have a solution. There
may exist, for example, t; € C and £, ¢ C such that I}! = I12, which would yield identical
arguments on the left hand side of (1.3) but require opposite solutions on the right.

Furthermore, the images are also characterized by the physical geometry involved between
object and sensor for each data acquisition as well as the image processing techniques used
to generate each [}. Since we are using only a finite number of images, it is not possible
to adequately account for the results of n ¢ {1,...,N}. Therefore, in order that (1.2) be
satisfied, it is necessary to ensure that each source of additional information is, as much
as possible, either 1) independent of both n and ¢ (e.g., use of the same image processing
techniques for all images), or 2) variation as a function of n identically for each ¢ (e.g.,
always collect imagery for each target from the same specified geometries).

In practice, we use only 1) a finite subset of C, {t1,...,f0} C C, namely those objects for
which the appropriate imagery exists, 2) a finite subset {I,’{’}:/il for each ¢,, viz., a finite
number of images for each of those objects, and 3) { fm}%:l, a finite subset of features to
be extracted. While the first two choices are due to limitations on the availability of data,
the third choice is made due to computational limits on time, memory and storage, as well
as issues of complexity, independence and derivation of the features [25]. It is, therefore,
the determination of an appropriate set {f;, %:1 that is at the heart of selecting one ATR
system over another. The choices are varied and without much theoretical guidance.

Most ATR systems require feature sets to be preselected manually and are chosen based on
empirical evidence for being both able to discriminate classes and invariant to clutter and
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noise [26, 27]. Such a selection method may aim to mimic what a human analyst will look
for in making a decision, or may be based on an analytical investigation of the problem
itself. Another method is to select a space of potentially discriminating feature and then
use the training data to determine invariance within the feature space. The most invariant
features are then selected as the feature set. It is the latter method which we pursue for the
initial ground-based ATR classifiers.

1.2.2 Criteria for ATR Workbench Software

In order to achieve the ATR criteria given in Section 1.2.1 under operational conditions
encountered by GIAs, researchers require a method by which to examine the effects au-
tomation applications have on the current target recognition process, without hindering the
current capabilities of the GIAs. To this end, the concept of the ATR Workbench was de-
rived.

A number of requirements have been developed for the ATR Workbench software to support
this research (see Annex B). Specifically, the software must be modular, integrate with
existing technologies, be based on established libraries, be quickly developed and run under
common computer operating systems.

Modular systems are well suited for experimentation tasks because they permit easy re-
placement of system components for evaluation. Ideally, components could be swapped
into and out of the system framework for testing without affecting other parts of the sys-
tem. This requirement also implies that the interfaces between modules needs to be well
defined and easy to use. The format for the exchange of data needs to be simple to read and
write.

A number of ATR applications (HNeT, OMW) previously developed are the basis for par-
ticular modules. Therefore, the system required easy integration with existing technologies
as well as with any future applications developed. To a certain extent the modularity of
the system facilitates this, but the choice of programming language used to implement the
modular is also an important consideration. In essence, the language needs to “glue” the
separate ATR application modules into a cohesive system.

To avoid duplicating previous efforts and to focus resources on the ATR problem, the appli-
cation was built upon established software libraries that provide a solid foundation. These
libraries provide the low-level foundation upon which the ATR Workbench was built. Ac-
cess to the library source code is an advantage for customization (if necessary) and fixing
bugs. Documentation and support for the libraries also factor for this requirement. Further-
more, the libraries need to be capable of supporting vector and raster graphics, and need to
support many of the standard geographic file formats for compatibility.

The application must be developed rapidly and easily modified as future requirements dic-

tate. Application speed is not an important consideration, but development time and func-
tionality are. Therefore a scripting language such as Python and Matlab were considered.
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Figure 2: Module System Design

Since it is unclear which operating system the application will be required to run under, the
software supports multiple-platforms (i.e., UNIX and Windows). This requirement has a
significant impact on the choice of programming language, libraries and, in particular, the
GUI (Annex B).

2 Method
2.1 Software Design

The chosen system design (Annex A) consists of four modules: a detector, pre-processor,
classifier and the GUI. Each module corresponds to a step in the processing chain, except
for the GUI and its underlying framework that connects all the steps. The processing chain
can be completely controlled from the GUI. This permits an interactive environment where
an image analyst can evaluate the results from each step, correct them if necessary, and then
re-initiate the processing.

Figure 2 provides a high level view of the modules and their relationships. First, the image
data is read in by the GUI and displayed for the user. Next, if desired, a detection module
is initiated that imports potential targets from a pre-existing detection report on the image
and highlights the location on the image in the GUIL Otherwise, the user may interactively
select target locations. The user is able to examine the results of the detection step and make
any desired alterations before starting the next step in the chain. Using the GUI, detected
targets are extracted one-by-one as subimages and subjected to the image pre-processor that
performs analysis and re-formatting of the subimage before it is sent to the classifier. The
classifier is responsible for determining measures of likelihood that the target belongs to
pre-set target classes. These results are then returned to the GUI for display to the user.

The open-source programming language, Python was chosen to write the GUI and ATR

Workbench framework. Although not widely known, Python is a general purpose scripting
language, similar in many ways to Perl or MATLAB [28]. One of the primary reasons
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for choosing Python was because of the geographic library, OpenEV, and the GUI library,
PyGTK, both of which are supported on a number of different platforms (see Section 2.2).
As a scripting language Python also provides a development environment that facilities
rapid proto-typing of algorithms and easy modification. Its strengths are integration and
support through well developed libraries, rather than speed that a compiled language like C
would provide. As well, Python is supported on most operating systems currently available
to the public.

To integrate existing software, Python has the capability to make operating system level
calls to start applications. Typically, the ATR Workbench specifies input file locations via
the command line to applications when they are started by Python. Output from the pro-
grams is written using a known filename that is then ingested by the Python GUIL

In the case of HNeT under Windows, the native COM/ActiveX automation interface is
used. This provides Python with direct access to the many functions of HNeT and allows
for greater control of the classification process. Although HNeT is not currently available
for UNIX platforms, a Linux version is planned and a Python wrapper could be used to
achieve a similar interface, or HNeT could be implemented using operating system level
calls as above.

22 GUI

The most difficult challenge in implementing the GUI is that the application has to be
supported on both Windows and UNIX platforms. Typical windowing libraries, such as
Microsoft’s MFC and X-Window’s xlib, are very dependent on their respective operating
systems. This challenge was recognized early on in the design process based on previous
project experiences. Therefore, selecting an appropriate combination of programming lan-
guage, graphics and window library that were easily portable across operating systems was
a primary consideration.

Several options were considered for the GUT (Annex B) such as MATLAB, IDL Java and
Python. The final evaluation revealed that the combination of Python with OpenEV and
PyGTK best met all the requirements. They are proven to work on both UNIX and Windows
systems, OpenEV has extensive support for geographic raster and vector formats, supports
large images and the Python language makes for quick development. GTK was a natural
choice as it was already being used by OpenEV, has been integrated for use in Python and
provided all the basic window library features required.

Figure 3 shows the technology dependencies of the application GUI and how they are all
related. The ATR Workbench code is written in Python and depends on two main libraries,
PyGTK and OpenEV. OpenEYV itself also depends on PyGTK to a certain extent to provide
services and depends on OpenGL for graphics. The lower levels are in C, with the upper
level that the ATR Workbench depends on in Python.
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Figure 3: ATR Workbench GUI Dependencies

221 PyGTK

The PyGTK library provides all the GUI objects a user typically sees and interacts with
for an application. For example, it provides a window object that can contain other objects
such as a menu bar, buttons, an image display area, text box etc. The library also provides
an event handling mechanism whereby a function is called when a user takes particular
actions. For example, when a mouse click occurs over a button the associated function is
executed. PyGTK is essentially just a Python interface to GTK. Furthermore, it is an open
source library, freely available for the development of and use by applications based upon
it.

