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SYNOPSIS 

Contributions have been made in two basic areas: 

(i)     Ultralight structures based on sandwich panels with truss and 
textile cores, 

(ii)     High authority actuating structures based on the properties of the 
Kagome system. 

A variety of core designs have been explored that achieve lightweight 
objectives, while also having structural robustness and are amenable to 
straightforward manufacturing. The cores included trusses with tetrahedral, 
pyramidal and 3D-Kagome topologies as well as plain weave textiles in 
0/90,±45 configurarions. The basic design principle is that, when 
incorporated into a panel and subjected to shear, the core members 
stretch/compress without bending. The basic attributes can be ascertained by 
analyzing the minimum weight needed to support specified loads without 
failure in either bending or compression. Progress has been achieved by a 
combination of fabrication, testing, modeling and simulation. The outcome 
has been a consistent representation of structural performance culminating in 
a comparison between these new designs and the benchmark system, 
consisting of a hexagonal, honeycomb core (figure 1). llie results reveal that 
the benefits of the truss/textile cores over honeycombs do not reside in their 
structural performance, but in their potential for lower manufacturing cost, 
especially in curved configurations, and when their multifunctionality is 
exploited. 

A class of actuating plate structures has been introduced, based on a planar 
truss having the Kagome weave pattern. The two planar manifestations 
explored both consist of faces connected by a tetrahedral truss core 
comprise: (a) a Kagome plane and a solid skin and (b) two Kagome faces. 
The feature rendering the Kagome planar truss exceptional for actuation is 
that its members can be actuated (elongated or contacted) to achieve 
arbitrary in-plane nodal displacements with minimal internal resistance. This 
attribute arises because the infinite, pin-jointed version satisfies most of the 
requirements for static determinacy, permitting minimal elastic energy 
storage (in bending) even when the joints are welded. These benefits become 
apparent upon comparing with a highly redundant planar truss, exemplified 
by identical triangular units with equal length members. If such a truss 
replaces the Kagome, axial deformation of the members would be required 



upon actuation, storing substantial energy. The Kagome truss is the only 
example known of an infinite planar truss amenable to assembly from repeat 
units having both isotropic stiffness and the properties desired for actuation. 
Analysis and experimentation on this concept is continuing. 
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Abstract 

The effective mechanical properties of the octet-truss lattice structured material have been 
investigated both experimentally and theoretically. Analytical and FE calculations of the 

elastic properties and plastic yielding collapse surfaces are reported. The intervention of 
elastic buckling of the struts is also analysed in an approximate manner. Good agreement 
is found between the predictions of the strength and experimental observations from tests 
on the octet-truss material made from a casting aluminium alloy. Moreover, the strength 
and stiffness of the octet-truss material are stretching-dominated and compare favourably 
with the corresponding properties of metallic foams. Thus, the octet-truss lattice material 
can be considered as a promising alternative to metallic foams in lightweight structures. 
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1    Introduction 

Over the past few years, a variety of metallic and polymeric foams have been produced 

for a wide range of potential applications such as the cores of sandwich panels and various 

automotive parts. A typical aim is to develop lightweight structures that are adequately 

stiff and strong. Numerous studies on metallic and polymer foams have shown that the 

strength of the foams is governed by cell wall bending for all loading conditions and scales 

as p^-^, where p is the relative density of the foam; see Gibson and Ashby (1997). On the 

other hand, the strength of a structure that deforms by cell wall stretching scales with 

p. Thus, for a relative density of p = 0.1 the stretching-governed structure is expected to 

be about three times as strong as the bending governed structure. The aim of this study 

is to investigate the mechanical properties of a stretching-governed cellular material and 

compare them with those of traditional foamed materials. 

Deshpande et al. (2000) have recently analysed the criteria for the construction of stretching- 

dominated cellular materials. A sufficient condition for the deformation of a periodic struc- 

ture to be stretching-dominated is that the unit cell of the structure satisfies Maxwell's 

criterion for static determinacy. This criterion in three dimensions is given by: 

b-3j+ 6>Q ,     (i) 

where b and j are the number of struts and nodes respectively in the unit cell. It identifies 

several classes of unit cells from which stretching-dominated cellular materials (referred to 

as lattice materials in the following) can be synthesised. In order to give a more definite 

prescription for constructing lattice materials, Deshpande et al. also analysed a special 

class of structures with nodes which are all similarly situated- nodes are said to be similarly 

situated if the remainder of the structure appears the same and in the same orientation 

when viewed from any of the nodes.   For this case they showed that the necessary and 



sufficient condition for the structure to be stretching-dominated is that the connectivity at 

each node is Z = 12 (or Z = 6 if the material is two dimensional). 

Recent developments in manufacturing techniques have allowed for the manufacture of 

lattice materials at length scales ranging from millimetres to tens of centimeters. For 

example, the injection moulding of polymeric structures and subsequent assembly into 

complex lattice materials is a cheap way to manufacture materials whose constituent struts 

have aspect ratios less than about 5. These polymeric materials can then be used as 

sacrificial patterns for investment casting of metallic lattice materials. Rapid prototyping 

techniques can be used to fabricate materials with lattice parameters on the order of 

0.5 mm. Recently, Brittain et al. (2000) have reported an electro-deposition technique to 

manufacture truss structures with strut diameters as small as 50 fxm. 

Along with advances in manufacturing methods for these materials, efforts are underway to 

investigate their mechanical properties. Wallach and Gibson (2000) have recently reported 

a combined experimental and finite element (FE) investigation of the strength and stiflfness 

of a truss plate. They find that the properties compare favourably with those of metallic 

foams. Wicks and Hutchinson (2000) show that optimised truss panels are exceptionally 

weight-efiicient for carrying bending and compression loads, as compared to alternatives 

such as honeycomb core sandwich panels or stringer stiffened plates. Although the prop- 

erties of truss plates have been analysed, analytical studies on the properties of full 3D 

lattice materials are lacking. 

In this paper we shall investigate the properties of the octet-truss (Fuller, 1961) lattice 

material. The nodes of the octet-truss are configured in a "Face Centred Cubic" arrange- 

ment, such that each node has a similar situation and a connectivity of Z = 12. We report 

analytical and FE calculations of the elastic-plastic properties as well as collapse surfaces 

due to elastic buckling. The predictions are compared with experimental observations from 

tests on an octet-truss material made from an aluminium casting alloy (LM25). 



1.1    Description of microstructure 

A unit cell of the lattice structure is sketched in Figure 1 and clearly shows its FCC 

nature. Octahedral cells can be stacked to synthesise the octet-truss structure, with each 

strut of an octahedral cell shared between two neighbouring cells. Thus, for the purposes 

of structural calculations it suffices, to analyse the octahedral cell. An isometric sketch of a 

typical octahedral cell, with the associated Cartesian co-ordinate system {x,y,z) is shown 

in Figure 2. 

An alternative repeating unit which can be stacked in the same orientation to construct 

the octet-truss lattice material is a regular tetrahedron. One such tetrahedral cell with 

nodes labelled pi through p4 is shown in Figure 1. An isometric sketch of this tetrahedral 

cell with the associated global co-ordinate system (1,2,3) of the octet-truss is included in 

Figure 2. Here, the 1-2 plane is parallel to the base plane pl-p2-p3 and the 2-axis is parallel 

to the strut between the nodes p2 and p3. The (1,2,3) co-ordinate system corresponds to 

the 3-fold symmetry of the octet-truss material about the 3-axis. Note that the 1-2 plane 

is a close-packed plane of the FCC structure and constitutes a fully triangulated layer in 

the lattice material. Thus, the octet-truss material can be constructed by the successive 

packing of the triangulated layers in "ABCABC..." positions with each layer separated by 

a tetrahedral core. 

In the remainder of this paper an octet-truss lattice material constructed from identical 

circular cylindrical struts is analysed. The conclusions drawn can easily be generalised for 

the case of hollow or solid struts of arbitrary cross-section. The relative density p of the 

octet-truss lattice material (ratio of the density of the lattice material to the density of the 

solid material from which it is made) is given by 

p = 6^7r(y) (2) 

where a and / are the radius and length of a strut respectively.  This formula is a first 

order approximation and overestimates the relative density due to double counting of the 



volume of the nodes. A higher order approximation of the relative density is given by 

, = a^.Q^-c(^)^ (3) 

where C depends on the detailed geometry of the nodes.   For small a/l, the first order 

approximation suffices and is used in the remainder of the analysis presented in this paper. 

2    EflFective elastic properties 

The cubic symmetry of the octet-truss lattice material dictates that the form of the linear 

elastic stress versus strain relationship is 

I^A fsi     -S2     -S2     0 0 
') 

fa^ 
^y Si       -S2      0 0 0 -y 

ez Si     0 0 0 (^z 

53 sym 
0 

S3 

0 
0 

<^yz 

Oxz 

VxyJ \ ^3/ \o^) 

(4) 

where the principal material axes (x, y, 2;) are defined in Figure 2 and si, s^ and S3 are 

three independent compliances. Note that an isotropic material has only two independent 

elastic constants with S3 = 2 (si + S2). 

For small a//, the contribution to overall stiffness from the bending of the struts is negligible 

compared to stretching of the struts. Thus, the struts are assumed to be pin-jointed at the. 

nodes, and analytical expressions for the compliances follow as 

1 2v^7r /a\2 
(?)• Sl 

— =     -ISJ-I-K 1   , 
S2 \l 
1 TT    /n.\ 2 

-E's = g-E'il 

S3 

2v^7r(y)'E, -Es,    and 

=   —E, 
12   ' 

(5a) 

(5b) 

(5c) 

where Eg is the Young's modulus of the solid material.  The macroscopic elastic stress 

versus strain relationship in the (1,2,3) co-ordinate system is of practical interest and is 



obtained by transforming (4^ : 
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This stress versus strain relationship displays a coupling between the normal components 

of stress and the shear components of strain in the (1,2,3) co-ordinate system as these 

directions are not aligned with the principal material directions (x, y, z). 

For clarity, in the following we shall refer to the various moduli as either a Young's modulus 

E or a, shear modulus G and subscript them with their respective directions. For example, 

the Young's modulus in the x and 3 directions will be denoted by Exx and £'33, respectively, 

while the shear modulus in the x — y direction will be referred to sis Gxy   It is worth 

mentioning here that £^33 = -£', is the maximum value of Young's modulus of the octet- 
5 

truss lattice material over all orientations. 

2.1    Comparison with the FE predictions 

The accuracy of the approximate analytical expressions for the moduli weis checked against 

FE calculations performed using the general purpose finite element package ABAQUS 

(HKS, 1997). In these FE calculations the pin-jointed strut assumption was relaxed. Here, 

we briefly describe details of the FE calculations. 

The octahedral cell with each cylindrical strut modelled by between 20 and 40 Timoshenko 

beam elements (B32 element of ABAQUS) depending on its length was analysed to ex- 

tract the 3 cubic moduli. The displacements of the nodes at the vertices of,the cell were 

constrained so as to prevent rigid body translation and rotation of the cell. Further, the 

rotations of the nodes at vertices were constrained as dictated by symmetry. Two stress 

states, uniaxial tension cr^z and simple shear TXZ were prescribed and the moduli extracted 

from the resulting nodal displacements. We performed calculations for three values of the 

solid material elastic Poisson's ratio u, = 0.2, 0.3 and 0.49. However, Ug had a negligible 



effect on the octet-truss material moduli. Thus, for the sake of brevity only results for 

Us = 0.3 are presented. 

A comparison between the analytical and FE predictions of the moduli Exx, Gxy and E^z 

is shown in Figure 3 for p ranging from 0.01 to 0.5. Excellent agreement between the FE 

and analytical calculations is seen, in support of the pin-jointed strut assumption made in 

the analytical calculations. 

3    Collapse criteria 

The octet-truss lattice material can fail either by plastic yielding or elastic buckling of 

the struts. In this section the collapse of the lattice material by these two competing 

mechanisms is explored. We shall calculate plastic collapse surfaces of the material under 

various combinations of loading and then proceed to propose an anisotropic yield criterion. 

3.1    Plastic collapse 

In the analytical calculations it is assumed that the struts are pin-jointed and made from 

a rigid, ideally plastic solid. The macroscopic collapse stress is calculated by equating 

the external work with the plastic dissipation in stretching the struts for kinematically- 

admissible modes of collapse; that is, an upper bound approach is adopted. The accuracy of 

these analytical calculations was checked through FE calculations in which the pin-jointed 

strut assumption was relaxed. 

In the FE analysis each cylindrical strut was again modelled by between 20 and 40 Timo- 

shenko beam elements (B32 element of ABAQUS) depending on its length. J2 flow theory 

was employed and the strut material was assumed to be elastic-plastic with the uniaxial 

stress versus strain law: 

ey        \ {(T/(TY)"'   for   a > uy j 

where ay and ey are the material yield stress and strain respectively. The elastic Poissbn's 

ratio Us of the material was assumed to be 0.3, the yield strain ey of the strut material was 



taken equal to 0.1 % and the hardening co-efficient m = 80 (this small degree of hardening 

was required to get convergence of the FE calculations). An imperfection in the shape of 

the plastic buckling mode was imposed on each strut to ensure a unique equilibrium path 

in the FE calculations. The imperfection is described by the initial transverse deflection 

w. 

w{x)      2 --(¥) (8) 

where C is a dimensionless imperfection parameter, a the strut radius, / the strut length 

and X the axial co-ordinate along the strut measured from one end. This imperfection 

is not expected to affect the plastic limit load values; see section 3.4 for details. For the 

calculations presented in this section C was taken equal to 0.01. 

The collapse surfaces in (azz, axz) and {axx, cXyy) space were calculated by analysing 

the octahedral cell while the tetrahedral cell was used to calculate the collapse surface in 

("■asj cTis) space. The displacements of the nodes at the vertices of the cell were constrained 

so as to prevent rigid body translation and rotation of the cell; and the rotations of the 

nodes at the vertices were set to zero. The macroscopic yield stresses (defined by the peak of 

the macroscopic the stress versus strain curve) were calculated for a variety of proportional 

stress paths and plotted in the relevant stress space to give the plastic collapse surface. 

