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Abstract - The restoration of biomedical images that have been 
blurred due to body movement are discussed.  The observation 
system for these images is described using a mathematical 
operator and coordinate transformations.  And a 
band-suppressed restoration filter composed of a series of such 
operators is proposed for improving the quality of images.  In 
addition, redundancy is introduced into these restoration filters 
in order to suppress additive noise.  The proposed method is 
applied to blurred X-ray images of a bone model of the elbow 
joint.  The optimum position and number of markers, which are 
attached to the subject as a reference signal, are also discussed.  
Key words - X-Ray Images, Restoration, Band-Suppression, Blur, 
Body Movement   

I. INTRODUCTION 

Recently, the progresses of medical and engineering 
technology bring the digitalization and the remote control of 
the medical information.  X-ray images of the human body 
are often used in clinical analysis or diagnosis.  However, 
these images are sometimes blurred due to body movement.  
For example, blood vessel images obtained by thoracic 
X-rays are often blurred due to the movement of the 
diaphragm in respiration.  Children especially have a 
difficult time remaining still during an X-ray examination.  
Decreasing the exposure time reduces the extent of the blur, 
but even this does not ensure that a clear X-ray image can be 
obtained.  The reexaminations cause the increase of the 
patients’ radiation. Considering the remote medicine, the 
image data, which is generated by the reexaminations, 
increases the communication traffic.  To overcome these 
problems, images must be restored to their original state.  
Most traditional restoration methods attempt to completely 
restore the original signal, which theoretically requires an 
infinite Nuemann series.  Moreover, when the observed 
image is obscured by noise, the original image cannot be 
obtained.  Several restoration filters composed of a series of 
fundamental filters have been proposed for biomedical 
signals such as blood pressure signals, electrocardiograms, 
and blood temperature signals [1]-[6]. These filters have 
successfully restored band-suppressed approximations of the 
signals observed in real-time using biomedical instruments.  
Moreover, the noise included in the observed signals is 
suppressed by redundant models of the filters [7]. The present 
authors have expanded this restoration filter to be applicable 

to two spatial dimensions, and have constructed a restoration 
filter for blurred images [8], [9].  In the case of clinical 
images in radiography, the explore time is established as short 
as possible because of the quantity of radiation. In the present 
paper we suppose that the observed images are blurred by 
parallel or rotate translation.  Thus, the band-suppressed 
restoration filter combined with the coordinate transformation 
improves the quality of the blurred images.  The blurs are 
estimated by attaching markers, which are used as a reference 
signal, to the skin surface of the subject.  The optimum 
position and the number of markers are also discussed.   

II. DEFINITION OF THE PROBLEM 

The problem that obtains the original X-ray image from 
the blurred image is interpreted as one of the inverse 
problems.  In general, the inverse problem is defined by 
following equations.  Let f be an original image, n be the 
additive noise, and A be the observation system operator.  
The observed image, a0, is defined by 

 a0 = A f + n.  (1) 

The observed image a0 is distorted by A and n.  Let B be the 
restoration filter, the restored image f0 is obtained by  

 f0 =B a0.  (2) 

In the inverse problem, f0 in (2) must be approximately 
equivalent to f.  Moreover, The noise in the restored image, 
i.e. Bn, must be minimized.   

It is difficult to restore the completely original image f, 
when the noise n is present as shown in (1).  We attempt to 
restore the band-suppressed approximation of the original 
image rather than the complete original image. In the present 
study, band-suppression refers to the gradual decay in 
frequency that is caused by the linear filter.  Let P be the 
filter that causes band-suppression.  A restored 
band-suppressed image, Pf, is then defined as  

 Pf = B a0.  (3) 

The P should be selected to cover the frequency bandwidth of 
the original X-ray images.  The band-suppressed restoration 
filter can be realized by engineering techniques as shown in 
following section.   

In the present paper, we suppose that the blurs are 
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caused by the parallel or rotate translation. We define the 
parallel translation by the Lth-order observation operator,  

 A = Γ (sl ),
l=1

L

∏ Re{sl}> 0  (4) 

where {sl} are any complex values.   