22,2 OpenEV

OpenEV was developed by Atlantis Scientific Inc. The name OpenEV is used for both
the geographic image library and a reference application that demonstrates the library’s
capabilities. Any references to OpenEV in this document are to the library only.

The OpenEV library provides two types of image layers, raster and vector. It supports
reading many types of geographic raster formats and it supports both reading and writing
for vector layers [29]. Tools to draw and edit vector layers are available through the library,
as are tools to zoom and pan the view area. The view area can display images with their
associated geographic projection. The PyGTK GUI provides the user with control over the
operation of OpenEV’s functions in support of each step of the ATR process.

Since OpenEV is an open source initiative, it is freely available for both the development
and use of applications based upon it {30, 31].

2.2.3 Layout and Controls

The interface of computer applications has a large impact on how usable the tool is to human
operators, and ultimately how successful the tool is at accomplishing its task [32]. For well-
established tools the interface has usually evolved over time and a standard developed. This
facilitates a user’s ability to quickly learn a new or slightly different tool, as the interface
is already familiar. The automobile is an excellent example of this. Although the location
of pedals and controls varied considerably when cars were first invented [33], the controls
standardized over time with user feedback. Today’s standard automobile controls make it
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Figure 4: Screen capture of ATR Workbench showing the GUI layout (left) and Setup menu
(right). A detailed example of the ATR Workbench operation is given is Section 4.

relatively easy to drive cars from different manufacturers, or to drive a new model. Just like
automobiles in the past, computers interfaces are becoming increasingly standardized [34].
New software applications are therefore advised to follow existing standards or paradigms
were applicable to ensure maximum usability [35].

In the absence of a well-developed standard interface for ATR, a reasonable design ap-
proach would be to follow the logical steps for the task that the human GIA would have
done, thereby allowing the operators to relate their real world experience with the process
to that of the automated application. By providing the user the ability to implement each
step interactively, the initial ATR Workbench user interface provides a basis for which user
feedback can be generated to guide development of the application accordingly.

To illustrate this process, a screen capture of the GUI is presented in Figure 4. It shows
the chain of steps loosely displayed in a left to right fashion. High-level information for
the scene is on the left, with more details as you move right. In the far-left panel is a
list of potential targets, their current status (unclassified, classified [automated], possible,
probable, unknown) and a target class type if it has been classified. This panel is updated
as new information is generated or input by the user. In addition to the class types pre-
determined for the classifier training definitions, new class types may be made available by
defining by them under the Setup menu. Two special pseudo-class types are also available
(see Annex C). The “Not Target” type allows the user to indicate that a detection is likely
a false alarm, while keeping the location as part of the detection list and any reports to be
generated. The “Unknown” type may be selected by the user to indicate that the appropriate
class for the target cannot be determined or may assigned by a classifier to indicate that the
target likely belongs to none of the pre-determined types. Selecting an item in this panel’s
list also displays the item’s detailed information and view in the following windows.

The second pane is the image overview window. It displays the image being analyzed and
the locations of potential targets. If a potential target has been classified, the marker (an
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open box) for its location is highlighted in a particular colour. The user assigns each target
class a colour. The colour coded targets in the overview window give the user a very quick
and easy way to interpret the relative locations of targets in the scene and which targets
remain unclassified. Tools above the window give the GIA the ability to zoom in and out,
select particular targets, and manually include new target locations in the scene that may
have been missed by the detection process.

The next panel is the zoom window at the top right. Its purpose is to display a single target,
compared to the previous window that gave an overview of many targets. This close up
view allows the user to better manipulate the image, to manually classify the target or to
verify the correctness of the automated classifier results. It also serves as an input window
for the manual rotation and centering of the target prior to sending the image to one of the
automated classifiers.

In the bottom right is a panel that displays the classifier output. Unfortunately, the limita-
tions of the width of the screen prevented this panel from being placed to the right of the
zoom window, to preserve the left to right increase in detail. Currently, a table format is
used, with three columns: class types, numerical likelihood measures and horizontal bar
graphs. The bar graphs provide a visual representation of the relative measures and make
for easy comparisons by a GIA. The class types displayed in the panel are all the types that
have been defined in the ATR Workbench Setup. The automated classifiers will generate
zero likelihoods for class types that have not been pre-determined and trained upon, except
for the Unknown type, for which a likelihood measure of the target belonging to none of
the pre-determined types is calculated as described in (2.12).

Information about the classification results from an ATR module is also incorporated in
other displayed aspects. The colour outlines in the zoom and overview windows are updated
to reflect the fact that the target has been classified as a particular type. Additionally, the
list in the leftmost panel is updated with the new target type.

The user has the option to manually override the type assigned by the classifier. A dialog
box for manual intervention is available by right clicking on a target item from the list in
the leftmost panel. When a GIA classifies the target, the status of “Possible,” “Probable” or
“Unknown” is used to indicate the level of confidence. The term “Classified” is reserved to
indicate a decision from an ATR module.

The initial design also called for two additional zoom windows so that multiple targets
could be displayed simultaneously for comparison and parallel analysis. They not been
included in the initial version due to the additional complexity of many windows, but will
hopefully be implemented in a future version.

In general, colour and visual representations have been used where possible as this allows
the user to more quickly and easily interpret information from the application. Optimizing
these visual representations is an area of active research, towards which the ATR Work-
bench may contribute. Each panel’s size can be changed by dragging the dividers, allowing
the user determine the appropriate size of each window.
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Since the panels, from left to right, roughly follow the steps involved in target recognition,
they should provide a natural way to view the process. For each of these steps information
is fed back to the previous panels once new information about a target is available.

Good user interfaces are challenging to design, particularly when no established models
exist. It is anticipated that an iterative process involving feedback from the GIAs will help
to refine the interface to make it as operationally efficient and friendly as possible.

2.3 Detection

Initially, several basic formats of target detection lists are considered for importation into
the ATR Workbench, corresponding to current ATD applications being studied.

The detection step is primarily concerned with identifying locations in the image that are
possible targets. Subimages at these locations will later be sent to the classifier to atternpt
to determine the type of target. Through the GUI the operator can view the output from the
detection step and remove any obviously false targets or make any desired additions.

2.3.1 Ocean Monitoring Workstation

The OMW (Figure 5) was developed by Satlantic in collaboration with DRDC Ottawa and
is a currently available as a commercial product. Currently, the OMW requires imagery
to be input in CEOS format and supports RADARSAT 1 and ERS 1/2 data. It uses a -
distribution model with a Constant False Alarm Rate (CFAR) method to detect potential
targets, while size and shape are used to eliminate some false alarms [36]. When land is
present in a scene, a geolocated land mask is generated to restrict the detector to ocean pix-
els. The basic technology involved also uses Radon Transforms to detect wake signatures.
From a ship’s wake, speed and direction of the target can often be determined, although the
ATR Workbench does not currently incorporate this information. The detected locations
determined by the OMW are then output to a report file that the ATR Workbench reads.

2.3.2 FuseBox: Land ATD

FuseBox is an image fusion system being developed at DRDC Ottawa, and the Land ATD
toolbox includes algorithms for the ATD of stationary land targets. It is the first toolbox to
be implemented, with the other planned toolboxes in FuseBox to include Feature Extraction
and Change Detection [19].

The FuseBox: Land ATD system is being designed to improve the detection of land targets
in difficult scenarios (e.g., small targets in high clutter, and those that are camouflaged
and/or concealed), by detecting targets in SAR imagery along with either Multispectral
Imagery (MSI) or Hyperspectral Imagery (HSI) data. The two detection sets are then fused,
which increases the Probability of Detection (Py.;) and lowers the False Alarm Rate (FAR).
It also has a facility for interactive verification of the detection list.
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Figure 5: ATD applications called by the ATR Workbench. (Left) OMW detection results
(front) for RADARSAT image (back). (Right) FuseBox: Land ATD detection results.

