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Abstract— Intracranial pressure (ICP) monitoring and
management have substantially improved the outcome of
patients with traumatic brain injury (TBI). However, rapid
elevations in ICP remain a significant problem as they may
lead to secondary brain injury and worse outcome due to
cerebral ischemia. Current therapy is targeted towards
treating rapid ICP elevations after they occur. Ideally, an-
ticipatory treatment to obviate any elevation in ICP could
occur if reliable precursors to ICP elevation were deter-
mined. In this paper, we report evidence for a physiologic
transition zone prior to rapid elevations in ICP. We found
that in thirty-three episodes of ICP elevation recorded from
eleven patients, there was a statistically consistent decrease
in the cardiac component of the ICP signal and the coef-
ficient of correlation between the ICP trend and the pulse
amplitude. We conclude that specific ICP signal metrics
may serve as precursors that characterize the transition zone
prior to a rapid elevation and may enable prediction of these
elevations up to thirty seconds ahead.

Keywords— Intracranial pressure, Intracranial hyperten-
sion, Cerebral Perfusion Pressure, Autoregulation, Time se-
ries Prediction, Traumatic brain injury, Head Injury

I. Introduction

Traumatic brain injury (TBI) is the leading cause of
death and disability in children in the United States [1].
Elevated intracranial pressure (ICP) following TBI may
result in secondary injury due to decreased cerebral perfu-
sion pressure1 (CPP) and cerebral ischemia2. ICP monitor-
ing and therapeutic interventions to control elevated ICP
(> 20 mmHg) have resulted in improved outcomes [2–4].
However, current therapy is targeted towards treating rapid
ICP elevations after they occur. Ideally, anticipatory treat-
ment based on reliable detection of precursors could obviate
elevations in ICP.
In many patients, including those with TBI, there is a

natural progression of physiologic states from the time of
injury, or onset of disease, through recovery or death [5].
The physiologic state of the patient may shift rapidly from
from a compensated physiologic state to an uncompensated
disease state. We hypothesize that there exist physiologic
“transition zones” between compensated and uncompen-
sated disease states, and that these transition zones may be
detected by a careful analysis of physiologic signals. Accu-
rate characterization of the transition zone prior to an un-
compensated TBI state with an elevated ICP could lead to
prophylactic therapy and could further improve outcome.
Other investigators have described a number of precur-

sors to ICP elevations. Szewczykowski et al. described a

1The CPP is defined as the difference between the systemic arterial
blood pressure and the intracranial pressure, CPP = ABP − ICP.

2Ischemia is a decrease in blood supply caused by constriction or
obstruction of the blood vessels or decreased blood volume.

“warning zone” in which the amplitude of ICP variations
is strongly related to the mean ICP [6]. They hypothe-
sized that this was caused by impaired compensating abil-
ity. Turner et al. observed that four patients who devel-
oped elevated ICP had increased variance over periods of
thirty-three minutes prior to an ICP increase [7]. Several
groups have found that an increase in the cardiac compo-
nent3 of the ICP signal precedes elevations [2,8]. Czosnyka
et al. observed a short spontaneous decrease in ABP at the
beginning of plateau waves in eleven of sixteen cases [9].
A few investigators have also attempted time series pre-

diction of the ICP signal [10–12]. These attempts employed
wavelet decompositions to separate the signal into different
frequency bands followed by neural networks to predict the
wavelet coefficients, which were finally used to construct
the predicted signal segments. Although these methods
were able to reproduce the cardiac component of the in-
tracranial pressure, they were not able to accurately track
trends, and the ability of these methods to predict rapid
elevations was not reported.
Based on preliminary analysis of heart rate, ABP, and

ICP spectrograms from four TBI patients, we noticed a sig-
nificant change in the cardiac component of the ICP signal
10-25 seconds prior to an elevation in ICP. The following
is a report of our detailed findings from eleven pediatric
patients with severe TBI.