3.1.1    Collapse surface calculations 

The overall yfeld surface in macroscopic stress space consists of intersecting collapse sur- 

faces which are associated with particular collapse modes. Plastic strain increments are 

normal to the relevant collapse surface. In this section we detail calculations of the collapse 

surfaces for three important practical combinations of macroscopic stressing viz. (cr^^, a^z), 

{(^xx, cTyy) and (0-33, 0-13). 

Collapse surface in (cr^^, axz) space 

The collapse modes for this combination of macroscopic stressing are sketched in side views 

of the octahedral cell in Figure 4. In the sketches dashed and solid lines struts are at yield 

and in the rigid state, respectively, while a solid circle represents a plastic hinge. However, 



the plastic dissipation at the hinges is neglected in comparison with the dissipation in axial 

stretching of the yielded struts. As the struts yield either in compression or tension, two 

collapse locii exist for each yield pattern. Thus, for collapse Mode I, the struts labelled 

p5-p2, p5-p3, p6-p2 and p6-p3 are yielding and the collapse planes are given by 

Mode la: ^ = ^ + s/27r (^)\   and (9a) 

Mode lb : ""''      "'' V2n (y) (9b) 
cry-       2O'Y 

where cry is the yield stress of the solid material. In Mode II, struts p5-pl, p5-p4, p6-pl 

and p6-p4 are yielding and the collapse plane equations are 

Modella: — =-^ - V27r (^Y,   and (10a) 
ay zay \l/ 

Mode lib: ^ = -^ + v/27r (jY. (10b) 
ay 2cry \l/ 

A comparison between the. analytical and FE predictions of the uniaxial yield strength <T]^ 

is shown in Figure 3 for p ranging from 0.01 to 0.5. The good agreement between the two 

sets of calculations confirms that the plastic dissipation in the hinges is negligible. FE and 

analytical calculations of the collapse surface in (a^^, Oxz) space are shown in Figure 4 for 

a/l = 0.1. Again, results from the analytical and FE calculations are in good agreengient. 

It is worth mentioning that the symmetry of the octet-truss lattice material is such that 

the set of collapse surfaces {amm, crnm) are identical, where m and n represent any pair of 

the x,y or z directions. 

The octet-truss is periodic with respect to rotations of period 90 ° about the 2:-axis. FE 

calculations show that the shear strength axz varies by approximately 10 % as the octet- 

truss is rotated about the z axis with the shear strength being minimum at a 45 ° rotation. 

This suggests that the collapse surface in (cr^j., (T^Z) space is almost invariant with respect 

to rotations of the co-ordinate system about the z axis. 

Collapse surface in {CTXX, Oyy) space 

The collapse modes under combinations of appked stresses [axx-, (^yy) are sketched in plan 

views of the octahedral cell in Figure 5. In Mode III the struts labelled p5-pl, p5-p3, p6-pl 



and p6-p3 yield, with the collapse planes described by the equations 

C* 1/1/        ^T.T.       ^   nz    I Q>\ 
Mode Ilia :              ^ = ^ + 2v^7r (-\ , and                       (11a) 

ay        ay                    \l / ^       ' 

Mode Illb:              ^ = ^- 2v/27r f ?)'. (lib) 
cry         ay                     \l/ ■             ' 

In Mode IV, the struts pl-p2, p2-p3, p3-p4 and pl-p4 yield and the collapse planes corre- 

spending to this mode are given by 

- 2 V27r ( ; ! ^ 
ay ay 

ModelVa: ^ = _^ _ 2V27r f y)     and (12a) 
ay ay V / / ^      ' 

+ 2v^7r(y)'. (12b) ModelVb: ^ ^ _^     --  /r   /a\2 
ay ay 

The FE calculations of the collapse surface are included in Figure 5; good agreement is 

noted with the above analytical predictions. Note that symmetry dictates that the set of 

collapse surfaces {amm, CTnn) are identical where m and n represent any pair of x, y or z 

directions. 

Collapse surface in (<T33, ais) space 

For the combinations (0-33, ais) of macroscopic stress, it is convenient to analyse the 

tetrahedral cell. The various collapse modes are sketched in side views of the tetrahfedral 

cell, see Figure 6. In Mode V, the two struts p4-p2 and p4-p3 yield while in Mode VI the 

strut p4-pl yields. The equations of the collapse planes corresponding to these modes are 

given by 

ModeVa: ^ = -^ + 27r(y)^   and (13a) 

ModeVb: ^ ^ ^ - 2^ (^Y (13b) 

for Mode V and 

0-y . s/2ay           V / J 

0'13 
ay 

f^33              /a\2 

2y/2ay     ""yU ' 

ay 
0-33         /ay 

Mode Via: -^ = ^ _ ^r   -    ,    and (14a) 

ModeVIb: ^=.—^+^(^y (14b) 
<JY 2\f2ay        \ll ^     ' 

for Mode VI. Comparisons between the analytical and FE calculations for ajl = 0.1 are 

shown in Figure 6: good agreement again confirms the accuracy of the analytical calcula- 

tions. 



The collapse surface in 0-33 — au space is approximately invariant with respect to rotations 

of the co-ordinate system about the 3-axis, by the following argument. Consider shear 

loading with 0-33 = 0. The shear strength <7i3 of the octet-truss is periodic with respect to 

rotations of period 60 ° about the 3-axis; FE calculations reveal that the shear strength 

<Ti3 varies by less than 10 % as the octet-truss is rotated about the 3-axis, with the shear 

strength a maximum for a 30 ° rotation. 

3.2    Anisotropic yield criterion 

While the collapse surfaces presented in the previous section are useful for displaying the 

yield stress under specific load paths, a closed-form expression for the yield surface would 

be advantageous in summarising the collapse response of the octet-truss lattice material. 

In this section we shall make use of Hill's (1948) generalisation of the von Mises yield 

criterion for materials with orthotropic symmetry. An orthotropic material has 3 mutually 

perpendicular planes of symmetry at every point, with the intersections of these planes 

known as the principal axes of anisotropy. With respect to the principal axes of anisotropy 

(x, y, z), Hill's yield criterion has the form: 

$ = o-^-l = 0 (15a) 

where the applied macroscopic stress is characterised by the effective stress measure ad 

given by 

0-2 = Aia, - Oyf + B{ay - a,f -f C{a, - o^f -F Drl, -H Erl, + Frl^. (15b) 

Here, A through F are parameters which characterise the degree of anisotropy. 

The octet-truss lattice material also has 3 mutually perpendicular planes of symmetry 

passing through every node and the (x, j/, 2) axes as defined in Figure 2 correspond to the 

principal axes of anisotropy. Thus, it is appropriate to consider using Hill's criterion to 

describe the yielding of this material. However, Hill's anisotropic yield criterion assumes 

that plcistic yielding is not influenced by hydrostatic pressure. This is clearly not the 

case for the cellular octet-truss lattice material. We therefore modify Hill's criterion by 

incorporating a mean stress dependence on yielding. 

10 



As the simplest extension of Hill's yield criterion we assume that the yield function $ of the 

octet-truss lattice material is quadratic in mean stress am = Ckk/^j and in the deviatoric 

stress mecisure aa- $ is then of the form 

^=aj + Gal = 

A{a, - ay)' + B{ay - a,f + C{a, - a,f + DTI + ET^ + FT' + Gal = 0 
(16) 

yz   '   ^   'xy 

where A through G are material constants. The quadratic term a^ad is rejected as it 

is assumed that the yield stresses under hydrostatic compression and tension are equal. 

It must be remembered that the yield criterion (16) only has the form shown when the 

principal axes of anisotropy co-incide with the reference axes; otherwise, the form of the 

yield condition changes in a way that can be found by rotating the co-ordinate system. 

It remains to calibrate the yield criterion to determine the material constants A through 

G. The uniaxial and shear yield strengths with respect to the material principal axes and 

the hydrostatic yield strength cr^ of the octet-truss lattice material are 

^xx        yy        zz 2v^7r(|) o-y (17a) 

(^ly = ^lz = (^^yz = ^^(y) ^y' ^^^ (17b) 

al   =   2v^7r(y)%y (17c) 

respectively. Upon substituting the above yield stresses into (16) and solving for A through 

G, the yield criterion for the octet-truss lattice material can be re-written as 

(18) 
+ '^[rL + r^z + r^y]+^m-   2V27r (^)  aY = 0, 

where 2\/2n (-J cry is the uniaxial yield strength in a principal direction of anisotropy. 

Thus, to fully describe the state of anisotropy of the octet-truss lattice material we must 

know the orientations of the principal axes of anisotropy and the uniaxial yield strength 

in the principal directions. 

Comparisons between the calculated collapse surfaces and the predictions of the above 

yield criterion are shown in Figures 4 to 6.  In {az^, axz) space, good agreement is seen 
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between the predictions of the proposed yield criterion both and the FE and analytical 

calculations. On the other hand, in {axx, i^yy) space the proposed yield criterion substan- 

tially overestimates the yield stresses under biaxial tension and compression. In (0-33, 0-13) 

space, the yield criterion does not capture the form of the collapse surface accurately. 

In an effort to propose a better functional form for the yield criterion we tried higher order 

functions of CT^ and Gd (viz. 4th and 6th order functions). However, no improvements in 

the accuracy of the predictions were found. The authors' have been unable to construct a 

simple expression for a yield criteria that will capture the plastic collapse of the octet-truss 

lattice material under a variety of stress states to sufficient accuracy. 

3.3    The elastic buckling strength 

The octet-truss lattice material collapses by elzistic buckling of the struts if the Euler 

buckling load of the struts as given by 

-. = =^ in) 

is less than their plastic yielding load Py = ira^ay. The factor n in (19) depends upon the 

rotational stiffness of the end nodes of the strut and is central to the problem of calculating 

PE for a given network of struts. When a strut buckles, the rotation of its ends is opposed 

by the bending of the other struts: they exert a restoring moment and it is this that 

determines the factor v? in (19). Thus, n depends upon the buckling mode. The cells 

of the octet-truss lattice material may buckle in many diflFerent modes and the resulting 

problem is very complicated to analyse completely. We simplify the problem by assuming 

that the struts are pin-jointed. Thus, the rotational stiffness of the nodes is zero and n = 1 

in (19). It is recalled that the buckling load of an axially loaded strut is strongly dependent 

on the end constraints, and so the calculations presented below should be viewed as lower 

bounds to the buckling strength. 

The collapse stresses due to the elastic buckling of the struts are estimated by equating 

the external work to the internal work in buckling the struts for kinematically admissible 

collapse modes. In these analytical calculations we assume the struts are rigid up to the 
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onset of buckling. The post buckling load-shortening relation for an inextensional pin- 

ended strut of length / is given by (Budiansky, 1974): 

P«P.(l + ^) (20) 

for small axial displacements A. Thus, a first order approximation of the work associated 

with a shortening A is PgA and the total internal work is Yl PE^ over all the buckHng 

struts. Note that in the analytical calculations we neglect the effects of elastic deformations 

prior to the onset of buckling. The accuracy of this assumption has been checked through 

finite deformation FE calculations. 

In the FE calculations, the struts were assumed to be pin-jointed elastic beams comprising 

of Timoshenko beam elements (B32 of ABAQUS). The strut material was assumed to be 

elastic-plastic with the uniaxial stress versus strain law (7). Calculations were performed 

for two material yield strains ey = 0.05 and 0.1 with a strain hardening exponent m = 80 

in both cases. As in the plastic calculations the octahedral cell was used in (cr^^, Cxz) 

and {a^xi cTyy) collapse surface calculations while the tetrahedral unit cell was employed 

to calculate the (eras, cxiz) collapse surface. An imperfection of shape given by the elastic 

buckling niode of pin-ended struts, and described by the initial transverse' deflection, 

—j (21^ 

was imposed on each strut. As in (8), C is the imperfection level and x is the axial co- 

ordinate along the strut measured from one end. For the calculations presented in this 

section, an imperfection level C = 0.01 was added to all the struts. Note that the limit load 

for buckling is insensitive to the choice of C for the material and geometrical parameters 

considered here; see section 3.4 for details. 

3,3.1    Buckling collapse surfaces 

We now proceed to detail the collapse surfaces due to elastic buckling, as computed by 

analytical and FE methods for the combinations of macroscopic stressing considered earlier, 

{(^zz,  CTxz),  (cTxx,  <Tyy) and ((733,  (T13). 
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Collapse surface in (0-32, a^z) space for elastic buckling 

The sketches in Figure 7 show the possible bucicUng modes in side views of the octahedral 

cell, with the dashed Unes representing the buckled struts. Since the struts only buckle in ^ 

compression, a single collapse plane is associated with each buckled state and the equations 

of the collapse planes for the three collapse modes are given by 

r3 

ModeB-I: ^ = ^ + ^(5), (22a) 
<JY ~ IOY ' 2v/2ev- 

4 

Mode B-II: ^ = -^ - -^ (y) ,  and (22b) 

Mode B-III 
OY      y/2tY W / ^      ' 

The buckling collapse planes (22) are plotted in Figure 7 for a/1 = 0.1 and solid material 

yield strains cy = 0.05 and 0.1. The appropriate plastic collapse planes are included in the 

figure. Good agreement is seen between the FE and analytical calculations in support of the 

infinitesimal deformation assumption made in the analytical calculations. On comparing 

the buckling collapse stresses (22) with the plastic collapse stresses we note that the entire 

collapse surface is governed by the elastic buckling of the struts when ty > —T- ( T ) • 

Collapse surface in {a^x, cryy) space for elastic buckling 

The buckling collapse modes for the loading in {axx, cfyy) space are sketched in Figure 8. 

The buckled struts are represented by dashed lines in plan views of the octahedral cell. 