There are several algorithms that will be implemented for the target detection and fusion
processes. For SAR imagery, two data-based statistical segmentors are currently imple-
mented for target detection. One of these has a CFAR detector, while the other has detec-
tion based upon a mean threshold. There are two additional algorithms under development,
including a model-based statistical segmentor with a CFAR detector. In all cases, the option
to speckle filter the raw SAR image prior to detection will be available. For HSI data, the
Spectral Angle Mapping (SAM) algorithm is currently implemented for target detection.
For MSI, an anomaly detection algorithm will also be implemented for target detection.
For the fusion process, a binary fusion algorithm is currently implemented to fuse the two
detection lists. It is expected that another fusion algorithm based upon evidential reasoning
will be implemented.

2.4 Preliminaries for the Classification of Ground Vehicles

Since man-made objects are often built with a high degree of symmetry and periodicity
that is not prevalent in nature, and since these characteristics are replicated in imagery of
such objects, Fourier coefficients have been found to be a useful space from which to derive
characteristic feature for target classes of man-made objects [37].

Any image can be decomposed into a combination of suitably weighted periodic functions.
When those functions are the complete set of discrete two-dimensional sinusoids supported

within the image size, the weights form a set of numbers, the so-called Fourier coefficients,
that uniquely describe the image in reciprocal space.

The Fourier coefficients of a P x Q sized image, I/, can be calculated using the two-
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dimensional Discrete Fourier Transform, namely,

Ft kp,kq ZZ (p q 127‘ PkP/P2+(qu/Q2) 2.4)
p=lg=1

for each k, € [1,P] and k4 € [1,Q] in reciprocal space. This yields a set of PQ complex
coefficients, from which we can extract two numbers: the real and complex values. For
real-valued image pixels, e.g. amplitudes, the real part of the coefficients correspond to a
cosine decomposition and the imaginary part to a sine decomposition of the image. Since
sine and cosine functions are not mutually independent, differing by a constant phase shift
of m/2, we have each real-valued number appearing as a pair. Thus, PQ Fourier coefficients
are sufficient to reconstruct the original P x () image.

The observed separation and direction of periodicity in an image, however, is a function
of the imaging geometry with the object. Both the independent and variation methods
indicated in Section 1.2.1 have been examined to best achieve (1.2), and it was determined
that eliminating azimuthal and depression angle dependence produced better results, which
are implemented as preprocessing algorithms.

To eliminate dependency on the depression angle, 84, the slant-range, s, is converted to
ground range (along a flat-Earth plane), g,, by projecting onto the ground along a direc-
tion perpendicular to the slant plane, i.e., g, = s,/ cos(8,) and resizing the pixels in range
accordingly. Note that 6, is independent of the target object and depends only on the ge-
ometry of the sensor during data collection. This method recovers the correct ground range
distance between two point source targets on flat, level ground when imaged by a radar
sensor at infinite distance (in order to have plane waves).

On the other hand, the azimuthal angle does depend on the target object, in the sense that an
object lacking rotational symmetry will have a “front” which defines the object heading, ¢;,
while the sensor motion in cross-range defines the flight heading, ¢ . The relative difference
provides the azimuthal angle,

Oa =0 — Of + 05, @.5)
where ¢; is the squint angle measured from the aircraft heading to the look direction of the
sensor in the clockwise sense. If an object does have rotational symmetry (in the ground
plane), then the image need only be rotated to an orientation consistent with any preferred
direction that would be part of the class definition, or not at all if the object has circular
symmetry. Thus, to mitigate the azimuthal angle effects, it is necessary either to acquire
imagery over a complete set of azimuthal angles or to rotate the images to a common ori-
entation. While the former does not require any additional preprocessing of the imagery, it
is often not feasible. The latter requires further analysis to determine the object heading in
order to apply (2.5).

The current implementation of ATR classifiers is primarily concerned with imagery of
ground vehicles. Man-made vehicles typically have a high degree of mirror symmetry
about the axis along which the vehicle normally moves, but little symmetry otherwise. Fur-
thermore, stability issues support a preference for vehicles that are longer along the axis
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Figure 6: Orientation of an image of a tank using a Radon transform method. (a) Original
SAR image with shadow obscuring right rear of vehicle. (b) Edge binary mask, with
far-range shadow line removed. Yellow arrows indicate direction of projection onto the red
Radon axis. (c) Radon transform of the edge binary mask. The colors indicate the relative
bin values (blue=0, red=max) along the axis corresponding to each A. (d) Image rotated by
the A corresponding to the highest bin value.

of motion than in the other dimensions [38]. Thus, by determining the longest edge of a
vehicle in its image representation, ¢; can be estimated, up to a rotation of 180°, with a high
degree of confidence.

Manual selection of the longest edge can be achieved by allowing the user to draw a line
parallel to that edge and the image rotated until the drawn line runs vertically. To automate
the process of determining the orientation of an object in a SAR image chip, we implement
a Radon transform method [39] on the image. For a given angle, A, the Radon transform
of a digital image projects each pixel onto an axis passing through the centre of the image
with slope A. This property is particularly useful when applied to binary images, where
it effectively provides a count of white pixels along each column of the A-rotated image.
Thus, when a line is rotated so as to be vertical, i.e., falling entirely within one column, the
Radon transform calculates the length (in pixels) of that line. Since our objective is to find
the orientation of the longest edge in an image, the procedure is straight-forward: convert
the image into a binary mask of the target pixels, extract the edge pixels and generate the
Radon transform of the results for all A € [0,180°] (Figure 6). The A associated with the
global maximum value of these transforms will determine ¢, up to a rotation of 180°.

This method assumes that all edges of the vehicle will be represented in the image and that
the edges of the image representation correspond with actual edges of the object. However,
the physics of the radar sensor data acquisition ensures that a shadow region exists, which
usually obscures the vehicle’s edges in the hemisphere farthest in range from the sensor, as
seen in Figure 6a. Often, this shadow region produces an edge to the image representation
that runs along a body diagonal of the object, does not correspond to an object edge and is
longer than the actual edge of the vehicle. Fortunately, this shadow edge is always oriented
in the cross-range direction, and appears along the far-range of the image representation.
By removing the far-range pixels of the edge binary mask, this shadow edge can be removed
with certainty when present (Figure 6b). If the shadow edge is not present, then this process
can destroy the farther edge or edges of the image representation, but the mirror symmetry
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assumed for the vehicle assures us that at least one of the longest vehicle edges will survive
and will be identifiable using the Radon transform.

Since obtaining accurate orientations for each object is vital for the operation of classi-
fiers designed for azimuthal independence [40, 25], several algorithm variations were ex-
perimented with to find the most accurate method. All the variations considered involve
extracting the segmentation of the target region from the image chip.

The first method attempted followed these steps: threshold the image, select the connected
region with the highest median intensity, take the perimeter pixels then remove the pixels
in the shadow region and find the Radon transform as described above. This method gave
satisfactory results, although it was found that it was susceptible to errors for images where
parts of the object were disconnected due to shadow. As well, the algorithm assumes the
maximum intensity region in the image is part of the target.

A more robust method that would include these disconnected target regions was attempted.
The method utilized a morphological operation [41] in an attempt to bridge the disconnected
regions. First, region-growing was applied to each mask, possibly connecting nearby re-
gions to each other. Then, contraction was attempted, but implemented only where the
newly made connections were unaffected. For regions that are located in close proximity
and very likely part of the same larger object, this had the effect of connecting regions, while
otherwise leaving the boundary edges unchanged. In particular, regions that are partially
located in the shadow could often be joined to the primary object.