 Γ (s) f (x, y) =
1

2s
e

−
|τ |
s

−∞

∞

∫ f (x −τ , y)dτ , s > 0  (5) 

where (x, y) represents the coordinates of a two-dimensional 
plane, and s is a parameter that represents the degree of 
distortion.  Γ(s) corresponds to the first-order low-pass filter 
having time constant s for the x-directions.  The transfer 
functions of parallel translation for blurs along the x-axis are 
expressed by adjusting L and {sl} in (4).  Moreover, not only 
parallel translations, but also rotations are expressed by 
applying coordinate transformations.  In the case of rotate 
translation, the observation system A in (1) is replaced by  

 A’ = T-1 A T  (6) 

and the restoration filter B in (3) replaced by  

 B’ = T-1 B T (7) 

where T is the coordinate transformation from Cartesian to 
polar coordinate system.   

III. METHODS 

As shown in section II, the restoration of blurred 
images is realized by combining the band-suppressed 
restoration filter with the coordinate transformation.  In 
this section, we explain the details of each technique.   

A. Band-Suppressed Restoration Filter  

For the Lth-order observation operator described in (4), 
we define the M (> L) th-order band-suppressed operator as 
follows:  

 P = Γ(s0)M.  (8) 

We attempt to suppress the noise by introducing redundancy 
into the order of the restoration filter.  We propose an 
Mth-order restoration filter that restores the signals observed 
by the Lth-order observation system.  To obtain the 
approximation of the original image, s0 must be set to a small 
value.  Therefore, a restoration filter composed of Γ(s0) is 
proposed. The restoration filter for (4) is derived using  

 B = bm{I − Γ(s0 )}m

m=0

M

∑  (9)  

where  
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(L
l) is a binomial coefficient.  The quantity d(i,j) is the 

natural number.  I − Γ(s0) corresponds to the high-pass filter 
having time constant s0 for the x-directions.  To satisfy (3), 
the order of the restoration filter, M, must be higher than the 
order of the observation system, L.  Figure 1 shows a block 
diagram of the Mth-order restoration filter for an Lth-order 
observation system.  

In order to realize the restoration filter, B, parameters 
such as the order M, the time constant s0, and the restoration 
coefficients {bm} must be determined in advance.  The order 
M (> L) and the time constant s0 (> Re(sl)) can be estimated 
by considering the frequency bandwidth of the original image 
and the noise associated with the observed image.  In order 
to determine M and s0, we employ an evaluation function that 
indicates both the precision of restoration and the amplitude 
of noise.  At first, we consider two types of relative errors.  
One is the error between a band-suppressed signal and a 
restored signal,  

 J1(M, s0) = ||Pf – Ba0|| / ||Pf|| (11)  

where J1 expresses the amplitude of noise.  The other is the 
error between an original signal and a restored signal,  

 J2(M, s0) = ||f – Ba0|| / ||f|| (12)  

where J2 expresses the distortion of the signal.  J1 and J2 
inversely proportional and directly proportional, respectively, 
to M and s0.  Thus, we propose a new evaluation function:  

 J3(M, s0) = J1(M, s0) / J’1 + J2(M, s0) / J’2 (13)  

where J’ is the average of J.  J3 represents an evaluation of 
both shape and noise, i.e., the smaller J3, the better the 
restoration.  The order M and the time constant s0 are 
optimized for restoration by minimizing J3.  We confirmed 
the restorative capabilities of the proposed filter using a 
marker.  The restoration parameters {bm} are estimated 
using the response of the reference signal as the image for the 
a0 that approximates the band-suppressed signal Pf.  The 
restoration filter can be constructed using the estimated {bm} 
without actually calculating {sl}.   

B. Coordinate Transformations 

The observation system in (5) represented the blur in the 
direction of x-axis.  However, blurs in X-ray images due to 
body movement may occur in any direction.  Moreover, not 
all blurs are represented by parallel translations.  Here we 
assume that the blurs of images can be represented by Affine 
transformation, i.e., parallel or rotation translation, because 
the exposure time is relatively short for X-ray examinations.  
We estimate the blur using a previously established marker 
attached to the subject as a reference signal.   