The equations of the collapse planes for the three collapse modes are 

ModeB-IV: ^ = ^ + ^(^)', (23a) 
cry        cry       v/2ey \IJ 

^3 

Mode B-V 

Mode B-VI 

£l«i^_^_^(^)^   and (23b) 

^yy      ^xx r3      /HA 4 

UY       cry      v^ey ^ I ■ 

FE and analytical predictions of the collapse surfaces in {(J^X-, ayy) space are shown in 

Figure 8 for a/1 = 0.1 and ey = 0.05 and 0.1; the predictions of both methods are in 

good agreement. Elastic buckling collapse governs collapse for all stress states other than 

a biaxial tensile stress state:   the three buckling modes B-IV to B-VI are activated in 
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4  \l 
always by plastic yield irrespective of the value of cy. 

preference to plastic collapse if ey > — (7 ) • Under biaxial tension, the collapse mode is 

Collapse surface in ((733, 0-13) space for elastic buckling 

The collapse modes in (0-33, 0-13) space are sketched in top and side views of the tetrahedral 

cell in Figure 9. The equations of the four collapse modes are given by 

Mode B-VII: 12i ^ ^^ + JL («) , (24a) 

Mode B-VIII 

g"l3  _      (^33 

OY \/2<T> 

OY 2>/2ay     4ey 
CT13 <T33     , 3;r^ /a\4 

w (7)' (2^b) 

ModeB-IX: ^ = __^ + £!L («)^,   and (24c) 
(^Y 2\/2GY     4ey V// ' ^     ' 

UodeB-X: ^ = ^2S _ |l! (2)'. (24^) 
cry 5   cry       SCy \ t / 

On comparing these elastic buckling collapse stresses with the corresponding plastic col- 

lapse stresses (13) and (14), it follows that buckling modes B-VII and B-VIII are activated 

if cy > -j- (y) while modes B-IX and B-X are triggered if ey exceeds —- [-J and 

-—■ \-\ , respectively. Note that the entire collapse surface is governed by the elastic 

buckling of the struts when ey > ——- (y) • 

A comparison between the analytical and FE predictions of the collapse surface in (0733, 0-13) 

space is shown in Figure 9 for a/l = 0.1 and ey = 0.05 and 0.1. The small discrepancies be- 

tween the analytical and FE predictions are due to finite deformation effects: as mentioned 

earlier the analytical calculations for the collapse loads were performed for infinitesimal 

deformations while the FE analysis was a finite deformation calculation. 

3.4    Effect of geometric imperfections 

In general, the elastic buckling and plastic collapse surfaces overestimate the collapse 

stresses of an elasto-plastic lattice material; interactions between the elastic buckling and 

plastic yielding of the struts substantially knock-down the collapse stresses. In this section 

we examine this interaction and use the finite element method to investigate the effect 

of imperfections in the form of strut waviness. For the sake of. consistency with the elas- 
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tic buckling calculations detailed in the previous section we assume that the struts are 

pin-jointed. 

Here we consider imperfections of the same shape as the buckling mode and described by 

(21). The influence of the imperfection level C on the collapse loads of an axially loaded 
(7r(2\ ^ 
— j    (Hutchinson, 1974).  For example, if 

a/Z = 0.1 and ey = 0.025, the collapse loads are expected to be substantially reduced due 

to the influence of imperfections. 

FE calculations of the collapse surface in (cr^^, a^z) space for a/l = 0.1 and ey = 0.025 are 

shown in Figure 10 for two levels of imperfections, C = 0.01 and 0.1. The collapse stresses 

for both levels of imperfections are substantially lower than those for the perfect structure. 

In fact, for C = 0.1 the collapse load of the imperfect strut is about half that of the perfect 

strut which results in mode B-III becoming active and truncating the tensile side of the 

plastic collapse surface. 

—) the collapse 

load of an axially loaded pin-ended strut is expected to be reasonably insensitive to the 

imperfection level. FE and analytical calculations of the collapse surfaces in (a^^, Cxz) 

space for a/l = 0.1 are shown in Figure 11 for solid material yield strains ey = 0.001 

and 0.1. As expected the collapse surface is reasonably insensitive to the imperfection 

level, with the collapse stresses decreasing by less than 10 % for C = 0.1. We suggest here 

that the elaisto-plastic collapse stresses of an imperfect octet-truss lattice material idealised 

as a pin-jointed structure can be estimated by re-calibrating the buckling collapse planes 

against the axial collapse, load of an imperfect pin-ended strut. 

4    Comparison between measured and predicted mod- 

ulus and yield strength 

We proceed by comparing the predictions detailed in the previous sections with the mea- 

sured uniaxial compression strength of the octet-truss lattice material made from a casting 

aluminium alloy (LM25) of composition Al-Si 7-Mg 0.3 (wt %). 
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A brief description of the manufacturing route for this lattice material is given below. 

Triangulated layers with locating holes at the nodes, and tetrahedral cores with locating 

pins at the nodes, were injection moulded in polystyrene. The octet-truss microstructure 

was then constructed by adhering the triangulated layers in an "ABCABC..." arrangement 

with alternating layers of the tetrahedral core. This polystyrene lattice was used as the 

sacrificial pattern in a "lost-wax" investment casting process to produce the LM25 lattice 

material. The octet-truss lattice material employed in this study comprised solid cylindrical 

struts of radius a = 1 mm and length I = 14 mm, and the overall specimen dimension was 

280 mm x 140 mm x 60 mm, with 5 tetrahedral core layers. A photograph of the lattice 

material made in LM25 is shown in Figure 12; the stacking of the 5 tetrahedral core layers 

separated by the triangulated layers is clearly seen in this picture. 

Uniaxial compression tests in the 3-direction were performed using a standard screw driven 

test machine. The load was measured by the load cell of the test machine and used to define 

the nominal stress in the specimen. The average nominal strain between two triangulated 

layers w£is measured via a clip gauge. The measured uniaxial stress versus strain curve, 

a33 versus 633, is plotted in Figure 13a for the nominal strain rate 633 = 10"^ s~^. The 

stress versus strain curve exhibits a hardening response up to a strain of approximately 

5 %. Beyond this strain, the response is softening corresponding to plastic buckling of the 

struts. Bedding-in effects during the early stages of deformation were detected as seen in 

Figure 13a. These bedding-in effects occur at the nodes in the lattice material: the pins of 

the tetrahedral core bed into the holes of the triangulated layers during the initial stages 

of deformation. 

In order to compare the measured and predicted stiffness and strength of the lattice ma- 

terial we measured the uniaxial tensile response of the as-cast LM25 struts; the measured 

response is plotted in Figure 13b. It was found that the LM25 can be approximated by 

an elastic perfectly-plastic solid with a Young's modulus Es = 70 GPa and a yield stress 

cry = 170 MPa. While these values of Es and ay were used in the analytical predictions, the 

FE calculations were performed using the measured tensile stress versus strain response of 

the solid LM25, as given in Figure 13b. The analytical and FE predictions of the strength 
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of the lattice material are shown in Figure 13a: they are in good agreement with the ex- 

perimental data (note that (-—-)   — ^5 and thus the collapse of this material is not 
\2l /   ey . 

expected to be imperfection sensitive). On the other hand, the calculations overestimate 

the stiffness of the lattice material. This is due to the bedding-in effects at nodes which 

were neither modelled in the analytical nor the FE calculations. 

5 A comparison between the stiffness and strength 

of the octet-truss lattice material and other porous 

materials 

5.1 Octet-truss lattice material vs. metallic foams 

It is of practical interest to compare the mechanical properties of lattice materials with 

those of competing materials such as metallic foams. Here, the stiffness and strength of 

the octet-truss lattice material are compared in Figure 14 with those of metallic foams, 

for relative densities p in the range 0.01 to 0.1.   The modulus ^33 and strength aj^ of 

the octet-truss lattice material are plotted in Figure 14, while the experimentally observed 

isotropic stiffness and strength values for metallic foams 

E 
-—   =   p^,   and (25a) 

—   =   0.25p^l (25b) 
ay 

are employed; see for example Ashby et al. (1998). Figure 14 clearly shows that the stiffness 

and strength of the octet-truss lattice material exceed the corresponding values for metallic 

foams by a factor between 3 and 10. 

5.2 Octet-truss lattice material vs. optimal microstructures 

The design aim in the development of the octet-truss lattice material is to maximise the 

strength (or stiffness) to weight ratio of a nearly isotropic cellular material. To get an 

estimate of the performance of the lattice material with regards to achieving this goal we 

compare the properties of the octet-truss lattice material with the upper bounds on the 
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stiffness and strength of isotropic voided materials. The H-S (Hashin and Shtrikman, 1963) 

upper bound on the Young's modulus (with Vs = 1/3) is shown in Figure 14. The figure 

also contains an upper bound on the uniaxial yield strength, obtained by transforming 

the linear H-S bound to the perfectly-plastic case, using the prescription of Suquet (1993). 

The stiffness and strength of the octet-truss lattice material are seen to be about half the 

theoretical upper bound values for p between 0.01 and 0.1. 

A number of classes of two phase composites are known to attain the H-S bounds on 

the bulk and shear moduli.  Readers are referred to Sigmund (1999) for details on these 

optimal microstructures. Here, we briefly review some of the microstructural features of 

those optimal composites. Norris (1985) and Milton (1986) proposed differential schemes 

for constructing composite structures with the extremal H-S bulk and shear moduli. While 

Milton (1986) used a laminate microstructure, Norris (1985) employed a coated sphere 

architecture.   However, the procedures suggested by both these authors are incremental 

and require an infinite number of mixing processes.   Moreover, the procedures do not 

specifically describe the underlying microstructure of the composite. On the other hand, 

Prancfort and Murat (1986) suggested the so called "rank" laminates which attain both 

the bulk and shear H-S bounds with a finite number of layering directions. Rank laminates 

are obtained by a sequential process where at each stage the previous laminate is laminated 

again with a single lamina (always the same) in a new direction. Thus, a rank-n laminate is 

produced by n such successive laminations. Francfort and Murat (1986) showed that while 

in the 2D case, isotropic rank-3 laminates have the extremal bulk and shear moduli, in 

the 3D case rank-6 laminates are the optimal microstructures. Thus, there exist a variety 

of multi length-scale microstructures with extremal values of the bulk and shear moduli. 

However, no single length-scale microstructure that attains both the bulk and shear H-S 

bounds has been proposed to date. 

The bulk and shear moduli of the octet-truss lattice material analysed in this paper are 

about half the H-S upper bound values. However, the octet-truss lattice with solid struts is 

a single length-scale microstructure that can be manufactured relatively easily and cheaply. 

Further, in contrast to the rank laminates, the octet-truss lattice material has additional 
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potential by virtue of it's open structure for multi-functional applications. For example, a 

sandwich plate with solid skins and the octet-truss lattice core can serve as a heat transfer 

element while simultaneously carrying structural loads. Such applications of open-celled 

cellular materials are discussed by Evans et al. (1998). Thus, the octet-truss lattice material 

represents a relatively cheap and weight-efficient structural material with potential multi- 

functional applications. 

6    Concluding remarks 

The effective mechanical properties of the octet-truss lattice material have been investi- 

gated through analytical and FE calculations. Analytical expressions have been derived 

for the three independent moduli associated with the cubic symmetry of the octet-truss 

lattice material. Good agreement is observed between the analytical predictions and FE 

calculations, in support of the assumption that the contribution to the overall stiffness 

from the bending of the struts is small. 

Analytical and FE calculations of the plastic collapse surfaces under three combinations 

of stressing are presented. Again, good agreement is seen between the analytical and FE 

calculations. An extension of Hill's anisotropic yield criterion fails to capture the form of 

the collapse surfaces accurately. 

The collapse of the octet-truss lattice material by the elastic buckling of the struts has 

also been addressed through analytical and FE calculations. To simplify the buckling 

calculations, the struts are assumed to be pin-jointed. Thus, these calculations are ex- 

pected to be underestimate the collapse stresses. The collapse surface calculations show 

that elastic buckling of the struts truncate the plastic collapse surfaces under all combina- 

tions of macroscopic stressing other than biaxial tension and hydrostatic tension. Further, 

the FE calculations confirmed that shape imperfections of the struts knock-down the col- 

lapse stresses only when the elastic buckling and plastic yielding loads of the struts are 

approximately equal. 

An octet-truss lattice material manufactured in LM25 aluminium alloy was tested in uni- 
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axial compression in the 3-direction. Good agreement is seen between the analytical and 

FE calculations of the strength and the experimental data. However, the experimentally 

observed stiflFness was lower than the predicted value. This is attributed to the bedding-in 

of the struts into the nodes during the initial stages of deformation. 

The stiffness and strength of the octet-truss lattice material compare favourably with the 

corresponding properties of metallic foams. In fact, the stiffness and strength values of the 

octet-truss material are about half the theoretical maximum values for isotropic voided 

materials: it's high strength to weight ratio, relative ease of manufacture and potential for 

multi-functional applications makes the octet-truss lattice material an attractive alterna- 

tive to metallic foams. 
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Figure 1: Structure of the octet-truss lattice material.  The darkened struts represent a 
octahedral cell while the nodes labelled pl-p4 form a tetrahedral cell. 
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Octahedral cell Tetrahedral cell 

Figure 2:  Isometric sketches of the octahedral and tetrahedral cells with the associated 

co-ordinate systems. 
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Figure 3:   Comparison of the analytical and FE predictions of the elastic moduli and 
strength for the octet-truss lattice material. 
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10 mm 

Figure 12: Photograph of the octet-truss lattice material made from a casting aluminium 
alloy, LM25. 

34 



c3 
OH 

8 

7- 

6- 

^    5- 
CO 

en        t 
<u ;-! 
CO 

1    3 
s 
e     2 

0 

—T 1 1  I" ■  1 1  
1" " 

M 

^..•- '"., analysis^,—■ 
1 

i I            ~ 

-   1 
1 
1    / \y^ experiment 
I 

" 1 y /\ - 
1 -" ^     \ 
'■    / FE calculation 

" f  / 
1 / 
i  / 

1 / ^^^ j'"'  *^^ 

i / /\ "   /      > K 
1 / / /       f \ 

■1 1 / I       1 \ i 1 
il i        f 

) 
T^NT^ ^^'''''                      \ 

/                            '      ' 1/     X 
/       \ 

\ / 

-1 1 i— 1 
, .    :       1 

0 /O.Ol      0.02      0.03      0.04      0.05      0.06      0.07 

norniiial strain, €33 

Figure 13: (a) Comparison between the experimental observations and predictions of the 

0-33 versus €33 response of the LM25 lattice material. 