A third variation was considered that was similar to the second method, but also attempted
to make the selection of the target object more robust. Instead of selecting the one region
with the highest intensity pixel as the target, all the regions above a specified intensity per
number of pixels value were selected. Therefore, all disconnected regions of the target
would be included, but this time extra pixels were not created to bridge the regions.

Evaluations of these methods are described in Section 3.2

2.5 The Classifiers

At this point, we have a proposed feature space of Fourier coefficients acting on imagery
that have been processed to eliminate, as much as possible, dependency on acquisition ge-
ometry. In order to automatically classify an image, we now need to have one or more
trained classifiers available. For ground vehicle targets, we initially implement a set of
HNeT-based classifiers and an MLP NN classifier. Maritime classifiers are under investiga-
tion [24, 42], but are not yet in a suitable state for consideration.

2.5.1 Training and Design Criteria

Currently, training of the classifiers is conducted outside the ATR Workbench, and so the
classes available for ATR during operation of the ATR Workbench are limited to the set of

DRDC Ottawa TR 2002-155 15




Table 1: Training images for the standard MSTAR evaluation method. One vehicle (unique
serial number) for each class is used, with all imagery having a 17° depression angle, but
complete azimuthal coverage, i.e. O°~360°.

Targets Type (serial number) | Number of Samples
T-72 (132) 232
BTR-70 (c72) 233
BMP-2 (9563) 233
Total 698

class definitions used for training. Manual classification, however, does permit the user to
alter class definitions at will, for example to subdivide a class into different types.

For demonstration purposes, the classifiers have been trained to recognize vehicles belong-
ing to the public release MSTAR data [22]. Here, three target classes have been selected, (;
is the T-72 main battle tank, ¢ the BTR-70 armored personnel carrier and (3 the BMP-2
infantry fighting vehicle. Imagery of a single vehicle from each type, collected at 6; = 17°
and varying ¢,, have been selected to form the training set (Table 1). Hence we have,
HeEC,rpeGandt; € G and a set U,-E{Lm}{],’{i}zle.

For both classifiers, this training data, along with the slicy (a non-vehicle object) imagery
from the MSTAR set [22], is pre-processed as indicated above with ¢, calculated using
the ¢, provided for each vehicle based on ground-truth measurements. The total set of
images, which class each image belongs to and the Fourier coefficient criteria are used to
initialize each classifier training process. Other parameters are set using empirical results
from previous analyses [23, 20, 21]. The HNeT training process is optimized for one class
definition only, and so three binary classifiers are generated, each trained using the image
set of a single target vehicle as the in-class set and all remaining images as the out-class set.
The MLP NN, on the other hand, processes a classification node vector for all three classes
simultaneously. Once trained, the classifiers can be applied to any image of the correct
number and format of pixels (e.g., 64 x 64 magnitude data). Each classifier produces a
real-valued output measuring the similarity to the classifier class. Ideally, that output will
be 1 when the target in the image is in-class and O when it is not, namely H;(¢) = y,(¢) for
each i € {1,2,3}. In reality, all we can guarantee is

whenever I, € Uje123) {1,’{1,}”1\:":1. For a general image I}, we observe

148, {fa) ey ~ {fn(F)
for some n; € {1,...,N;},

0—§, (B~ {fn (I
B (A1), A0, fullh) = " {ffo(r s)omelnj E{]{rl(. .j.)Nj} 2.7

with j # i,
0.5+8), otherwise.
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for some error term &), dependent on the degree of similarity (indicated by the ~ function)
between I} and the training images. As HNeT uses undisclosed proprietary algorithms,
the specific form of the similarity function remains unavailable at this time. Likewise, the
understanding of how the highly non-linear node interactions and indeterminate training of
Neural Networks is still an active area of basic research in the scientific community.

Since the H; are not characteristic functions and the results on a new image may well be
uncorrelated between different H;, the question of how to deal with contradictory results
leads to methods of classifier fusion and decision theory. Many of these methods assume
classifier output in a probabilistic or percentile form, so it is advantageous to map H; to
a likelihood factor whose range is the unit interval (0,1). This is achieved by using a
sigmoidal function, whereby

1
T+exp (S (1 =28, (. fulll) - )))

where S is a scale factor that determines the extent of linearity for the sigmoid function.
Typical values of S =In(19) or § = In(99) are commonly used.

Li(L) = 238)

A further issue arises as to providing a measure for the likelihood that the imaged object
belongs to none of the defined classes. Ideally, we have

xc () =0, 2.9)

for all i whenever to & | J; G;. However, (2.7) indicates that we should expect

. 1
B ), )~ X (2.10)

for all i and n. This discrepancy is entirely due to the consequences of using a finite set of
training data, namely that a finite sequence is nowhere dense.

Despite the implications of (2.10), we choose to model (2.9) at present while noting the
need for a thorough decision theory analysis of these processes. Thus, for each image, we
select the two highest likelihood factors, i.e., we define

i1, suchthat L; (I') > Ly(I}) for all i,

ip, suchthat L;,(I) > L;(I%) for all i # iy, 2.11)
which we use to generate a likelihood factor for the Unknown pseudo-class according to

Lo(I}) =max {0,1— L, (I}) — Ly, (I}) } . (2.12)

Finally, these likelihood factors are converted into percentiles, so that a normalized result
is available,
_ L)
> L)
j=0

which can then be integrated by the ATR Workbench into the information about the target
image.

P (2.13)
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2.5.2 HNeT

AND Corporation’s Holographic Neural Technology provides a novel approach to pattern
recognition [23, 20]. Large feature spaces are investigated for invariants within the class
definitions of the training set data. Feature values are computed for each training sample and
transformed into the angular component of complex vectors and these vectors coherently
combined. Features that are relatively constant within a training class reinforce, while
randomly valued features average to zero. The most invariant of these features are stored
and used as the baseline against which the similarity of test data is measured.

Thus, HNeT is able to rapidly investigate large numbers of potential features in order to
determine the most invariant. Since a wider space of potential features is considered com-
pared to most other methods, which usually require specific features to be predetermined,
classifiers based on HNeT will usually be using feature sets that are more characteristic of
the class definitions involved, and are therefore likely to produce better results.

In this case, features based on the entire space of 4096 Fourier coefficients for 64px x 64px
magnitude images are investigated. Three classifiers, one for each of the T-72, BTR-70 and
BMP-2 classes, are applied, each optimized to determine the 256 most invariant features
among the training images that belong to the associated class. Each HNeT classifier will
generate a measure of similarity to the values of these baseline features. Images exhibiting
similar values to the in-class training data for the selected features of each classifier will
have an HNeT result near 1. Those that do not will be closer to 0. Figure 7 graphically
shows the HNeT results for a T-72 classifier applied to the MSTAR test data.

These trained HNeT classifiers have been incorporated into the ATR Workbench as a classi-
fier module that will generate three similarity values for each image. The ATR Workbench
converts these into likelihood factors via (2.8) and uses (2.12) to generate a measure for
belonging to none of the classes.

2.5.3 MLP Neural Network

A Multi-Layer Perceptron Neural Network is able to make decisions based on learning pat-
terns from sample data. The MLP NN is a supervised network, meaning it requires knowl-
edge about the correct target output in order to learn. The NN is trained outside the ATR
Workbench using a standard back-propagation training method, the delta rule or Widrow-
Hoff algorithm [43]. The training process is an iterative manipulation of the weights of the
network connections, and usually continues until all the training samples, I, are correctly
classified to their own type. This means the values of the NN node vector for each sample
will all be within a globally specified error term, €, of the desired vector values, i.e.

NN(I}); — (D) <k, 2.14)

for each vector element, i, with

1 I'e G
rN H n (3]
(Dp)i _{ -1, otherwise. 2.15)
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Figure 7: HNeT results for a T-72 classifier applied to the MSTAR 15° depression angle test
data. For each image located along the horizontal axis, the corresponding HNeT output is
given by the red peak. The blue line indicates desired results. With the threshold set to
v=0.5, a peak above v is classified as T-72, while a peak below is not.