II. Methodology

A. Patient Population and Management

This study included eleven patients with head injuries
who had a mean Glasgow Coma Scale (GCS) score of 6
(range 3–14) and were admitted to the pediatric intensive
care unit at Doernbecher Children’s Hospital. The study
was reviewed and approved by the Institutional Review
Board of Oregon Health and Science University, and the
requirement for informed consent was waived. There were
seven female and four male patients with an age range of
3 to 18 years (mean age 7.2 years). Nine of the patients
survived. All patients received similar therapy based on
generalized treatment guidelines for pediatric TBI [4].

B. Monitoring and Data Acquisition

Intracranial pressure (ICP) was monitored continuously
using a ventricular catheter or parenchymal fiber-optic
pressure transducer (Integra NeuroCare, Integra Life-
Sciences, Plainsboro, NJ). The ICP monitor was connected

3The cardiac component of the ICP signal is defined as the fre-
quency components that are near the heart rate.
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Fig. 1. Illustration of the criteria for a rapid and significant elevation
in intracranial pressure. The ICP signal is shown before (gray) and
after filtering (black). The range from the maximum value of the
filtered signal in the first thirty seconds to the minimum value in the
last thirty seconds had to be at least 10 mmHg. The filtered signal
was also required to have a minimum value in the last thirty seconds
of at least 20 mmHg.

to an Agilent Merlin patient monitor (Agilent, Palo Alto,
CA) which sampled the ICP and ABP signals at 125 Hz.
An HPUX workstation automatically acquired these sig-
nals through a serial data network and they were stored in
files containing six-hour epochs on CD-ROM [13].

C. Rapid Elevation Detection

We defined specific criteria for significant, rapid eleva-
tions in intracranial pressure. To capture the low frequency
variations we first applied a lowpass filter with a cutoff fre-
quency of 0.125 Hz. Any three-minute segment of this fil-
tered signal that met the following two criteria qualified
as a significant elevation in intracranial pressure: (1) the
difference between the minimum value in the last thirty
seconds and the maximum value in the first thirty seconds
had to be at least 10 mmHg and (2) the minimum value in
the last thirty seconds had to be at least 20 mmHg. The
first criterion ensured that we only captured significant el-
evations of at least 10 mmHg that occurred over a period
of no more than two minutes. The second criterion en-
sured that the elevation was large enough to be clinically
significant [3]. These criteria are illustrated in Fig. 1.

D. Signal Characterization

Once the segments containing significant elevations were
detected, we visually determined the leading edge of each
elevation. The signal segment spanning the thirty-second
segments prior to the edge of the elevation was compared
to four other thirty-second segments spanning 90–210 sec-
onds prior to the elevation. These segments were labeled
in consecutive order 1–5, as shown in Fig. 2.
We assumed that any transition in physiologic state that

occurs prior to an elevation begins no earlier than 90 sec-
onds prior to leading edge of the elevation. Thus, the seg-
ments were chosen such that Segment 5 occurs during the
hypothesized transition zone and Segments 1–4 occur dur-

30 60 90 120 150 180 210 240 270 300 330
0

6

8

10

12

14

16

18

Time (s)

IC
P

(m
m

H
g
)

1

2

2 3

4

4 5

Fig. 2. Example of how the ICP signal was divided into five non-
overlapping segments. We assumed that Segments 1–4 occur during
a compensated physiologic state and Segment 5 occurs during the
transition to an uncompensated state.

TABLE I

Summary of the six metrics used to characterize each of the

five signal segments.