35 



200 

OH 

CO 
CO 

-t-3 
CO 

O) 

o 

150 

^     100 

■X  

0.005 0.02 0.025 

nominal tensile strain 

Figure 13: (b) Uniaxial tensile response of the as-cast LM25 aluminium alloy 

36 



E 
Eg      (Ty 

relative density p 

Figure 14: Comparison between the stiffness and strength of the octet-truss lattice material, 
metallic foams and the upper bounds for isotropic voided materials. 

37 



KAGOME PLATE STRUCTURES FOR ACTUATION 

R. G. Hutchinson*, N. Wicks**, A. G. Evans***, N. A. Fleck*, and J. W. Hutchinson** 

*Engineering Department, Cambridge University, Cambridge, UK 
**Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 
***Department of Materials Engineering, University of California, Santa Barbara, CA 

Abstract 

A class of planar, pin-jointed truss structures based on the ancient Kagome basket weave 

pattern with exceptional characteristics for actuation has been identified. Its in-plane stiffness is 

isotropic and has optimal weight among planar trusses for specified stiffness or strength. The 

version with welded joints resists plastic yielding and buckling, while storing minimal energy 

upon truss bending during actuation. Two plate structures are considered which employ the 

planar Kagome truss as the actuation plane. It is shown that these plates can be actuated with 

minimal internal resistance to achieve a wide range of shapes, while also sustaining large loads 

through their isotropic bending/stretching stiffness, and their excellent resistance to 

yielding/buckling. 

1.   Introduction 

A class of actuating plate structures is introduced, based on a planar truss having the Kagome 

weave pattern (Fig. 1). The two planar manifestations to be explored both consist of faces 

connected by a tetrahedral truss core (Fig. 2) with the following distinctions: 

(i)        A Kagome plane and a solid skin, 

(ii) Two Kagome faces. 

The feature rendering the Kagome planar truss exceptional for actuation is that its members can 

be actuated (elongated or contacted) to achieve arbitrary in-plane nodal displacements with 

minimal internal resistance. This attribute arises because die infinite, pin-jointed version satisfies 

most of the requirements for static determinacy, permitting minimal elastic energy storage (in 

bending) even when the joints are welded. These benefits become apparent upon comparing 

with a highly redundant (isotropic) planar truss, exemplified by identical triangular units with 

equal length members.  If such a truss replaces the Kagome in Fig. 2, axial deformation of the 



members would be required upon actuation, storing substantial energy. The Kagome truss is tlie 

cfnly example known to us of an infinite planar truss amenable to assembly from repeat units 

having both isotropic stiffness and the properties desired for actuation. 

This purpose of this paper is to introduce some important properties of the Kagome planar 

truss and to provide an overview of its role in actuating plate structures. More complete 

treatments will be given in subsequent papers. Several aspects of the performance of this 

configuration will be addressed. 

(i)        A discussion of determinacy for infinite pin-jointed trusses with repeating units 

reveals that no such configuration can be both statically and kinematically 

determinate, 

(ii)       The pin-jointed Kagome truss has kinematic mechanisms, but the weld-jointed 

version is resistant to premature failure by suppressing them and, moreover, inhibits 

premature failure by either plastic yielding or buckling, 

(iii)      In combination with superior in-plane stiffness (Hyun and Torquato, 2002), these 

features render the Kagome planar truss an ideal structural unit for two-dimensional 

actuation, 

(iv)     The actuation capability is revealed by analyzing the response of the plates in Fig. 2 

at long wavelengths (relative to the truss member length). 

2.   Determinacy and the Kagome Planar Truss 

The relevance of static determinacy to actuation of two and three-dimensional truss structures 

has been appreciated for some time in connection with the design of space antenna and mirrors 

(Miura, 1984a,b; Rhodes and Mikulas, 1985; Mikulas, Thorwald and Wada, 1993). Because the 

forces in the members of a pin-jointed, statically determinate truss are determined by equilibrium 

alone, any member can be elongated or shortened without inducing forces in other members, at 

least to lowest order in the nodal displacements. Accordingly, the structure offers no resistance 

to actuation, yet, simultaneously, it is capable of carrying applied loads. With a focus on large 

actuated structures, we consider infinite plates of the kind shown in Fig. 2 where the truss part of 

the structure is comprised of identical repeating units. The effects of finiteness are discussed 

elsewhere. The first step considers infinite planar trusses with pinned joirlts. 



2.1 Static and kinematic determinacy of infinite planar trusses with repeating units 

Maxwell's necessary condition for static determinacy of a pin-jointed truss requires that the 

number of member forces equal the number of joint equilibrium equations. For an infinite planar 

truss, this criterion requires an average of four members converging at each joint. Note that the 

Kagome truss (Fig. 1) satisfies this condition, whereas a triangulated truss with repeating 

equilateral triangles has an excess of two members at each joint. 

Kinematic determinacy for a truss satisfying the above condition requires that joint positions 

are uniquely determined by member lengths (no mechanisms) such that member lengths can be 

varied independently without incurring deformation of any members. 

Additional conditions must be imposed to ensure static or kinematic determinacy of an 

infinite, pin-jointed planar truss. These are discussed by Guest and Hutchinson (2002) and 

applied to periodic trusses such as the Kagome truss. These authors show that infinite trusses 

built up from repeating units (planar or three-dimensional) carmot satisfy all of the conditions for 

both static and kinematic determinacy. That is, any such infinite truss that is statically 

determinate will necessarily have kinematic mechanisms. Conversely, any infinite truss that is 

kinematically determinate will have states of self-stress. 

2.2 The Kagome planar truss: stiffness and uniform actuation strains 

The infinite pin-jointed Kagome truss is neither statically nor kinematically determinate 

(Wicks, 2002) and yet it is capable of bearing arbitrary overall loads. In contrast, for the case of 

a finite Kagome truss, it is possible to add additional members to the boundaries in order to make 

it both statically and kinematically determinate. 

Consider the infinite Kagome truss and assume that each member is identical with length, L, 

cross-sectional area. A, and Young's modulus, E. Further, suppose the truss is loaded at 

infinity such that the normal and tangential stress resultants per unit length acting on an edge 

perpendicular to the A:,-direcfion are (A^ipA^i,); similarly, the stress resultants on an edge 

perpendicular to the Xj-direction are {N^_^,N.,.,), where N^x = N^2 and notation standard to plate 

theory is used. All bars with the same inclination carry identical loads. With three 

representative members denoted by A, B and C and for the truss orientation shown in Fig. 1, the 

forces are 



F, = (L/V3)(3iV„ - iV..), Fg = 2L(N,._ /S-N,,), F^ = 2L(N,.^ IS + N,^) (1) 

The overall stiffness of the Kagome planar truss is isotropic such that the relation between the 

average in-plane strains and the overall stress resultants are given by 

^11 = S~'(iV,, - v^V,.), e„ = S''(N,._ - vyv.j), e,2 = S''(1 + v)N,, (2) 

with S= EAI(V3L) and v = 1 / 3. The inverted relation is (with v = 1 / 3) 

Hyun and Torquato (2002) optimized the topology of infinite, planar isotropic truss-like 

structures in order to maximize stiffness for a given weight. They used an evolution algorithm 

coupled to a general plane stress analysis of the structure to arrive at an optimal geometry. The 

Kagome truss and the triangulated truss were found to be almost identical in stiffness per unit 

weight. When analyzed within the framework of pin-jointed trusses, the two geometries are 

precisely equally optimal, attaining the dilute limit of the Hashin-Shtrikman (1962) upper 

bounds. 

It is an elementary exercise to relate the overall strains, (e[,,e22,ej2) to the actuation strains 

(e^,eg,ec) of bars A, B and C, respectively. The overall strains can be achieved without 

inducing any stress in the members by actuating (i.e. elongating or contracting) the three sets of 

members according to 

^A       ^11'    ^B        4^11       T^22      ~^12'     ^C ~ 4^11 '''7^22 "^~2"^12 (v 

or 
12 1 

^ll~^A'   ^22 ~ ~I^A "'"iC^B +^C/'    ^\2~ :jJ\^C ~^B^ (5) 



When the joints are welded, bending in the members results in a small resistance to actuation. 

To estimate the magnitude, note that the strains induced by bending are of order, {rlL)e^, where 

£^ is taken to be representative the actuation strain and r-4llA is the radius of gyration of the 

member, with / as the moment of inertia. Consequently, the elastic energy induced by actuation 

scales with ^Cre, I Vf" multiplied by the volume of truss deformed. The corresponding elastic 

energy-scaling factor for an actuated redundant truss is Ee^^^. Thus, the energy stored in 

actuation of the Kagome truss is expected to be significantly lower than that in a redundant truss. 

3. Mechanisms of the planar Kagome pin-jointed structure 

It is instructive to determine the full set of possible collapse mechanisms for a pin-jointed 

planar Kagome structure of infinite extent. A systematic method has been developed to 

determine the competing collapse mechanisms for any pin-jointed periodic structure (Hutchinson 

and Fleck, 2002). The method builds upon the matrix methods of structural analysis pioneered 

by Pellegrino and Calladine (1986) and Pellegrino (1993), and the Bloch wave analysis for 

periodic continua by Triantafyllidis and Schnaidt (1993). An equivalent approach is to set up the 

governing set of finite difference equations for a periodic structure (e.g. Forman and Hutchinson 

(1970)). The main steps in the analysis are as follows, 

(i)       The kinematic matrix for the unit cell is derived; this relates the bar elongations to the 

nodal displacements for all nodes and bars of the unit cell, 

(ii)       For the given unit cell, the trial displacement field d" of each node n at position x is 

written as 

d"^^ p^^ex^iilnk-x) j=l,2 (6) 

The harmonic function exp(/2;r^-x), with wavevector k, is modulated by an unknown 

periodic function p" that repeats from one unit cell to the next.  Substitution of the trial 

field (6) into the kinematic matrix for the unit cell leads to a reduced kinematic matrix for 

the unknown quantities p" for the boundary and interior nodes. 

(iii) The possible collapse mechanisms are obtained by taking the bar elongations of the unit 

cell to equal zero, and by examining the null space of the reduced kinematic matrix for 

any chosen values of k.   The dimension of the null space equals the number of 



mechanisms for the assumed wavevector k. In general, the null space is complex, and the 

real and imaginary parts of the displacement field d" constitute independent mechanisms. 

3.1 Application of matrix analysis to the planar Kagome pin-jointed structure 

The full set of mechanisms for the pin-jointed planar Kagome structure have been calculated 

using the above matrix analysis. The Kagome structure is represented by the primitive unit cell 

as outlined by dotted lines in Fig.l, with the local co-ordinates (xpX,) aligned with the sides of 

the unit cell, and oriented with respect to the Cartesian reference frame (.^pXj). Symmetry 

dictates the existence of 3 families of collapse mechanism, with one family characterised by the 

wavevector k along the x^- direction, one along the Xj- direction and the third along the X2- 

direction. It suffices to consider the canonical family of mechanisms associated with 

wavevectors along the Xj- direction; the other 2 families can be obtained simply by rotating the 

Kagome structure with its canonical family of mechanisms by a clockwise or counter-clockwise 

rotation through 60°. 

The canonical mechanisms are associated with  |^ adopting the following values: 

|ifl=V3/4L, Vs/6L, Vs/8L, Vs/lOL..., 0. For |i^=0, a single mechanism exists, and it can 

be characterized by the relative rotation of neighboring triangles, see Fig. 3a. This infinitesimal 

mechanism does not generate macroscopic strain, but the finite version of this mechanism does 

give rise to an equi-biaxial compressive strain. The mechanism for |^=V3/4L resembles 

twinning of alternating sign along the Xj- direction, as sketched in Fig. 3b. For intermediate 

values of \J^, such as •V3 /6L, two independent collapse mechanisms exist (given by the real and 

imaginary parts of d"); each collapse mechanism comprises discrete bands of deformation that 

are periodic along the x^- direction. For the sake of brevity, these additional collapse 

mechanisms are not shown, and the reader is referred to Hutchinson and Fleck (2002) for full 

details. 

None of the infinitesimal collapse modes described above gives rise to macroscopic strain. 

This is consistent with the fact that the Kagome structure has a finite overall stiffness, as given 

by equation (3). 



4.   Strength of the planar Kagome structure with welded joints 

When the joints of the Kagome planar truss are welded, the kinematic mechanisms identified 

above are suppressed. However, the issue remains as to whether the welded tfuss is susceptible 

to buckling in modes of similar shape to the mechanisms described above. This possibility is 

examined by performing a general bifurcation buckling analysis of the in-plane modes. As in the 

earlier sections, the length of each member is L, the modulus is E and the cross sectional area is 

A. The moment of inertia of the members governing in-plane bending is /. We first consider 

conditions for plastic yielding of the truss and continue with a complete analysis of the in-plane 

elastic buckling modes. 

4.1 Yield 

It is straightforward to obtain analytic expressions for the plastic collapse strength of the 

Kagome truss by assuming that each member behaves in rigid-ideally plastic manner, with a 

yield strength Oy, and by neglecting the small effect of bending. The effective yield locus is 

found by setting the bar tensions defined in (1) equal to the fully plastic axial yield load iACj, 

with the following results: 

N,,-N^J3=±A(7yliSL) 

A^22-V3Ari2 = ±V3Acr,/(2L) (7) 

N:,2 + SNn = ±SAay/(2L) 

Note the special case with 7^,2 = 0 defines a four-sided convex yield locus in the (A^jpA^22) Pl^'^^ 

as shown in Fig. 4c. The relations (7) can be re-phrased in terms of the principal in-plane 

stresses (N^Mj) and the orientation of the principal directions with respect to the Kagome truss. 

Using this approach it can be shown that the Kagome truss is almost isotropic in its yield 

response (Hutchinson and Fleck, 2002). 