However, because Neural Networks are highly non-linear, the training process is an inde-
terminate method, which therefore does not guarantee that the algorithm will avoid local
minima and achieve (2.14) for any given training attempt. If convergence does not occur
within a predetermined time, the training process is reinitiated. The state of the NN is
frozen after the learning process is completed, the network weights are no longer altered.
Should a new class be added to this system, the NN will have to be completely re-trained
with that new class included.

For demonstration purposes, a MLP NN application was developed for the MSTAR public
dataset. It was configured as illustrated in Figure 8 with 13 nodes in the first hidden layer,
11 nodes in the second hidden layer, 38 nodes in the input layer and 3 nodes in the output
layer. The NN is used to classify the three military ground vehicles, a BMP-2, BTR-70
and T-72, requiring an output layer with three nodes. Node 1 is assigned to T-72, Node
2 assigned to BTR-70 and Node 3 assigned to BMP-2. As with the HNeT classifier, the
standard MSTAR training data (Table 1) was used to train the MLP classifier. Successful
training time was observed to vary over a large period, the majority ranging from 5 to 30
minutes.

The MLP NN requires considerably more computation resources than HNeT for this type
of application. To reduce the size of the input dimension, only 16 coefficients per class are
selected, those that best separate the decision space between the three classes. Of these 48
coefficients, only 38 are unique for the MSTAR training set, which is the reason 38 nodes
are selected for the input layer. For training, the desired vectors are (1,—1,—1), (—1,1,—1)
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Figure 8: Multi Layer Perceptron Neural Network

and (—1,—1,1) for the T-72, BTR-70 and BMP-2 vehicles, respectively. For operational
use, the output results are subjected by a unit shift and halved, so that the ideal values will

be mapped to either 0 or 1.

This trained MLP NN has been integrated into the ATR Workbench as a classifier module.
A likelihood measure that the object belongs to none of the defined classes is calculated
using (2.12) and output values are converted into likelihood factors using (2.8).

3 Results

3.1 Detection

The FuseBox: Land ATD system was used outside the ATR Workbench to analyze a
MSTAR clutter scene with target chips inserted (i.e., Demoscene.bin, 1476 cols by 1784
rows) [19]. The analysis of this single-epoch SAR image was simplified from Section 2.3.2
description for a multi-sensor case, and it consisted of the following steps:

a. Detection of targets on the raw SAR imagery (no despeckling), using the data-based
CFAR segmentor. The parameters were:

(a) Window size = 5 pixels

(b) Threshold = 0.85

(c) CFAR =1076

(d) Segment size thresholding, with minimum segment size equal to 20 pixels, and
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Table 2: Orientation Algorithm Variations Results

Algorithm Variation Average Error | Standard Deviation
First - Independent 3.9° 6.4°
Second - Morphological Bridging 2.0° 5.9°
Third - Region Pixel Intensity 3.8° 6.5°

maximum equal to 500 pixels.

b. Reduction of false alarms using the interactive verification window as described in
Section 2.3.2, to accept or reject the detected targets.

Of the 54 targets initially detected on the MSTAR image, 14 remained after the interactive
verification stage. Targets that were deleted during this stage were primarily multiple detec-
tions of obviously extended (clutter) objects and image defects. Note that the segmentation
process used in this analysis renders a border region (i.e., 2 pixels, related to the window
size) around the edge of the image unusable for detection.

3.2 Pre-Processing Algorithm Variations

The image chip pre-processing algorithm variations (described in Section 2.4) were each
evaluated with approximately 700 images from the MSTAR public dataset. Once again the
BMP-2, T-72 and BTR-70 vehicle types were used, each vehicle being imaged from varying
azimuthal directions. The algorithm results were compared with the known image angle,
and the performance statistics calculated, as presented in Table 2. These evaluations were
conducted external to the ATR Workbench in order to determine which would be imple-
mented. For the first algorithm, the angle differed from the correct value by 3.9° on average
with a standard deviation of 6.4°. The second algorithm, which used the morphological
bridging operation, had an average error of 2.0° and a standard deviation of 5.9°. The final
algorithm variation, using the intensity per number of region pixels had an average error of
3.8° and a standard deviation of 6.5°.

From this analysis the morphological bridging method was the most accurate and has, there-
fore, been implemented in the ATR Workbench for calculating target vehicle orientation.
The original algorithm suffered from not including disconnected parts of the target, particu-
larly regions in the shadow, while the third variation suffered from extra non-target regions
being included that would cause more errors.

3.3 Classifier Performance

The HNeT and MLP NN classifiers have been trained on the public release MSTAR data
and integrated with the ATR Workbench. Both these classifiers have shown good perfor-
mance, as determined by standard methods for evaluating the performance of a classifier,
which include the use of Confusion Matrices and the generation of Receiver Operation
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Table 3: Confusion Matrices (Pge; = 0.9) for the MSTAR baseline, MLP Neural Net and
HNeT classifiers. Imagery at 17° depression angle of the vehicles indicated by asterisks
are used for training (see Table 1). All test imagery have 15°depression angles.

[MSTAR [BMP-2 BTR-70 T-72]Other||MLP NN |BMP-2 BTR-70 T-72|Other |
BMP-2(9563) | 153 18 4 [ 21 |[BMP-2(9563)| 137 2 28] 28
BMP-2 (9566) | 143 36 6 | I1 ||BMP-2(9566) | 148 5 20| 23
BMP-2 (c21)* | 187 5 0 | 4 [[BMP-2(c2l)* | 157 2 15| 22
BTR-70 (c7T1)*| 4 188 0 | 4 |[BTR-70(c7D)*| 2 187 3| 4
T-72 (132)* 5 5 173 13 ||T72 (132)* 4 1 187] 4
T-72 (812) 19 1 111 64 ||T-72(812) 42 0 119 34
T-72 (s7) 19 10 143| 19 ||T-72(sT) 48 11 117] 15

| Pyoja=0.8934 Poojq= 0.8518

[HNeT |[BMP-2 BTR-70 T-72|Other |

BMP-2 (9563) | 181 0 4 | 10

BMP-2 (9566) | 164 2 12 18

BMP-2 (c21)* | 191 1 0| 4

BTR-70 (c71)*] 0 194 0] 2

T-72 (132)* 0 0 193] 3

T-72 (812) 26 2 115] 52

T-72 (s7) 8 8 134 4

[ Pye=0.9490

Characteristic (ROC) curves. The standard evaluation suggested by DARPA/WL applied
to the MSTAR data set provides a baseline with which to compare. The HNeT and MLP
NN classifiers were applied to the MSTAR data set and then compared with the MSTAR
baseline classifier. Using the multi-vehicle data for the BMP-2, BTR-70 and T-72 classes
present in the MSTAR data set, the classifiers were trained on imagery at 17° depression an-
gle for a single vehicle in each class and then tested on imagery at 15° depression angle for
all the vehicles in each classes. These evaluations were done outside the ATR Workbench.

The detailed HNeT evaluation, including a comparison to the MSTAR baseline is described
in [20]. A detailed description of the MLP NN performance is presented in [21], but it’s
attributes have not previously been compared with any other classifier. Information about
the trained vehicle types and their serial numbers, as well as evaluated vehicle types and
their serial numbers, are given in [20] and [21]. For quick review, we have included the
confusion matrices (Table 3) and ROC curves (Figure 9) for the MSTAR baseline, HNeT
and MLP NN classifiers.