In the case of rotate translation, the blurred image 
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caused by rotation is converted to a parallel blurred image by 
Cartesian-polar coordinate transformation as follows: 

 
r = (x − x0 )2 + (y − y0 )2

θ = tan−1 y − y0

x − x0
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where r and θ are the axes in polar coordinate system and (x0, 
y0) is the origin of the rotation.  Replacing x and y in (5) 
with θ and r, respectively, the restoration filter in (9) can be 
applied to blurs caused by rotation translation.  The linear 
interpolation is applied to the images for digital 
representation.   

The blurred markers are estimated by searching the 
neighboring points for which the brightness was similar to the 
original points.  We assume that the image is blurred by 
rotation around some point (x0, y0).  Assuming (xn, yn), n = 1, 
2, ... , N, to be the original coordinates of the markers and (xn’, 
yn’) to be blurred points, the origin of the rotation (x0, y0) can 
be obtained by minimizing the following function:  
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The origin (x0,y0) can be estimated using more than one 
marker.  If the image is blurred in parallel translation, the 
origin cannot be obtained using the above method.  In that 
case, we must estimate the direction of the translation.  The 
blurred image at angle, φ, can be restored by converting the 
coordinates as follows:  

 
u
v
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where u and v are converted axes in Cartesian coordinate 
system.  Replacing x and y in (5) with u and v, respectively, 
the restoration filter in (9) can be applied to parallel 
translations in any direction.  Finally, the inverse 
transformation of coordinates is applied to the restored image.  

If there are any errors in the coordinates of markers, the 
origin of the rotation cannot be obtained precisely.  We 
examined the errors between the true and estimated origin 
coordinates by changing the markers’ location in order to 
analyze the influence of the coordinate errors. And the 
optimum number and the location of markers for restoration 
are obtained.   

IV. SIMULATION 

We estimated the precision of the coordinate 
transformation when the markers’ location changed. In the 
case of two markers, the errors were minimized when the 
angle between two markers was right angle as shown in Fig. 2.  

Fig. 3 indicates that the error decreases while the number of 
markers increases.   

We applied the above-described method to an X-ray 
image of an elbow joint and confirmed the restorative 
capabilities of the proposed filter.  We employed lead balls 
3 mm in diameter, which were fixed on the body as reference 
signals.  Using the restoration filter constructed by the 
reference signal, we restored an X-ray image of an elbow in 
Fig.4 (a). The restored image shown in Fig. 4 (c) is 
significantly clearer than the observed image shown in Fig. 4 
(b).  

The experimental results of restored images were 
evaluated by radiologist to determine the target of restoration.  
The experiments indicated that it was difficult to decide the 
target uniquely because of the differences of subjects, the 
kinds of movements, and diagnostic quality.   

V. CONCLUSIONS 

Toward the coming high-technology medical treatment, 
we researched and developed the high-fidelity improvement 
of medical images, which could apply for remote medicine.  
We proposed a filter for restoring X-ray images that have 
been blurred due to body movements.  First, we described 
the observation of these images using a mathematical model.  
Next, we proposed the restoration filters, which restored 
band-suppressed approximations to their original signals.  
These filters were successfully applied not only in parallel 
translation blurs, but also blurs caused rotate translation.  
The parameters of the restoration filter were estimated by 
considering both the restorative precision and the noise.  
The optimum number and position of markers were also 
discussed in the present paper.  Finally, we applied these 
methods to blurred X-ray images of a bone model of an elbow 
joint and were able to obtain clear images.  We have 
determined that the proposed method will be useful in a broad 
range of practical applications after considering the automatic 
detection of three-dimensional movements of the subject.   
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Fig. 1.  Mth-order restoration filter for Lth-order observation system. 
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Fig. 2.  Angle between markers vs. estimation error in the origin 
coordinates.  
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(a) Original image. 

 
(b) Blurred image. 

 
(c) Restored image. 

Fig. 4.  Restoration of X-ray image of an elbow joint.   
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