4.2 Elastic buckling of the Kagome truss 

Bloch wave theory can be used to obtain the elastic buckling strength of the welded Kagome 

truss subjected to arbitrary, macroscopic in-plane loading. Following Triantafyllidis and 

Schnaidt (1993), the first step is to determine the tangential stiffness matrix K for the primitive 

unit cell (Fig. 1) at a given macroscopic stress. Let d be the vector of virtual nodal displacements 



(two translations and one rotation per node), and/ be the work-conjugate vector of generalised 

forces (two direct forces and one moment per node). Then, a non-trivial solution is sought for 

the homogeneous system of equations Kd =/where K is the symmetric, tangential stiffness 

matrix of the primitive unit cell, in accordance with beam-column theory (see e.g. Livesley 

(1975)). One first forms the 15 X 15 matrix A" for the Kagome unit cell of Fig. 1 (5 nodes each 

with 3 degrees of freedom, d.o.f) with the axial bar forces determined by the macroscopic stress 

state using (1). Next, the generalised virtual displacement and force vectors d and/are given a 

Bloch wave representation similar to (6), and one thereby obtains a (9 X 9) reduced stiffness 

matrix Kf. The governing equation for any buckling mode now reads Krdr=^. Further 

reductions may be made if desired: e.g. one may "statically condense" internal d.o.f. such as 

those associated with joint 1 in Fig. 1. It is emphasized that the reduced stiffness matrix is a non- 

linear function of both the assumed pre-buckling stress state and the wavevector A. 

The buckling load of the welded Kagome truss is obtained by incrementing the macroscopic 

stress state (and thus the bar forces) along a given stress path, and by searching for a non-trivial 

solution of Krdr=^ for all k. This null space contains infinitesimal elastic buckling modes (in 

general, real and imaginary) analogous to the linear eigenvalue buckling analysis found, in many 

commercial finite element codes (e.g. ABAQUS). At low loads the nullspace is trivial whereas 

at sufficiently high loads buckling is triggered and the nullspace is non-trivial. 

The elastic buckling locus in the macroscopic {N^^,Nj2) plane is shown in Fig. 4 for various 

strut slendemess ratios. In this plot the stress resultants have been normalized by Ady IL, and, 

thus, the elastic buckling locus depends upon the magnitude of the yield strain, Ey = (TyJE. 

Whether elastic buckling or plastic collapse controls the in-plane strength of the truss depends 

upon the ratio rlih-^Y where r=^I IA is the radius of gyration of the cross-section.   If 

r/iL-yjeY) > 0.45, plastic yielding occurs prior to elastic bucking for all combinations of N^i and 

N22- For example, if Ey =0.003 then plastic yielding is operative if r/L>0.024. In other 

words, only when its members are exceptionally slender will the weld-jointed Kagome tmss be 

susceptible to elastic buckling. 

In general, only two elastic buckling modes - modes A and B (Fig. 4) - are found to be of 

practical interest; all others occurred at higher loads.    Mode A is associated with N22- 

compression and the wavevector \^=^|3/4L (note similarity to Fig. 3b) while Mode B is 



associated with A^,,-compression and is equivalent to Mode A rotated by 60° analogous to the 

above "canonical pin-jointed mechanism" discussion. 

5. Two Kagome Sandwich Plates 

The two sandwich plates considered in this paper are shown in Fig. 2. Actuation of 

members of the Kagome planar trusses is envisioned. For the plate having just one truss face, it 

is assumed that face will be actuated to achieve desired shapes of the solid face sheet. The 

Gaussian curvature of the desired shape must be small, otherwise large actuation forces will be 

required to overcome stretching of the solid face. For the plate in Fig. 2b with two truss faces, 

each face will be actuated. This allows arbitrary shapes to be achieved with no restriction on the 

Gaussian curvature. 

For the sandwich plate with a single truss plate, the core is comprised of tetragonal truss 

units connecting the nodes of the face to the solid face as shown in Fig. 2a. The spacing between 

the faces is H and the truss face sheet is characterized by (l)-(3). The solid face sheet has 

Young's modulus, JE^, Poisson's ratio, v^^, thickness r^, and stretching stiffness, Sf = Eft^. The 

sandwich plate has isotropic stretching and bending stiffnesses that can be readily derived. 

However, the expressions for these stiffnesses are algebraically lengthy. They simplify 

significantly if Vj = v=l/3, in which case the plate stretching stiffness, S, and bending 

stiffness, B, under a single component of moment are given by 

The conventional plate bending stiffness, defined for curvature in only one direction, is 

S/(l-v'). 

Second, consider the sandwich plate with two Kagome truss faces; the core comprises 

tetragonal truss units symmetrically positioned with respect to the mid-plane and connected to 

the face nodes as shown in Fig. 2b. Equation (8) applies with 5^^ denoting the in-plane stiffness 

of the bottom face. If the two faces are identical, 5 = 25 and B = H^S /2. 

6.   Long Wavelength Actuation of Kagome Plates 



For the plate having one soUd face, the Kagome back plane is actuated to achieve the desired 

shapes (figures 2 and 5). For this case, the Gaussian curvature of the goal shape must be small, 

otherwise large actuation forces will be required to overcome stretching. Conversely, for the 

plate with two truss faces, both can be actuated to realize arbitrary shapes with no restriction on 

the Gaussian curvature. The aim is to achieve specified non-planar shapeis defined by the 

transverse displacement field, w°{x^,X2), of the lower face sheet as closely as possible (Fig. 5). 

When the desired shape has wavelengths that are long compared to the length of the truss 

members, the analysis is elementary. The results will be presented below. The corresponding 

analysis for shorter wavelengths will be presented in a subsequent paper. 

6.1 Relation between member actuation and average in-plane displacements and strains for 

long wavelength modes in the 2D Kagome planar truss 

Invoke a continuum description of the truss wherein the joints and members are imagined 

embedded within a planar membrane. Measure displacements and strains from the reference 

state of the undeformed membrane, and denote them in the usual way for a continuum by M„ (X^) 

and e^={u^p+Up^)l2 where the Greek subscripts range from 1 to 2. The displacement of a 

truss node coincides with the displacement, M„ , of the membrane at that point, and the 

extensional strain, e, of a member connecting neighboring nodes T and J is 

e = (M„ (3c') - "a (^' ))^a / ^ where t„ is the unit vector parallel to the member and directed from J 

to I. Equivalently, in the long wavelength limit the member strain can be expressed as 

e = e^t^tg where the strain is evaluated at the member location. Denote the top Kagome face 

sheet by the superscript T. Then, an arbitrary in-plane displacement field, M^, of the truss joints 

can be achieved by actuation of the members to undergo the extensional strain described above 

and derived from M^, i.e. £^ = (M^(X')- H^(3c^))f„ IL. Thus, the Kagome planar truss can be 

actuated to achieve any long wavelength, in-plane strain field, £^^ =^ ("I,^ + "^,a)/2. Relations 

(4) and (5) can be used to obtain the member actuation strains from e^^. If the Kagome truss 

plate had true pin joints, arbitrary member actuation would leave the truss unstressed. The 

welded-joint Kagome truss is capable of arbitrary actuation without substantial resistance, while 

at the same time being stiff and strong in all directions. 

10 



6.2 Actuation of a Kagame-backed truss plate for long wavelength shapes 

The combination of qualities noted above make the Kagome truss a unique two-dimensional 

element for actuating either of the plate structures shown in Fig. 2. The passive bending behavior 

of each of the plates is isotropic and substantial, as is the stretching stiffness. Moreover, the 

sandwich plate has a high resistance to local buckling. Under the restriction of long wavelength 

actuation modes, it will be shown that the Kagome planar truss comprising the top face of the 

plate can be actuated to achieve any normal deflection shape of the bottom face sheet, provided 

that the deflection slopes are sufficiently small. As already noted, larger deflections are limited 

to those shapes for which the Gaussian curvature of the solid face sheet is small. For the plate 

having a Kagome planar truss for both faces, this restriction can be removed if both faces are 

actuated, as will be discussed in Section 5.3. 

Let elp be the in-plane strains of the virtual middle surface of the sandwich. Let  vv^Cx^x,) 

be the normal deflection of that surface with K^^ as its curvature tensor, where K:"^ = w°^. With 

ul{xp) as the in-plane displacements of the virtual middle surface, the in-plane strains are given 

by 

el, = \[ul,^ui:)^\wyi (9) 

The compatibility equation for the middle surface strains is 

<,,+4„-24,, = G (10) 

where G = K^J - RT^K:", is the Gaussian curvature of the middle surface. The formulation is 

limited to the same restrictions as von Karman nonlinear plate theory: small strains and 

moderately large out-of-plane rotations such that |M,a|«1 and |w„|" «1. For a core with ample 

shear stiffness, the strains in the top and bottom faces can be expressed in terms of the middle 

surface strain and curvature using the classical Euler-Bernoulli hypothesis. This hypothesis 

states that material points lying on a normal to the undeformed middle surface remain on the 

normal to the deformed middle surface. For the top Kagome face this implies 

^lp=4,-iHI'^)<p (11) 

while for the bottom face (Kagome or solid) 

ef,=e;+(^/2)C (12) 

11 



Let w°{Xi,x.,) be the desired shape of the plate. (Under the present restrictions for which 

(11) and (12) apply, both the top and bottom face sheets have the same normal deflection as the 

virtual middle surface.) The objective is to activate the top Kagome truss sheet to achieve 

w°(Xi,x^) such that there is no stretching strain in the bottom face sheet. This ensures that any 

resistance to actuation is due only to bending and, therefore, relatively small. Imposing e^ =0, 

requires e^ = -(H /2)K°p. Then, by (11), it follows that the top Kagome truss sheet must be 

activated such that £^^ = -HK^^. Compatibility of the middle surface strains, e°^, requires that 

(10) be satisfied. Since e°^ = -{H /2)vv°^ satisfies e° ^j + £22,11 ~ 2ei°2,i2 ^ 0 identically, it follows 

from (10) that the choice of shape w°(x^,X2) must be restricted to have zero Gaussian curvature, 

that is G = KTiV - '^n'«^22 = ^,n ~ ^,11^,22 = ^ (This condition can be relaxed for sufficiently small 

deflection slopes, as. wiirbe discussed later.) 

Assuming G = 0, the nodal displacements in the top Kagome truss needed to achieve the 

strains £^^ = -HK^ are ul =-Hvt;° and the elongation (or contraction), AL, of a member with 

orientation specified by the unit vector f„ is 

AL = -HLK°^tJp (13) 

As discussed above, this displacement field can always be achieved by actuating members of 

the Kagome truss plane. Moreover, upon actuating to produce any shape of zero Gaussian 

curvature there are no induced stresses except those caused by truss bending. Additional loads 

applied to the sandwich plate induce both bending and stretching. The members and solid face 

sheet must be designed to carry those loads. The work of actuation is that required to displace 

the applied loads, plus the small internal energy stored in bending. 

The condition on w° that G = K:° ' - K^^K22=0 ensures that no stretch energy occurs in the face 

sheets. When the slopes of the desired shape, vv°, are restricted to be sufficiently small, the 

Gaussian curvature can be taken to vanish (since it is quadratic in w°jxp), and the compatibility 

equation (10) can be linearized, with its right hand side vanishing identically. Then, any shape 

w° can be achieved by actuating the top Kagome truss, but some stretching energy will be 

induced if G ^ 0. The practical limits to the linear regime will depend on energy requirements 

for actuation and on buckling as well as plastic yielding constraints in the truss members and the 

solid face sheet. 

12 



6.3 Long wavelength actuation of both faces of a two-faced Kagome truss plate 

If members of each face of the two-faced Kagome truss plate in Fig. 2 can be actuated/it 

is possible to achieve arbitrary shapes with no restriction on the Gaussian curvature of the 

desired shape. Given the desired shape, w°ix^,x,), take u^=-jHwl such that, by (9), 

fO^ = -'^Hwlp +1^,°^.^ (This choice necessarily satisfies (10).) Then, by (11) and (12), the 

strains that must be attained by actuation in the top and bottom faces are e^ = -HK°p + ^w" w°^ 

and £^=jwlw°p, respectively. These strains are achieved by actuating length changes of the 

members according to AL = Le^ptj^, as already discussed. 

It is worth noting that, as specified, the scheme is not unique. To prescribe unique actuation 

of the members, both the in-plane displacements and the normal deflection must be prescribed. 

If the virtual mid-plane undergoes displacements iu°,w°), e°^ is given by (9). Then, by (11) and 

(12), the face sheets must be actuated to achieve (M°,w°)such that 

The displacements in the bottom face are (u° +\HWI,W°). Thus, if the aim is to activate the 

top and bottom face sheets such that the bottom face sheet undergoes displacements (wf .w*), 

this can be achieved without incurring stretching energy by substituting w° = w*  and 

M° = M^ —Hw^ into the expressions just listed to obtain 

ei=i(«„% + «,%)-H<,+iw>.;    and    £^, =!(«„%+M;J + ^W>.5    (14) 

withKf^ = w^^. 

In summary, a plate having actuated Kagome planar trusses for each face can achieve any 

desired displacement of the nodes of one of the faces, in-plane and out-of-plane. The resistance 

to actuation is due only to truss bending effects. A prescription for shapes having wavelengths 

that are long compared to the plate thickness is presented. This prescription applies to shapes 

with moderately large slopes, jw°| «1. It can be extended to shallow shells in a 

straightforward manner. 

13 



7.   Concluding Remarks 

The Kagome truss has been introduced as an actuating plane into a sandwich plate structure 

with the potential for achieving arbitrary non-planar shapes. The primary feature of the weld- 

jointed Kagome truss for actuation applications is its ability to deform as an effective medium 

with arbitrary in-plane strains against the minimal bending resistance of the joints. Other 

properties that make it especially effective for such applications are its isotropic stiffness, its 

substantial, near-isotropic in-plane yield strength, and its high local buckling strength. The 

sandwich plate with two Kagome truss faces can be actuated to achieve arbitrary displacements 

of the nodes of one face. The plate with only one face as a Kagome truss can be actuated to 

deform the solid skin to a desired shape. However, unless the Gaussian curvature of the desired 

shape is small, significant stretching forces will develop and the energy of actuation will be 

large. 