The confusion matrices show the number of correctly classified images and overall per-
centage of correct classification (P,) for each of the classifiers. The operating point of
the confusion matrix for the MSTAR baseline, MLLP NN and HNeT is selected at P; = 0.9.
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Figure 9: Receiver Operating Characteristic curves for the MSTAR Baseline, MLP Neural
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Correct classification is indicated in bold. Overall Py is 89% for the MSTAR baseline,
95% for the HNeT and 85% for the MLP NN. The MSTAR method has both BMP-2 and
T-72 images being misclassified as BTR-70s, while the HNeT and MLP NN results show
them being confused with each other, and rarely with the BTR-70. The major cause for this
is expected to be the difference in features used, since the MSTAR baseline is a template
matching algorithm, while HNeT and the MLP NN use Fourier coefficients. Furthermore,
HNeT uses 256 coefficients compared to 16 features for the MLP NN, which accounts for
much of the difference between the two.

When producing the ROC curves, the MSTAR baseline, HNeT and MLP NN used the same
confusers (251 self-propelled howitzer and D7 bulldozer). The ROC curves in Figure 9
show the relationship between percentage of declared targets and percentage of false alarm.
The false alarm increases with increase of detecting targets. The diagonal lines in Figure 9
are the results for a random classifier, where the output class is completely independent of
the type of image given as input. Better classifiers should provide lower Py, rates and higher
Py rates, i.e., an ideal operating point is the left upper corner (P, Pr4) = (1,0). We can see
that all the classifiers are better than the random classifier. However, the HNeT results
clearly show a better performance than either the MSTAR baseline or MLLP NN classifier.

4 Demonstration

To demonstrate the main features of the ATR Workbench, the following script has been
designed for use in real-time presentations of the software.

41 Outline

After introducing the topic of ATR, the motivation and the goals for the project the ATR
Workbench software is started. An image that has been specifically created for the demon-
stration is loaded (Figure 10). The scene consists of a real SAR image with 10 MSTAR
target chips manually inserted at plausible locations. Prior to insertion, the pixel values of

Figure 10: Demo: new image loaded into the ATR Workbench.

24 DRDC Ottawa TR 2002-155




Classifier
Results

Figure 11: Panel function overview.

the chips were altered to equalize the clutter statistics of the chip to that of the scene pixels
being replaced. The chips were placed as two groups, each consisting of a T-72 MBT, a
BMP-2 IFV, a BTR-70 APC, a 2S1 SPH and a D-7 bulldozer.

There are four main panels (Figure 11) in the ATR Workbench application as described in
Section 2.2.3. The target list provides a text listing of all the identified targets, with their
current status. The scene overview panel gives a high-level view of the image with targets
marked by coloured boxes representing their type (if known). The zoom panel shows a
detailed view of the currently selected target and provides a method to manually orient it if
necessary. Finally, the classifier result panel displays likelihood measures generated by the
classifier that a target is of a particular type.

4.2 Operation of the ATR Workbench

Panning and zooming in the scene overview window can be accomplished with the scroll
bars at the edge of the panel and the zoom buttons at the top. After examining the scene a
potential target is identified. Switching to target mode occurs by using the “Target” button
at the top of the panel and then drawing a box around the target in the image (Figure 12).
While in target mode, the box can be resized. Changing to “Select” mode, the target box can

Fis Ede

FIRE =

Figure 12: Demo: target selection.
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Figure 13: Demo: (left) target type selection menu, (right) class type setup menu.

be moved elsewhere in the image. Finally, pressing the “Reset” button centres the image
and adjusts the zoom so that the entire scene is visible in the view.

The newly created target will be added to the target list on the far left. By selecting it
from the list, the target becomes highlighted in the overview panel and is displayed in the
zoom window. The zoom window has several different visual enhancement modes that can
be selected using the buttons at the top of the zoom window. The target can be manually
classified with a right-click on the item in the target list, and then selecting the appropriate
target type from the drop-down list (Figure 13).

The File/Setup menu lets the user define the list of target types that appear in the manual
classification drop-down list. As well, colours can be associated with individual target
types and new target types can be defined. The Setup dialog also has tabs for the detector,
classifier, and image properties. Each of these has custom settings that can be adjusted.

Pressing the “binocular” button at the top of the overview panel imports a target list created
by an external ATD application (Figure 14). In this case, a simulated application of the
FuseBox: Land ATD detector has previously generated a target file for the demonstration
image that is ready for use by the ATR Workbench. Once ingested, each potential target is
marked in the overview panel with a green box and a corresponding entry is displayed in

Figure 14: Demo: importing a target list from an external ATD application.
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Figure 15: Demo: displaying ATR module classification results.

the target list.

When a target is selected, either from the target list on the left or by using “Select” mode
and clicking on a target box in the overview panel, classification by the currently active ATR
module can be initiated via the “bar graph” button at the top of the zoom window. Either
the HNeT or the MLP NN classifier will be used depending on the current selection in the
Setup parameters. After the classifier has run, the likelihood estimations will be presented
in the bottom right result panel (Figure 15). As well, the target status will be assigned
“classified” in the target list with the most likely type indicated. In the overview panel the
colour of the marker box will be updated to reflect the new status.

The classified results can be manually overridden by selecting the target in the target list
and right-clicking to bring up the status dialog. By changing the status to “probable” or
“possible” the type can be manually selected. If the target type is returned to “classified”
then the type will be automatically assigned according to any classifier results associated
with the target.

In the zoom window, selecting the “orient” mode allows the user to draw a line in the zoom
window to indicate the orientation of the target (Figure 16). The window will then rotate to
the new orientation so that line, and presumably the target, appears vertical in the window.
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Figure 16: Demo: orienting an image chip.
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Table 4: Sample report file showing manual and automated ATR Workbench analysis on
target list generated by simulated application of FuseBox: Land ATD. The Percentage List
has been truncated here for display purposes.

ID Status Type Classifier Percent List

Unclassified
Unclassified

Probable BMP-2
Unclassified
Unclassified

Classified BTR-70 MLP-Neural-Net (BTR-70=90.4%, T-72=4.8%, ...)
Unclassified

Possible User Type 1
10 Probable User Type 2
11 Unclassified

12 Unclassified

13 Unclassified

00 ~J Wt AW R — |

=}

The second classifier can be used by selecting the menu item File/Setup/Classifier and
choosing it from the drop down list. The new classifier will be initiated whenever the
classification button at the top of the zoom window is pressed.

Report files can be generated using the menu File/Report (Table 4). An online help system
is also available from the Help menu, launching an HTML web browser pointed at user
documentation for the system.

5 Conclusions

5.1 Summary

A software tool linking target classifiers with target detectors for the analysis of SAR im-
agery has been developed, enabling interactive or automated application of each step of the
target recognition process. This so-called ATR Workbench works upon target lists, either
generated interactively or imported from ATD software, and modularly integrates currently
available ATR software with intermediate processing algorithms through a user interface
that will allow target selection, orientation, segmentation and classification to be imple-
mented by the user or by one or more automation modules.

The ATR Workbench is designed using OpenEV libraries and the Python programming
language to facilitate integration of new modules and interfacing with external applications,
such as the OMW ship detector, the HNeT classification engine and various Matlab-based
components. The ATR Workbench itself can easily be ported to most popular platforms and
operating systems.

As an R&D tool, this software is in a state that will allow, amongst other things,
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a. current target recognition methodologies used by the Canadian Forces to be examined
in terms of the impact of automation,

b. the development of standardized empirical evaluation techniques for SAR ATR appli-
cations in terms of effectiveness on Canadian Forces capabilities,

¢. evaluation of specific automation algorithms for SAR ATR, both current and future, in
terms of effectiveness,

d. better exposure of operational personnel to various automation capabilities of the target
recognition process as part of demonstrations of end-to-end ATR systems,

e. a baseline for the operational community to provide feedback on further research, de-
velopment and implementation issues concerning SAR imagery analysis and exploita-
tion,

f. opportunities for operational personnel to develop confidence in the application of spe-
cific SAR ATR algorithms to specific operational tasks.