Segment Metric Label Source
Cardiac Peak Amplitude Cpa [2]
Cardiac Peak Frequency Cpf

Standard Deviation σICP [7]
Average Pulse Amplitude �ICP [2]
Average ABP µABP [9]
Mean-Amplitude Correlation ρma [6]

ing a compensated physiologic state.
We studied the ability of six different metrics to char-

acterize the signal and distinguish between Segment 5 and
the other four segments. These are summarized in Table I.
The cardiac component peak amplitude, Cpa, and fre-

quency, Cpf, of the ICP signal was calculated by apply-
ing the fast Fourier transform (FFT) to each of the seg-
ments. Prior to applying the transform, the signal was
downsampled by a factor of fifteen, the signal average was
subtracted, the segment was multiplied by a Blackman win-
dow to improve precision of the estimate, and zero-padding
was used to improve frequency resolution. Fig. 3 shows an
example of the estimated power spectral density of each of
the five segments shown in Fig. 2 over a frequency range
near the heart rate. The frequency of the peak is approxi-
mately equal to the average heart rate of the segment.
The average pulse amplitude, �ICP, was calculated as

the average difference between the systolic and diastolic
components of the ICP signal. The mean-amplitude corre-
lation, ρma, was calculated as the coefficient of correlation
between the ICP trend and the average difference between
the systolic and diastolic components of the ICP signal.
The trend was calculated by lowpass filtering the ICP sig-
nal with a filter cutoff frequency of 1.25 Hz. The systolic
and diastolic components were calculated by applying a
weighted rank filter to find the 0.5 and 99.5 percentiles of
the weighted signal and then applying a lowpass filter with
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Fig. 3. Example of spectral estimation of the five segments shown in
Fig. 2.

TABLE II

Number of significant elevations in which each metric for

Segment 5 was less than, greater than, and more extreme

than the four other segments. The p value is also listed. NS

indicates that the result was not statistically significant.

Thirty-three elevations found in eleven patients were

included in this analysis.

Metric S5 < S1–S4 S5 > S1–S4 Extreme
No. p No. p No. p

Cpa 19 <0.001 7 NS 26 <0.001
Cpf 8 NS 15 <0.001 23 <0.001
σICP 6 NS 10 NS 16 NS
�ICP 12 0.008 9 NS 21 0.002
µABP 5 NS 17 <0.001 22 <0.001
ρma 13 0.003 2 NS 15 NS

cutoff frequency of 0.625 Hz. In all cases, the filters were
applied forward and backward to eliminate phase distor-
tion.

III. Results

Our detection algorithm found thirty-three rapid and
significant ICP elevations in eleven different patients. A
typical example of a detected elevation is shown in Fig. 1.
For each elevation and each metric, we determined whether
the metric for Segment 5 was less than, greater than, or in
between the metrics for Segments 1–4. If the metric was
less than or greater than the metrics of Segments 1–4, we
counted it as an extreme value.
For our statistical analysis we assumed that metric values

for each of the five segments were statistically independent
and stationary. Our null hypothesis was that each of the
segments were drawn from the same distribution. If the
null hypothesis were true, then each of the five segments
would have an equal probability of having the maximum,
minimum, or extreme metric values. We used the binomial
test with a 0.05 level of significance to determine if the null
hypothesis could be rejected. The results are summarized
in Table II.
Within the set of thirty-three elevations, we observed

TABLE III

Number of significant elevations in which each composite

metric for Segment 5 was less than, greater than, and more

extreme than the four other segments. The p value is also

listed. NS indicates that the result was not statistically

significant. Eleven patients were included in this analysis.

Metric S5 < S1–S4 S5 > S1–S4 Extreme
No. p No. p No. p

Cpa 7 <0.001 2 NS 9 <0.001
Cpf 3 NS 5 0.012 8 0.006
σICP 1 NS 3 NS 4 NS
�ICP 4 NS 3 NS 7 0.029
µABP 1 NS 8 <0.001 9 <0.001
ρma 5 0.012 1 NS 6 NS

that the shape and characteristics of signals varied substan-
tially from patient to patient, but was relatively consistent
for each individual patient. This calls into question the bi-
nomial test assumption that the samples are independent.
To determine if the results were still significant among the
eleven different patients, we combined the metrics of all el-
evations detected for each patient and repeated the same
test. We created the composite metrics by first scaling each
set of metric values for the five segments to have zero mean
and unit variance and then calculated the average for each
patient. The results of this second test are summarized in
Table III.