When the actuation is limited to long wavelength modes surprisingly simple results pertain. 

Methods are being developed to cope with actuation into arbitrary shapes, including a detailed 

assessment of the stresses produced by both the actuation and by the applied loads to be 

displaced. Problems related to the potential for fatigue at welded joints will be addressed. More 

detailed results on the buckling strength will be published separately (Hutchinson and Fleck, 

2002). Optimization of plates designed for specific actuation goals will also be performed in 

subsequent work. 

Finally, we note that it has been possible to fabricate the panels described in figure 2 by using 

a procedure based on the CNC bending of perforated plates, followed by transient liquid phase 

bonding of the faces to the core. Tests on these structures are in progress to affirm the stiffness 

and strength, to ascertain the bending resistance of welded truss joints, and to establish limits on 

the realizable deformations imposed by fatigue. 
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Figure 1.   Sketch of pin-jointed, planar Kagome lattice with member length L, spatial co- 

ordinates jCj and jCj and primitive unit cell dash-outlined. 
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(a) 

(b) 

Fig. 2  Sandwich plates based on planar Kagome truss plates,  (a) Sandwich with one Kagome 

truss face and a solid skin face, (b) Sandwich with two Kagome truss faces. 
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Figure 3. Mechanisms of the planar Kagome truss, (a) |ki = 0 and (b) |k| = V3/4L. 
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Figure Captions 

Fig. 1. Sketch of pin-jointed, planar Kagome lattice with member length L. Dashed lines give 
the boundaries of the primitive unit cell. 

Fig. 2 Sandwich plates based on planar Kagome truss plates, (a) Sandwich with one Kagome 
truss face and a solid skin face, (b) Sandwich with two Kagome truss faces. 

Fig. 3. Mechanisms of the planar Kagome truss, (a) |k| = 0 and (b) |k| = -^3 lAL. 

Fig. 4. The competition between elastic buckling and plastic collapse of the welded Kagome 

truss for selected values of slenderness ratio rliL-^Syy 

Fig. 5 Desired shape to be achieved by actuation 
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Abstract 

Metallic sandwich panels with tetrahedral truss core panels have been fabricated and their 
structural performance evaluated. A novel fabrication technique involving deformation- 
shaping and transient liquid phase bonding has been used. The responses of the structure 
in core shear and panel bending have been measured. The results demonstrate robust 
behavior beyond the limit load, manifest as retained load bearing capacity and bending 
stiffness even after large plastic deformations. A model for the core shear response is 
presented as well as a finite element simulation. These duplicate the essential features 
found experimentally. When combined with the constitutive properties of the face sheet 
material, these shear characteristics can be used to predict the limit load for panels in 
bending. 



1. Introduction 

Hexagonal honeycomb core sandwich structures are the state-of-the-art choice for weight 
sensitive applications such as aircraft and satellite structures [1]. Panels with open truss 
cores offer an alternative [2-6]. They are more amenable to forming into complex shapes 
than honeycomb cores, and they allow fluids to readily pass through, rendering them less 
susceptible to internal corrosion. They are also attractive for multifunctional applications, 
such as combined cross flow heat exchange and load bearing [7]. For minimum weight, 
core topologies that deform by means of stretching or compressing (no bending) are 
required [3-6], exemplified by tetrahedral and pyramidal topologies [3]. In optimized flat 
panels, when optimized, such cores are predicted to be as light as honeycomb cores. For 
these cores, at loads relevant to aerospace applications, the minimum weight occurs at a 
core relative density in the range 2-3%, with thin faces (thickness to load span of order 
3.10"^). The failure mechanisms operating at the optimum depend on the yield strain of 
the alloy being used [3,7]. At the high yield strains pertinent to aerospace grade Al alloys, 
failure occurs by concurrent face yielding, face wrinkling and elastic buckling of the 
compressed truss core members. For the lower yield strains relevant to stainless steels, 
the failure modes are concurrent face yielding, face wrinkling and core member yielding 

Experimental assessments of these predictions have been made in near-optimal panels 
fabricated by an investment casting process [3], using materials having yield strains in the 
range where the core response is yield (rather than elastic buckling) dominated. These 
investigations had two primary limitations: (i) due to the constraints on aspect ratio 
imposed by investment casting, the faces were much thicker than the optimum so that 
only the core response could be probed, (ii) the casting introduced defects that limited the 
plastic strains deformations, inhibiting the ability to probe the performance envelope. 
Other limitations of investment casting include the relatively high manufacturing cost 
associated with investment casting, the limited alloy options for the casting of high aspect 
ratio shapes and the limited material property ranges that can be accessed (relative to a 
wrought material) and (particularly low ductility). 

All of these issues are addressed in the present study by applying a manufacturing 
procedure for open cell tetrahedral truss core structures (figure 1) applicable to wrought 
metals [8]. The cores are made from wrought alloys using metal perforation and 
deformation-shaping processes. They are bonded to thin metal face-sheets using a 
transient liquid phase approach. The resulting structure has strong nodes and retained 
ductility. Other structurally attractive truss designs having pyramidal [6] and Kagome [9] 
architectures can be fabricated in a similar way. In this article, the performance of 
tetrahedral truss core panels made in this manner, when subject to overall bending loads, 
is assessed and compared with predictions for near-optimized configurations [3]. Since 
regions within the core of panels loaded in this manner experience combinations of shear, 
compression and stretching, independent measurements of these properties become the 
basis for models that characterize the overall load supporting capacity. 

2. Sandwich Panel Construction 



Miniature truss cores can be fabricated from wrought metals by concertina-bending 
starting with perforated metal sheets and concertina-bending along diagonal lines of 
nodes [8]. To illustrate the fabrication, a commercially available 304 stainless steel (Fe- 
I8Cr-8Ni) sheet with hexagonal perforations was obtained from Woven Metal Products, 
Inc. (Alvin, TX). fabricated. The truss members had width w =1.26 mm and thickness, h 
=0.59 mm. After bending (figure 2a), the core height was, c=1.0cm, such that the relative 
density was, p= p^ Ip^ = 1.7%, (where pc is the density of the core and ps is the density 
of the solid material). 

A transient liquid phase approach was used for attaching the face-sheets to the cores. The 
cores were lightly sprayed with a powder comprising a mix of a polymer (Nicrobraz® 
520) and 140 mesh Ni-25Cr-10P alloy (Nicrobraz® 51) both supplied by Wal Colmonoy 
Corp. (Madison Heights, MI). The solidus and liquidus of this alloy are 880°C and 
950°C, respectively: whereas the solidus of 304 stainless steel is approximately 1400°C. 
The coated cores were placed between solid 304 stainless steel face-sheets and a small 
compressive pressure was applied. The panel assemblies were heated in a vacuum (<10'^ 
torr) to 550°C for Ih to volatilize the polymer. (Note that the alloy powder remains 
adhered to the structure after volatilization). The system was evacuated to <10"^ torr, the 
temperature increased to 1100°C and held for 1 h. At temperature, the alloy melts and is 
drawn into the core/face-sheet contacts by capillarity. Transient liquid phase bonding 
then occurs as inter-diffusion changes the local composition, causing it to solidify. 
Robust joints with desirable nodes ensue (Figure 2b). Upon bonding, the core height 
diminishes slightly, increasing the core density to /? = 1.8%. 

For the panel bending assessment, a face thickness, d =0.75 mm, was chosen. This 
thickness exceeds that for the optimum structure [6], assuring that the bending response is 
core dominated (not limited by face yielding). Thicker-than-optimum faces also have the 
practical attribute that they are less susceptible to penetration by sharp objects (albeit 
subject to the penalty that the overall weight is increased). For the core shear tests, much 
thicker faces were used (d=3mm) to prevent distortions from occurring during the 
measurements. 

3. Test Design 

After furnace cooling to ambient, the panels were machined for testing. The flexure 
panels had a span length, I = 24.7cm, width b = 6.6cm, and a mass of 219g. They were 
tested in three-point loading by using a procedure similar to that described elsewhere 
[5,10]. Flat-faced loading platens 16 mm wide were adhesively-bonded to the faces of 
the panels. The loads were applied through lubricated rollers inset into the platens that 
allowed the specimen to rotate upon bending, with minimal friction. Strain gages were 
bonded to the tensile face at two locations. One set was attached to the face immediately 
opposite the inner platen. Strains were monitored in both 0° and 90° orientations. A 
second set was attached to the same face mid-way between the inner and outer platens. 
The test was performed in a servo-electric test frame. The load, load-point displacements 
and strains were measured simultaneously. 



The shear test assembly comprised two L-shaped platens that rigidly held the panel. The 
assembly was placed between flat loading surfaces connected to the load cell and actuator 
of a servo-hydraulic load frame. Imposing a compressive load to the assembly created a 
condition of nearly pure shear at the truss core. The tests were performed at a load point 
displacement rate of O.lOmm/min. Displacements were measured by a laser 
extensometer. Tests were performed in the negative and positive orientations [3,5,9]. 

A high resolution digital camera was connected to the testing frame in order to capture 
side-view images of the core. These images were subsequently used to identify the failure 
mechanisms. 

4. Measurements and Observations 

The constitutive properties of the 304 stainless steel used in the face sheets was measured 
after exposure to a simulated bonding cycle. Flat dog bone-shaped tensile specimens 
tested at a strain-rate of 10"^ s"' gave the stress/strain results plotted on figure 3. The 
material exhibits almost linear hardening beyond yield with a 0.2% offset yield strength, 
ay = 2I7MPa. The hardening rate beyond yield can be characterized approximately by a 
hardening modulus, H=dcr Ids = 2.5GPa. 

The shear stress/strain responses measured in the positive and negative orientations 
(Figure 4) demonstrate the asymmetry of the tetrahedral truss core. In the negative 
orientation, the limit load is appreciably lower than in the positive orientation because the 
most heavily stressed trusses are in compression and susceptible to plastic buckling. The 
maximum shear stress in this orientation is, r„„ =1.04 MPa, occurring at a shear strain 
of 1.4%, observed to be coincident with plastic buckling of the compressed members. In 
the positive orientation, the corresponding maximum was r,^ = 1.70MPa, occurring at a 
shear strain of 13.3 %. In this orientation, the most highly stressed trusses are tension. 
They stretch plastically and transfer load onto the compressed trusses, eventually causing 
them to buckle plastically. Periodic unloading and reloading was conducted for tests 
performed in the positive orientation in order to evaluate the unloading value of the shear 
modulus, G. This modulus has a magnitude,G«135MPa, which remained essentially 
unchanged for strains up to about 5%. 

A load/displacement curve measured in bending is summarized on Figure 5. A steady- 
state load, Pss = 1470N is attained at displacements between, 2mm < 5ss < 5mm, followed 
by gradual softening beyond 5mm. In the steady-state range, the unloading stiffness 
remains essentially invariant at, P/5 = 2.5MN/m. This response is remarkably robust 
relative to that for the equivalent cast panel [5], which softens immediately after reaching 
the limit load, with rapidly diminishing load capacity. This same advantage also exists 
relative to minimum weight panels with honeycomb cores [3]. The robustness of the 
present system is attributed to the ductility of the wrought alloy and to the yield (rather 
than buckling) controlled failure of the core. An image obtained at the limit load (figure 
6) indicates that the response is asymmetric and that the panel fails by core shear 
(preferentially on the left of the figure), with the compressed truss members exhibiting 
plastic buckling.    This response occurs because, in three-point bending, the truss 



assemblies on the left experience negative shear [3,5]. The consequent plastic buckling of 
the compressed members induces large strains that cause plastic hinges at both the central 
and outer load platens. The right side experiences positive shear, whereupon the trusses 
stretch with relatively small ensuing strain levels, inhibiting hinging at the outer platen. 
After unloading, all of the core/face-sheet bonds were intact with no visible cracking. 

5. Evaluation ofthe Shear Strength 

5.1 Analytical Model 

Initially, a simple analytical model for the core deformation is used to estimate the core 
shear strength, embellishing a result previously derived by Deshpande and Fleck [6]. A 
modification to their model is needed since the truss members in the present tests are 
rectangular, rather than circular. Consider a pure shear force, Fs, applied to the top node 
of a single truss assembly. All members support only uniaxial compression or tension [3]. 
The member stresses GA and OB are: 

0-, =F/V3^„ (1) 

where A„ is the cross sectional area. Strains are determined from the stresses through the 
constitutive data (figure 3). The associated shear displacement is obtained from the 
strains using: 

For the tetrahedral configuration wherein all members have the same length and the base 
is an equilateral triangle, the maximum shear stress in the negative orientation is related 
to the plastic buckling stress, cr^j, by [6]: 

L^=:L±-p     (3) 

In turn, the plastic buckling stress for a material with a bilinear stress/strain response is 
[11]: 

m 

where I is the moment of area for the rectangular cross section and L is the member 
length (for pinned joints, k = 1, and for built-in ends, k = 2). For the hardening rate, H, 
pertinent to the present material (figure 3), (4) reveals that for either end condition, 



plastic buckling is coincident with yielding, such that, a^^ = o-y = 2X1 MPa. More refined 
results are presented below using a finite element approach. In the positive orientation, 
the corresponding shear stress maximum, r^ (being governed by plastic buckling of the 
members originally in tension) is twice that for the negative orientation. 

Based on the measured relative density (1.8%), these solutions provide estimates of the 
shear stress/strain response in the positive orientation and the peak stresses in both 
orientations. When superposed on the measured stress/strain curves (figure 4), the peak 
stress determined for the negative orientation, T™^ = 0.92MPa, is somewhat smaller than 
the measured maximum (1.04MPa), while that for the positive orientation, 
r^=1.84MPa, is somewhat larger. The implication is that this simple approach may 
thus be used with some assurance to estimate the core shear strength. 

Note that the model indicates a shear stiffness {G = SSSMPa) much larger than the 
measured value by almost a factor 3 [6]. This discrepancy is related to displacements 
occurring at the nodes, which are not incorporated in the boundary conditions used for 
the analysis. Further assessments are needed to resolve this discrepancy. 