Further development of the software is expected to allow the ATR Workbench to be con-
figured to provide the prototype for any number of future ATR systems that could be im-
plemented by the Canadian Forces to enable automation for operational target recognition
requirements.

5.2 Future Work

The future direction of the ATR Workbench will depend largely on the feedback received
from the Canadian Forces on how the system can better suit their requirements and what
capabilities are of greatest importance to them. There are, however, a number of features
that could certainly be of benefit that were not included in the initial version of the ATR
Workbench due to project constraints.

Currently, the training required for HNeT and the MLP Neural Net classifiers is performed
outside of the ATR Workbench using a process that is manually intensive. The implementa-
tion of a training mode in the ATR Workbench would help to speed up the training process
and thereby facilitate experimentation with more numerous target classes.

The ATR Workbench GUI only has one zoom window to display the currently selected
target, not the three windows envisioned in the original concept. Additional windows would
provide the ability to compare and analyze several targets simultaneously.

Further work will almost certainly involve integrating additional target classifiers and inter-
facing detectors to the ATR Workbench for experimentation and evaluation, as this contin-
ues to be one of the primary objectives of the ATR Workbench project.

Prior to a target being classified, the pre-processing module automatically segments the
target from the image. Although the segmentation algorithm works reasonably well in most
circumstances, the user may want to override the algorithm and manually adjust the target
segment. This would bring the target segmentation tool in line with all other tools in the
ATR Workbench, in that it would have both an automated and manual method.
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Finally, the imagery used in the ATR Workbench is single channel SAR. Other types of
single channel imagery (IR, optical) could be processed by the ATR Workbench if supported
by appropriate detectors and classifiers. As well, future work to support multiple channel
data, such as polarimetry or a fusion of multisensor imagery, has the potential to improve

the classifier results.
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Annex A
ATR Workbench Functional Design

A.1 Introduction

This document is intended to capture how the ATR Workbench tool will function. It de-
scribes the flow of data, the components of the system, the system outputs and how the user
can interact with the interface. Based on this functional description we arrive at a set of
requirements that the technological environment will need to meet.

This document is intended to facilitate discussion of the ATR Workbench and common tool
architecture. Upon the selection of the technology a detailed design for the ATR tool will
be completed.

A.2 System Overview

The ATR Workbench system will consist of three components all linked together through
a common graphic user interface (GUI). The components are the Ocean Monitoring Work-
station (OMW), a custom target orientation system, and HNeT, a Holographic/Quantum
Neural classifier system. The GUI will be responsible for calling each of these sub-systems
at the appropriate times and passing the data between the subsystems. The GUI will provide
the user with the ability to over-ride the results of automated tasks.

A21 OMW

Given an input scene OMW will identify potential targets. Once a target has been identified
it will provide the bounding co-ordinates for the target in the scene and extract the image
chip containing the target.

A.2.2 Target Orientation/Centering

Given an image chip it determines the orientation of the target. It then rotates the target so
that it is vertical. It also attempts to center the target. The output image chip is cropped
to dimensions that are a power of two with the target vertical and centered. This step may
include additional image processing. Steps can be optional turned on or off by the user.

A.2.3 HNeT

HNeT must have previously been trained with the target types. It takes oriented, centered,
power of two, image chips and returns the probabilities for the various target types.

A.2.4 Graphical User Interface (GUI)

The GUI links the above components together into a complete system. It invokes the sub-
systems in order and provides the appropriate input data and parameters. The results of the
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Figure A.1: GUI Prototype Design

processing are displayed graphically for the operator to evaluate. As well, it provides the
operator with the ability to override the results from each step. This includes the segmenta-
tion of the scene into chips, target orientation and target centering.

GUI Features:

select target in Full Scene window and have it displayed in Image Chip view

in Image Chip view draw vertical line and centre point on target

display probability of target type in list below Image Chip and highlight most hkely
file menu to open/close project and load new scene

Full Scene and Image Chip view have display property controls (max/min range, zoom)
Rotate Image Chip

Print report of current results

Save/Load project state and images

More specifically the tool will perform the following tasks in order:

Load Scene (File, load scene) - load scene image into Full Scene view

Process Scene Button (Part I)- call OMW with scene as input, return target locations
and chips. Highlight targets in Full Scene view.

Process Scene Button (Part II) - call Matlab orientation and center function to rotate
chips. Display chips in Image Chip view.

User Update Target locations - user can highlight and modify bounding region around
target in Full Scene view and see updated chip in Image Chip view

User Update Target Orientations - user can draw vertical line over target in Image Chip
view. Matlab orientation function will automatically be called with new vertical line
and perform rotation. Image Chip view will update with new rotation.

User Update Target Centre - user can specify point on target in the Image Chip view to
indicate the target centre. Image Chip view will update with new centre.

Process Chips - call HNeT with image chips as input, return probabilities of target
types. Display probabilities for selected chip in list under Image Chip view.
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h. User can return to steps 4, 5 and 6 in an attempt to achieve better results.

A.3 System Requirements
Given the above design the selected technology will be required to support:

OMW and HNeT data

calling external batch processes (OMW and HNeT)

raster graphics support (full scene - zoom, pan, histogram)
vector graphics support (user target center/vertical)
platform independent

appropriate for operational environment

GUI Support
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Annex B
Technology Evaluation for ATR Workbench and
Toolkit

B.1 Introduction

The functional description of the ATR Workbench gives us a set of requirements that the
technological environment will need to meet. Four technologies are proposed and evaluated
based on the ATR tool’s requirements. As well, the technologies will be evaluated based
on general requirements to support a common architecture for a larger image processing
toolkit developed by the SAR ATR project.

B.2 Requirements

This section describes many of the issues that need to be addressed or resolved before at-
tempting to devise a complete design solution for the ATR Workbench. The constraints
for this tool are both internal to the system and external from the requirement to integrate
with other (yet to be designed) tools. These future external requirements create a lot of
unknowns. However, the risk these unknowns create can be mitigated by requiring a sys-
tem that is designed with general support for geographic and mapping functions, image
processing, provides for rapid application development (scripting language, GUI builder),
is flexible and easily integrates with other technologies (such as external libraries and code
written in various languages). With this in mind, the requirements for the system are (in no
particular order):

Internal - ATR Workbench:

support for OMW, HNeT data (calling external batch processing)
raster graphics support (full scene - zoom, pan, histogram)
vector graphics support (user target center/vertical)

platform independent

appropriate for operational environment

GUI support

External - Larger Toolkit:

platform independent

large raster image display

vector support

image processing

geographic functions

modules plug-in

external library/function support

research and operational environment

rapid application development environment (GUI and scripting)

DRDC Ottawa TR 2002-155 39



o fast processing (usually at odds with previous requirement)

B.3 Other Goals and Guidelines

The system must be designed using technology that will facilitate other tool development
and integration into a combined system. As well, these tools contain a research element and
therefore they should be quick and easy to develop, yet robust enough for testing operational
use. The emphasis should therefore be on ease of development and integration of system
components and not on speed or other resource type considerations. To ensure the long
term and widespread adoption of the system among the group the technology should be an
accepted industry standard with reliable support.

B.4 Evaluation

Four possible technologies are evaluated based on the above requirements.

B.4.1 Matlab

Matlab meets all the internal requirements. It supports displaying raster and vector graphics.
It can run on any platform (with the purchase of a platform specific license). Code can
be compiled for operational purposes, although with some difficulty (and another toolkit
license). There is a built-in WYSIWYG GUI design tool (Guide).