IV. Discussion

In this study we found that the cardiac component of the
ICP amplitude, Cpa, and the mean-amplitude correlation,
ρma, were consistently lower in the thirty second segment
at the leading edge of an ICP elevation as compared to
segments 1.5–3.5 minutes prior to the edge. We also found
that the heart rate, as measured by the cardiac compo-
nent peak frequency, Cpf, and the average arterial blood
pressure, µABP, were consistently higher.
Our results seem to be inconsistent with the observations

of previous studies discussed earlier. There are a number
of possible explanations for these inconsistencies. One of
the most important differences was that we found the vari-
ation in the ICP signal, as measured by the cardiac peak
amplitude, Cpa, decreased just prior to an ICP elevation.
All of the earlier studies that we are aware of found that
various measures of the ICP amplitude increased prior to
an ICP elevation [2, 7, 8].
Although the standard deviation, σICP, is also a measure

of the signal amplitude, it is not surprising that this was
not a statistically significant precursor to ICP elevations
because it is a coarse measure of variation and is unable
to filter out effects due to respiration and changes in the
heart rate that occur within the thirty-second segments.
The average pulse amplitude, �ICP, was significant when
each of the thirty-three spikes were treated independently,
but not when the metrics were combined for each of the
patients.
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Fig. 4. Spectrogram of segment shown in Fig. 2. The spectrogram is
an estimate of the power spectral density versus time of a nonstation-
ary signal. The frequency range was chosen to show only the cardiac
component of the ICP signal. Note that there is a clear decrease in
the cardiac component at the leading edge of the ICP elevation and
there is a clear increase afterwards.

The difference between the findings of earlier studies can
partly be explained by a difference in the time scales. We
examined signal segments ranging from 0–3.5 minutes be-
fore an increase in ICP elevation whereas some of the ear-
lier studies measured the signal characteristics at intervals
ranging from 15–30 minutes before an ICP elevation [2,7].
Another key difference was the timing of the segments

studied. We focused on segments immediately prior to a
significant elevation. Due to the high sampling rate of the
ICP signals, we were able to determine the onset of the el-
evation with high precision. In previous studies, it is likely
that the observed increase in cardiac peak amplitude, Cpa,
and mean-amplitude correlation, ρma, were observed after
the beginning of the elevation, but before the mean was ac-
tually elevated [2, 6, 8]. This is illustrated by the example
in Figs. 1 and 2. Although we studied the signal prior to
the onset of the spike at 256.2 s, the mean ICP does not
actually rise to a clinically significant level until approxi-
mately 328 s. In the transition, the signal amplitude grows
with along with the trend, which supports the findings of
these earlier studies [2, 6–8]. This is also illustrated in the
spectrogram of the same signal segment shown in Fig. 4.
Although Czosnyka et al. found that ABP dropped at the

beginning of plateau waves, it is not surprising that it did
not occur in this study since our criteria for rapid elevations
does not distinguish between plateau waves and other types
of ICP elevations [9]. It is well known that increased blood
volume is the primary cause of ICP elevations, so it is not
surprising that we found the ABP was usually elevated
immediately prior to the ICP elevation [14].

V. Conclusion

The results of this study suggest that it may be pos-
sible to develop a predictor of rapid and significant ICP
elevations. Although these results indicate that there are
a number of statistically significant precursors to ICP, it is
not clear how specific these metrics are to ICP elevations.
The physiologic significance of our results is unclear. The

ICP signal changes are at least temporally related to the
portion of the standard intracranial pressure-volume curve
with significant slope and may well represent a transition
zone where the physiologic mechanisms are shifting from
a compensated to an uncompensated state just prior to
an ICP elevation. Further studies are necessary to deter-
mine the underlying physiologic mechanisms represented
by these ICP changes and the specificity and sensitivity of
these methods for the prediction of rapid elevations.
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