5.2 Finite Element Simulation 

The shear stress/strain response has also been explored using a finite element simulation, 
similar to atthe described by Hyun et al [9]. In this case, the exact rectangular geometry 
of the truss members has been used, as well as the measured stress/strain curve for the 
faces (figure 3). The truss assembly and the finite element mesh are shown ion figure 7. 
The finite element code ABAQUS has been used. For the calculations, the base of the 
truss assembly is fixed. The top, where the assembly is bonded to the upper face, is. 
displaced parallel to the face and the induced forces are calculated. The top plane of the 
assembly is allowed to displace in the vertical plane, without rotation, to represent a stiff 
face. The deformations of the core that occur in the negative and positive orientations at 
large displacements are shown on figure 7. The similarities with the core responses 
observed on the two sides of the panel in bending (figure 6) is evident: that is, the plastic 
buckling of the compressed member in the negative orientation and the stretching of the 
tensile member in the positive orientation. 

The calculated stress/strain curves in the two orientations are plotted on figure 8. To 
achieve explicit comparison with the measurements in the plastic range (given the 
discrepancy in the shear modulus noted above), the experimental measurements are 
superposed on the simulations by shifting the elastic response to match the simulations. 
The similarity between the curves in both orientations affirms the self-consistency of the 
present measurement and simulation protocols. There are two minor discrepancies. The 
simulations generally underestimate the flow strength by a few percent. Since the 
simulations use the stiffest possible boundary conditions (where the truss assembly 
attaches to the faces), this difference implies that the material comprising the truss 
members has a somewhat higher strain hardening than that measured for the faces. It is 
possible this is resuh of compositional differences arising from the transient liquid phase 
bonding process. The second discrepancy relates to the onset of plastic buckling in the 



negative orientation. The simulation overestimates tlie stress at wiiicli tliis occurs by 
about 10%. The presumption is that surfacethe imperfections present in the actual truss 
structure lead to a small diminution in the buckling load. 

6. The Bending Response 

The beam theory solution for the collapse load of a sandwich panel in three-point bending 
with small overhang, h, is given by [7]: 

F, =-j-^,+2ftcr_[l+—j        (5a) 

The corresponding result for panels with large overhang is [7]: 

Fs=-^cr^+'lbcT^^ (5b) 

In these formulae, c is the core thickness, d the face thickness, b the panel width and I 
the span, while a  is the yield strength of the faces. In practice, the lower of the two 

loads F^,Fg should govern the measured limit load. 

To compare these predicted results with the measurements, the number of truss elements 
within the panel supporting the loads must be ascertained. Based on this assessment, the 
relevant dimensions panel dimensions are: width b = 6.6cm, core height c = 9.8 mm, face 
sheet thickness d= 0.75 mm, span I = 20.2cm, and overhang h = 2.25cm. Assume that 
the load capacity is limited by the shear response in the softer, negative orientation. Then, 
upon incorporating the measured shear strength, r„„ = 1.04MPa, as well as the measured 
face sheet yield strength, cr^=217MPa, the peak loads are predicted by (5) as. FA ^ 
1725N and FB = 1505N. The lower value compares well with the measured collapse 
load, F^=1470N. The small discrepancy is attributed both to the strain hardening of the 
faces, which would serve to elevate the effective ay at the limit load, and to the extra 
load support provided by that portion of the core (on the right side) subject to positive 
shear. Nevertheless, the quality of the agreement suggests that simple beam theory 
models of the type given in (5) are able to adequately account for measured limit loads, 
provided that independent information about the core shear strength is available. 

7. Summary 

Metallic sandwich panels with tetrahedral truss core panels have been fabricated using a 
novel method involving deformation-shaping and transient liquid phase bonding. The 
responses in core shear and panel bending have been measured. The results demonstrate 
retained load bearing capacity and bending stiffness despite large plastic deformations. 
This robustness is attributed to the wrought nature of the material fabricated in this 
manner, as well as the high strain hardening characteristics of the alloy, plus the ductility 
of the nodes produced by TLP. A model for the core shear response is presented as well 



as a finite element simulation. These results duplicate the essential features found 
experimentally. A small (few percent) discrepancy is attributed to incomplete 
understanding of the stress/strain characteristics of the material state in the truss 
members. 

When combined with the constitutive properties of the face sheet material, the core shear 
characteristics have been used to predict the limit load for panels in bending by means of 
simple beam theory solutions. The closeness of the agreement between indicates that 
simple models are capable of adequately predicting limit loads, given independent 
information about the core shear strength. 
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Figures 

Member 

Figure 1. Tetrahedral unit with ligaments having rectangular cross-section. 

Figure 2. (a) Tetrahedral truss core after shaping, (b) Typical core/face-sheet bond. 
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Figure 3. True stress - strain for 304 stainless steel following annealing at 1100 C for 1 
hour. 
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Figure 4. Shear stress/strain response of tetrahedral truss core panels in the negative and 
positive orientations. Calculated results are shown for comparison. 
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Figure 5. Load-deflection response during panel bending 

Figure 6. Image of the panel obtained at the displacement indicated on Figure 5. Note the 
plastic buckling of the compressed truss core members on the left side and the plastic 
hinge. The span was 1 = 202 mm and the flat steel indenters were 16.0 mm wide and the 
overall thickness, H = 22.5mm. 
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Figure 7. The finite element model of the truss assembly showing (a) the finite element 
mesh and the geometry, (b) the deformation after shearing in the negative orientation and 
(c) the deformation after shearing in the positive orientation. 
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Figure 8. Simulations of the shear stress/strain curves in (a) the negative orientation and 
(b) the positive orientation. The measurements have been superposed by shifting the 

elastic strains to match those determined in the simulations. 
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NOMENCLATURE 

B Cantilever width 

Cg Permittivity of free space 

C^ Dielectric constant of elastomer film 

d Diameter of spring wire 

d^ Diameter of SMA wire 

D Mean coil diameter of spring 

DQ Outside diameter of spring 

E^        Young^ modulus of SMA in 
austenite phase 

E^        Youn^ modulus of core material 

E^        Youn^ modulus of elastomer film 

Ef       Young^ modulus of facesheet 

material 

E^       Youn^ modulus  of SMA in 
martensite phase 

F„ Euler buckling load 

L Natural frequency of spring 

G Shear modulus 

H Core thickness 

K Spring constant 

K. Effective length factor 

L Cantilever length 

^aa Length of actuation element 

^free Free length of spring 

Z,, Solid length of spring 

LQ Initial length of elastomer film in X 
direction 

AL Acaiated length 

N Design Load 

A'^ Number of inactive coils 

A^^ Numberof active coils 

A^„i„ Minimum number of active coils mm 

^fiim Number of film layers 

P Electric field 

fe- 

te 

V 

p Coil pitch 

p^ Effective pressure in the thickness 

direction 

p^        Effective pressure in the thickness 

direction when the film is subject to 
an external force 

Endurance strength of spring wire 

Torsional fatigue strength of spring 
wire 

Ultimate shear strength of spring wire 

Ultimate tensile strength of spring 
wire 

Thickness of core member 

Thickness of film layers 

Thickness of facesheet 

Applied voltage 



^sprina  Weight of spring 

^aire       ^°^^ Weight 

IVfy^.g     Facesheet weight 

Wjii„,     Film weight 

Zg Initial thickness of elastomer film 

z Final thickness of elastomer film 

CC Cross sectional area of film layers 

/3 Corrugation angle 

9 Helix angle of spring 

5Q Design requirement for tip deflection 
of cantilever 

^max     Maximum compression of spring 

^min      Minimum compression of spring 

e^Q        Initial remaining strain 

£j Actuation strain 

Pre-strain of film in the x direction 

Pre-strain of film in the y direction 

Transverse shear factor 

Half-length of corrugation pitch 

C7 Natural frequency of cantilever 

p^ Core density 

pr Facesheet density 

p^^^     SMA density 

PJ Spring wire density 

A 

(7'y        Yielding strength of SMA in austenite 
phase 

M 
Gy        Yielding strength of SMA in 

martensite phase 

T Shear stress 

Subscript 

C Core 

/ Facesheet 

e Elastomer film 

y Yielding strength 



ABSTRACT 

A flexural actuator based on the operating principles of electro-elastomers has been 

designed and analyzed. The actuating element comprises multilayers of the electro- 

elastomer and a helical spring. The variables are the geometrical dimensions and the 

failure modes. A design that integrates this basic unit into a high authority flexural 

system has been analyzed. An optimization procedure has been devised and used to 

determine preferred designs. The analysis establishes the authority (product of end 

displacement and load to be lifted), at specified electric field by determining the 

minimum weight as a function of the actuation strain and the number of electro- 

elastomer layers, rij;,^. The dimensions of the constituents at the minimum weight 

emerge from the analysis. A comparison with a flexural actuator made using a one- 

way shape memory alloy reveals the performance advantages of the electro-elastomer 

system. An assessment of the variation in minimum weight with AI^,„, has provided a 

basis for a future weight/cost trade-off analysis. 

Keywords: Optimal design; Actuator; Eiectroelastomer; Shape Memory Alloy; 

Minimum weight 



1. INTRODUCTION 

Recent articles have described high authority flexural actuators designed using 

structural concepts based on sandwich panels with corrugated cores (Wood et al., 

1998; Pelrine et al., 2000; Lu et al, 2001, 2002). The concepts combine the 

mechanical duality of static determinancy with high bending stiffness. This 

combination facilitates systems capable of displacing large forces at low overall 

weight. However, the actuating mechanisms impose performance limitations. 

Actuators based on shape memory alloys (SMA) and electrostrictive polymers (ESP) 

have the following limitations. 

(i)       The SMA actuated system only operates at low frequency and requires 

large amounts of power (Lu et al., 2001) 

(ii)       The ESP system has excellent operating characteristics, but there are 

challenges in manufacturing the requisite number of polymer/electrode 

multi-layers (Lu et al., 2002). 

The present article explores another actuation method, based on electro-elastomers, 

embodied within the same structural system. Such materials have large specific 

energy output and strain response, as well as high frequency and energy efficiency. 

For instance, acrylics (such as VHB^™ 3910 from the 3M corp.) have demonstrated an 

actuation strain over 200%, with actuation stresses up to 7MPa and energy densities 

exceeding 3kJ/kg (Pelrine et al, 2000). For this material to realize high authority, it 

must be combined with a mechanical spring, to form an actuation element (Section 2). 

In this article, the minimum weight flexural actuator capable of actuation by an 

electro-elastomer is designed, subject to all failure modes and prototypical constraints 

on geometry and voltage (Fig. 1). To illustrate the design, one end of the cantilever is 

clamped while the other is free. More complex bending and hinging modes can be 

envisaged and will be assessed in a subsequent study. The cantilever of length L is 

required to flex over a displacement 5^ while sustaining a load N, which may vary 

with displacement and frequency. To realize low weight, the passive upper face and 

core are made from a high strength Al alloy. Multiple actuation elements are 

distributed between the nodes in the lower surface (Fig. 1). When a voltage is applied, 



the actuator extends and the tip deflects to the required displacement. When the 

voltage is cut off, the actuator contracts and the structure recovers its original 

configuration. The system cycles at a frequency to be determined in the analysis. 

The design objective is to minimize the overall weight of the actuation system. To 

realize this objective, the operations of the actuator must be characterized and the 

structural responses identified. Aspects of the latter are summarized in the Appendix. 

Note that the design places the actuator in compression when the load N is imposed 

(Fig. 1). 

2. ELECTROELASTOMER ACTUATORS 

The actuation element consists of a pre-compressed helical spring embedded within a 

concentric multi-layer of pre-stretched electro-elastomer with flexible electrodes (Fig. 

2). When a voltage is applied, the actuator expands along its axis. The pre- 

compression in the spring allows the actuator to elongate while delivering appreciable 

force. The design embodies the choice of spring (material, diameter and so on) and 

the number of electro-elastomer layers, subject to voltage constraints. Ultimately, the 

design is performed in conjunction with that of an actuating system, as discussed in 

sections. 

For comparison, a one-way SMA actuator with helical springs acting as the pull-back 

mechanism is also evaluated (Fig. 3). Results of the minimum weight design for both 

actuators will be discussed in section 4. 

2.1 Operating Principle 

When a voltage, V, is applied to the electrodes within any segment of the electro- 

elastomer (Fig. 3), the electrostatic forces cause the film to compress in thickness (z- 

direction) and expand in area (Pelrine et al., 1998; 2001). The effective pressure,/?^, 

exerted by the electrodes is: 

V 
p, = C„C,P'=C,C, (1) 

where C^ is the dielectric constant of the elastomer; 0,, = 8.85x10 ^^F/m is the 

permittivity of free space; P is the electric field; and z is the film thickness. In 



practice, the film is plastically pre-stretched to enhance the actuator performance and 

the electrical breakdown strength (Pelrine et al., 2000). If such a film with initial 

thickness z^ is pre-strained £,„ in the x direction and e^^ in the y direction, its final 

thickness will be z = z„/[(l+ej^^o)(l+£^g)J. Since the elastomer is incompressible 

(Poisson's ratio 0.5), the effective longitudinal force is, F^ = -0.5p^,a , where a is the 

cross sectional area of the film layers. This force causes the actuation element to 

change its length by AL. If there is no external force, the spring is released from point 

AQ to fig on Fig. 4. The blocking force when a voltage V is applied and the actuator is 

rigidly constrained is represented by C^C. The horizontal distance between A^ and 

5u represents the stroke. If an external force /^ is applied, the work line A^B^ 

displaces to AB. 