As for the external tool requirements, to fit into a larger system of tools, Matlab meets most
of the requirements. In addition to the above capabilities, it has support for image pro-
cessing (Image Processing Toolkit) and geographic functions (Mapping Toolkit). External
libraries can be supported through a C/Fortran/Java external API interface. The Matlab en-
vironment is well suited to rapid application development as it uses an interpreted scripting
language and has a GUI building tool. The only requirements Matlab does not meet are the
ability to handle large raster images, and the processing is generally not considered very
fast (although functions can be implemented in C for speed improvements).

Another advantage of Matlab is that it is very popular, and is currently in wide use.
Overall, Matlab is an excellent platform and meets virtually all the requirements. The main
disadvantages are cost (for toolkits, licenses), lack of large raster support and possibly

lacking in some geographic functions and related file format support. Creating a system for
operational testing using Matlab may also prove to be difficult.

B.4.2 IDL

IDL is very similar to Matlab in that it is a commercial development environment using an
interpreted language.
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It meets all the tool requirements except that WYSIWYG GUI building support is only
available under Windows (however the resulting code build under Windows can be run on
any platform). Platform independence is supported and licenses can be purchased for most
popular platforms: UNIX platforms (SUN, DEC, IBM, SGI, and HP), Linux, Solaris x86
Windows 95/98/2000/NT, and Macintosh G3.

In terms of support for other systems IDL meets all the requirements. Large raster image
processing is supported through a tiling mechanism. Geographic functions are well sup-
ported through the ENVI library. Applications can be compiled but still require the IDL
runtime environment.

IDL seems to offer a very complete solution. Like Matlab, it also has the advantage that
it is currently in wide use. In particular, the OMW (Ocean Monitoring Workstation) was
written using it. OMW is also proof that a robust commercial application can be written
using IDL. Further, since the ATR Workbench tool may be required to interface with OMW
it may make integrating OMW into the system significantly easier. It may also be possible
(depending on the OMW code licence) to extend OMW in place of developing an entirely
new tool (based on different technology).

A disadvantage of IDL is that it does not appear to be a very widely used platform. This
means there are fewer third-party libraries and support as seems to be the case with some
of the other proposed solutions (such as Java and Matlab).

B.4.3 OpenEV (Python, Gtk and OpenEV)

First, a description of exactly what OpenEV is and the technologies involved. OpenEV is
both a library and reference application for viewing and analyzing raster and vector geospa-
tial data. Both the library and application are Open Source and licensed under the LGPL
(you can sell applications that use the OpenEV library). The library is written in C and uses
OpenGL for graphics rendering. C and OpenGL are very portable and versions of OpenEV
exist for SGI, Sun, Linux and Windows.

Python is an object oriented scripting language that is also Open Source. It is interpreted
and something of a cross between C++/Java/Perl. It is considered very human readable and
most programmers easily pick it up in a day or two. The OpenEYV library is designed to be
used from Python. Python is available for most, if not all, popular platforms. Python code
can also be byte-compiled to obscure the source code and speed up program execution.
Many third-party libraries have been developed to provide an extensive set of (also free)
tools for a variety of application domains.

The last component is The GIMP Toolkit (GTK) [44] which provides the GUI Like the rest
of the components it is also Open Source. It has both C and Python bindings and has been
successful used under for SGI, Sun, Linux and Windows as well.

These combined components are currently used in Atlantis Scientific’s latest commercial
SAR and InSAR processors demonstrating that they can be successfully used in an opera-
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tional product. Combined, these components meet all the requirements for the ATR tool.
Additionally, a WYSIWYG GUI building tool, Glade, is available under Linux.

The main advantage of this solution is that it is completely free and we have complete
access to the source code (since it is open source). OpenEV is designed specifically for
geographic visualization applications and therefore has support for standard geographic
file formats (through GDAL), mapping projections (through PROJ.4), vectors and display
of large raster images (using a tiling techniques and OpenGL). The components are all
platform independent and work well together to create an environment for both application
development and research.

The main disadvantage of this solution is that finding software developers familiar with the
technology is difficult and it may be difficult to get commercial technical support for these
tools, should it be required. Since Atlantis Scientific developed OpenEYV, they may be able
to provide support for it. Additionally, there are one or two independent contractors who
are experts in the software. Fortunately, there is a large body of user/community support
for most of the OpenEV component technologies and therefore commercial support is not
likely needed.

B.4.4 Java

Java is also a viable platform for development of the ATR tool. It is a widely used and
supported cross platform language. Its large support has resulted in specialized image pro-
cessing and geographic libraries that should facilitate development. There are also GUI
classes and building tools that would permit easy development of a GUI. Java has been
successfully used by ERSI in their ArcIMS and ArcExplorer (both free) products [45].

A quick search for image processing and display libraries revealed the following: Java
2D Library, Java Advanced Imaging Library, Java Imaging and Graphics Library (JIGL),
Java Vision Toolkit (JVT). For geographic/mapping support there is GeoTools, a free Java
toolkit. Building a GUI would likely use Java Foundation Classes (JFC) and Swing. A free
GUI building tool called CockTail®was found.

Additionally, Java has support for large images by means of tiling.

Disadvantages of Java seem to be that its is does not facilitate quick application develop-
ment. Java is expected to be better in this respect than C/C++, but it is still a compiled
programming language. The advantage to this of course is that it is well suited for oper-
ational use as the many commercial applications prove. The main advantages of Java are
platform independence, widespread use and support, and robust production quality nature.
However, it is not designed as a research platform (as Matlab and IDL are) and the support
for image processing and geographic/mapping functions is primarily found from third-party
support.
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Annex C
Pseudo-Classes

Throughout the ATR literature, it is common to define a class, typically called “Other”
[27, 46, 47, 25, 48, 20] that contains all objects not belonging to any of the pre-defined
classes upon which the classifiers are trained. Because membership in this Other class is
well-defined, namely, it contains all elements in the complement of the union of the pre-
defined classes,

Co=Uj Gj, (C.1)

there is no difficulty in treating Cp like every other class.

In the ATR Workbench, there are two target type definitions employed that, for different
reasons, do not have well-defined membership conditions and are therefore described as
pseudo-classes. Additionally, there is an implicit third pseudo-class that fulfills the role of
the Other class. The need for these pseudo-classes arises from the availability of multiple
classifiers. Individual classification results may now be treated as intermediate evidence
toward a cumulative decision, rather than as a definitive decision that would occur from
single-classifier ATR. Thus, by designing the ATR Workbench to use these pseudo-classes,
future implementations of multi-classifier decisions, evidential reasoning or classifier fu-
sion may be better supported.

The Other class, as defined above, is partitioned into an explicit “Not Target” pseudo-class
and an implicit “Other” pseudo-class, differentiating objects that the user wishes to retain
in the target list from those to be outright rejected. Information about an image assigned the
Not Target type will be maintained and further ATR analysis, such as classification using
other ATR modules, is possible. Images that are deemed to obviously contain no target
objects and not worth further analysis are discarded. Because different users may decide to
place the same image in either the Not Target or Other pseudo-class, membership in each
is subjective.

Rather than risk confusion by defining an Other type differently from (C.1), or by requiring
an accurate understanding of the nuances and subtleties involved with distinguishing be-
‘tween the Other class and pseudo-class, assignment of this target type is treated implicitly
in both the description and operation of the ATR Workbench.

Finally, the “Unknown” pseudo-class is unique in that its membership is known in advance
to be the empty set. All objects will belong to one of the pre-defined, user defined or Other
classes, and so one is able to assign with certainty a zero likelihood of membership in the
Unknown pseudo-class to every image. Yet, there is good reason to choose not to do so.
The assignment of Unknown type by an individual classifier provides a placeholder with
zero weight for any cumulative decision made about an object. It is similar to the “No
Decision” or “No Report” results used for time-sensitive classification [49]. For example, a
reasonable approach would be that an image would not be assigned the Not Target type by
automated methods until after every applicable ATR classifier yielded an Unknown result
on it.
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