The equilibrium state of the actuation element without the external force is given by, 

E^(AL/L,)a + F^=p,a/2 (2) 

where L^ is the initial length of the film, F^(= KM,) is the spring force, with K the 

spring constant. The stroke of the actuation element is, 

AL = L,,fir (3) 

Here Ej- is the stress-firee strain of the actuation element, while L^^, =(1 +6^0)1^ is the 

length of the element after the pre-stretch e^g caused by the spring. From Eq. (2) the 

actuation strain induced by an electric field P can be described by: 

^1 Pe(^ 

ICC 
 =^ P (4) 
2{E^ + KL,/a){l + e,,) 

1 C,C, 

K^ . 2{E^+KLJa)[\ + e,,) 

Note that the cross-sectional area of the layers a~TxD^t^, with D^ the outside 

diameter of the spring and t^ = rij-^^^z the total thickness of the «^;„ layers. The 

thickness z of an elastomer film upon deformation e^,£^ in its planar area is 

Zn 

a+eJ(l + eJ 
(5) 



When an external force F^ is applied, the strain e^. is determined from the equilibrium 

state of the actuation element (^^o i" Fig- 4) as: 

^^    ^^o    KL^ + Ea (6) 

Because the. film is constrained in the y direction, e^ is constant, £^„. To avoid 

buckling, the spring load must assure that the film is always in tension: e^ > 0. 

2.2 Spring Design (Juvinall et al., 1999) 

The weight of the spring is given by: 

W, Spring 

n 
T IPsd'D 'JL. 

cos 6 
+ N' (7) 

where p, is the density of the spring wire, D is the mean diameter of the spring, d is 

the coil diameter, and 0 is the helix angle (the angle between the coils and the base of 

the spring). Here A^^ and A'^* are the number of active and inactive coils, respectively. 

The helix angle 6 is related to the coil-pitch p (see Fig. 5) by: 6 = tan'\(p /TtD). A 

closed-coil requires a small helix angle (0<15''), therefore cos0 = l. For plates in 

contact with the end of the spring, N =2. The number of active springs, N^, is 

governed by the spring constant as: N^ = Gdt l%D^K, with G the shear modulus of 

the wire, such that, from (7): 

W. Spring kU'A SD^K 
+ 2 (8) 

When the actuation strain &,■ is specified, the spring constant K can be determined by 

Eq. (4): whereupon, D, and d become the variables in the optimization problem. 

2.3 Material Selection 

High strength steel wires are the preferred material for lightweight springs (Ashby, 

1992). Common steel wires have diameters 0.1-6.5mm. The tensile strength S^, is a 

function of wire diameter of: 

S,, = A(d)'' (9a) 

with A = 2.2 GPa and b = -0.163 when d is measured in mm. The shear strength S^ 

is related to the ultimate tensile strength by: 

5',„s0.675„, (9b) 



2.4 Maximum and Minimum Compression 

The maximum compression of the spring occurs at the clamped end of the actuator. It 

is given by the sum of initial displacement A,,,,., = L^-^^^^ - Z,^,„ and the compression A^ 

induced by force F^ (due to external load N; point A in Fig. 4): 

A     = A + A;- Lr   - L, ma.x a init free A (10a) 

^a- E^a + KL,"° 
NL 

H{E,a + KL,) 

F.= 
NL 
H 

^free 

k = ^free ~ ^max 

(10b) 

(10c) 

(lOd) 

(lOe) 

When an external force is applied, the corresponding minimum (point B in Fig.4) is: 

A ■  = Lr    — Lt, "min free B 

L,=L,+0.5- Pe(^ 

K + 
En 

= '^''-'-^ 
CrC,       (V^ 

(11a) 

(lib) 

a 
'^+E, \^ J 

z = 
(l + e^)(l + e^J 

L 
£,, =-r-lande,., =e,,o 

(lie) 

(lid) 

The realizable displacements are limited by spring consolidation. The usual 

recommendation is to provide a clash allowance of approximately 10% of the total 

spring deflection A„„ at maximum working load, A^^,,.^-A^^^ >0.1A^3,, or in non- 

dimensional form; 

_mM.<o.9 ^fres       L^ 

L   ~ L 
(12) 



where 4 = d{N^^ +3) for closed coil springs. 

2.5 Failure Criteria 

The limitation imposed by yielding of the spring can be expressed in non-dimensional 

form, as; 

_jv^ = 8K:, 
K 

nEjL 
A^fDYL 

L L)\d 
(13) 

where the transverse shear factor (Wahl, 1963), K^ -1 +0.5(i/D. 

Buckling occurs if the ratio of spring displacement to free spring length Lj-^^^ exceeds 

a critical value A„JL^,,, (Wahl, 1963): 

_iIiL _ = 1-,1- 
''free 

(14) 

where,      for     steel,      the      constants     are     c, = (l + 2v)/(l +v) = 1.23     and 

c^ = ;rV(l + 2v)/(2 + v) =2.62 . The parameter ^ reflects the method of support. If 

both ends are guided axially, but free to rotate (like a hinged column), then ^ = 1. If 

both ends are guided, and prevented from rotating, then ^ = 0.5. Based on the 

maximum compression A^^^ (Eq. (10)), the critical free length 4„., becomes: 

L,   <L ., = 0.5c,A 1+1-^^ 
c,AA„ 

(15) 

Accordingly, when both ends of the spring are prevented from rotation, spring 

buckling will be avoided if 

Z,,,,,<0.615A„ 1+4.5- 
D 

Torsional fatigue is dictated by the ftilly reversed endurance limit: 

5„=0.5 ^i«^m 

where S^^ is the torsional fatigue strength, and 5„^ is the ultimate shear strength. 

(16) 

(17) 
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Surging must be avoided in high-speed cyclic applications. For this purpose, the 

natural frequency of the spring should be greater than about 12 times that of the 

applied forcing frequency /„„: 

f„^W.„ (18) 
The fiindamental natural frequency is, 

f'-Mim 
where p is the density of the spring material. 

A lower limit on the number of coils must be imposed in order to obtain accuracy and 

control in manufacturing. A value of 3 is normally used as an absolute minimum, but 

a larger value can be selected to assure a small helix angle: 
74 

K'-^>-N^>^ (20) 

3. DESIGN OF THE ACTUATING SYSTEM 

The objective is to design an actuating system capable of realizing a specified 

performance (authority) at lowest possible overall weight, given by: 

L 
W = PfLBt^ + p. Bt,+N„(^j,,„ + W^^,„^) (21) 

cosjS 

where PF^,„ + f^jp„„g is the weight of the actuation element (above) and 

N^ ={L-X)I2X is the total number of elements. The face thickness t^ IL , core 

member thickness tJL, core thickness HIL, number of layers /J^,„ , actuation strain 

gj., mean coil diameter DIL and spring wire diameter dIL are the design variables. 

Failure mechanisms, spring behavior, and geometry constraints are considered. 

The objective function in non-dimensional form is: 

W 
"^ = -ZJU = ^face + ^core + ^filn, + V^'.pnV.g (22) 

where 

L ^M-e = -T (22a) 
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w.. i       Pr   K 
cosjS Pj L 

w 

w 

The weight minimization is subject to the following constraints: 

Minimum deflection 

\ \      M in I i\i hi 1    1 
-+— 
.2    e,) 

L\5, 
l-cose,.— 

' H) L     3 ^E^BL 

E,t 

vA, ; 
+ 

5. N 

E^BL 

E£ 
^<0 

Face yielding 

D„ 

N 

Core yielding 

Core buckling 

12 

EjBL 

N 

-1<0 

siny3 EfBL 
EffL 

<^rKtc 
•1<0 

;r^sin^j3 
N 

E^BL 

E    /^ r^V tr^Y/_2/-.     ,  -,^/_2/ 

"c V 

L]   HYUn'C,+2)(n'C,+2) 
tJ^Lj{(n'C, + 4){n'C, + 4) 

-1<0 

(22b) 

(22c) 

(22d) 

(23a) 

(23b) 

(23c) 

(23d) 

There are multiple constraints for the actuating element: 

Minimum number of coils 

1 
1-- 

(L\'( dX E. 
48(1 + v) 

Limits on spring index 

(DIl)(L/d)/20-l<Q 

l-(D/l)(L/d)/4<0 

Clash allowance 

v^JllJt^" 

_Dax.<o.91 ■f-{iN. .3) 

(Upper) 

(Lower) 

(23e) 

(23f) 

(23g) 

(23h) 
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Surging 

,__i_^j^<„ 4 
Spring compression 

1_ b^ <o 

Structural integrity 

1- 
S (S -T.) esy   us       "i^ 

S (r -T)+S T 
•<0 

SK. 

1 + 

-L-tA^l^fiV^ 
;r£'^ZjV  L J LVdJ  5^, 

1<0 

4.26- 
D (b -'free 

V     max J 

L, L 

(23i) 

(23j) 

(fatigue) (23k) 

(yielding)       (231) 

- 0.615 < 0      (spring buckling)       (23m) 

(film buckling) (23 n) 

A MatLab program using the method of sequential quadratic programming (SQP) 

(Matlab, 1998) was implemented to find optimal solutions. Since the objective 

function has many local optima, an algorithm (Aird and Rice, 1977) based on 

systematic placement of points was implemented to generate starting points. Owing to 

manufacturing limitations on size and shape, the design parameters are often restricted 

to only integer (or discrete) values. For instance, design variables such as the wire 

diameter, corrugation angle, coil number and layer number are not continuous 

fiinctions but discrete values. Therefore, finding the optimal design involves discrete 

programming. The SQP approach remains valid in such situations. Initially, it solves 

the problem by assuming continuous design variables. Then the discrete/integer 

values closest to the continuous optimum solutions are assigned and the design 

checked for feasibility using the backtrack programming method (Farkas, 1984). 

Through trial and error, the most feasible design closest to the continuous optimum is 

obtained. 

4. OPTIMAL RESULTS 

4.1   Optimization Procedure 

13 



Actuators made with a high strength aluminum alloy are chosen for the design 

examples. The material properties used are summarized in Table 1. The design 

parameters are listed in Table 2. The graphical method for optimization illustrates the 

design process (Fig. 6). The two examples use the face thickness, tjlL, and core 

thickness, HIL, as co-ordinates. All of the parameters governing the actuation 

element have been fixed [DIL,dlL, rij-^,,^ =5 , e^., e,,, = 500% and e^^ = 600%]. The 

maps have been constructed for a required end displacement, 5^1 L- 0.05, and a 

specified load index, ^ = 7V/(£■^.5Z,) = 1.33xl0"^ Two different values of the core 

member thickness have been used. For these cases, core yielding does not occur (it is 

a function of the external force and core thickness, independent of the two variables 

HI L and tj- IL used in Fig. 6). All of the parameters related to the actuation element 

depend only on the core thickness (independent of tj- IL), as indicated by the arrows 

along the abscissa. For the avoidance of spring yielding, film buckling and clash, the 

requirement is that the core thickness should exceed the indicated values. For these 

examples, the most stringent among these constraints is that due to clash, which 

imposes a minimum on H/L. Conversely, for the avoidance of spring buckling the 

core thickness must be less than the indicated value: whereupon, clash and spring 

buckling place bounds on the allowable core thickness. 

Face yielding, deflection and core buckling must also be considered. It is apparent 

from the figures that the face yield requirement is confined to the lower left and is not 

a limitation. Limits are posed by the deflection constraint and by buckling of the core 

members. The curves representing the deflection constraint dictate the lowest 

allowable face thickness, as indicated on the figures. Core buckling imposes another 

upper limit on the core thickness. In case (a) involving the thinner core members, this 

limit supercedes that due to spring buckling, causing the allowable core thickness to 

be bound by core buckling and clash, as indicated by the permissible (shaded) domain 

on the figure. For case (b), with the thicker core members, the core buckling 

constraint displaces to larger levels of core thickness and spring buckling establishes 

the upper bound on the permissible domain. 

14 



It remains to ascertain which part of the permissible domain dictates the design point. 

This is achieved by superposing contours of constant weight. The most hghtweight 

solution that resides within the permissible domain governs the design point, indicated 

by A in the figures. The optimum solutions are weight w = S.6g, face thickness 

tj- = 1.5 mm and core thickness //= 31.5 mm for Fig. 6a, and weight w = 8.6 g, face 

thickness tj =1.4 mm and core thickness H = 25.6 mm for Fig. 6b. 

4.2 Design Examples 

With Fig. 6 used to illustrate the issues that enter the optimization, a few examples are 

given to highlight the key considerations affecting the weight, fabrication and 

operating conditions. There are many different ways of posing the design problem. 

Here, we start by requiring that the end displacement be fixed at, 5^1 L= 0.05, and 

that compact transformers capable of operating at 5kV are available (Emco High 

Voltage, model Q50). The passive structure is made from a high strength Al alloy 

(Table 1). 

To investigate the effect of actuation strain on the optimum design, three different 

values, 5%, 10% and 15%, are assigned to the design variable Ej-. The trends in the 

lowest weight and in the number of film layers n^,„ are plotted on Figs. 7a, b. The 

dimensions of the passive components, determined at the lowest weight designs are 

plotted as functions of the force to be lifted on Fig. 8. At actuation strains e^>W/o, 

when the loads to be lifted are large, the core thickness remains unchanged (Fig. 8c), 

because the corrugation angle, jS = 54.7", must be maintained. Corresponding results 

for the spring are summarized on Fig. 9. While the coil diameter is relatively invariant 

with e,-, especially at large forces (Fig. 9a), the spring diameter must be increased 

systematically as £j. is increased (Fig. 9b). There are associated implications for the 

spring constant (Fig. 9c). It is emphasized that, for each load to be lifted, there is an 

explicit design solution (Figs. 7, 8, 9). Accordingly, if the design dictates a range of 

different loads, the design should be based on the largest and would be sub-optimal 

for all lower loads. In practical design, it remains to ascertain whether the dimensions 

satisfy minimum gauge or other fabrication limitations. 

15 



Note that increasing the actuation strain causes the face-sheet thickness to decrease 

(Fig. 8a) and the coil and wire diameters to increase (Figs. 9a,b), resulting in 

increased spring and decreased face-sheet weight. Consequently, at a fixed end load, 

there is an optimum actuation strain for the lowest weight. Repeating the analysis with 

the actuation strain as a design variable (Fig. 10) reveals that (£•/)„ ti,,,^, =10%, 

regardless of the load to be lifted. 

The attainable operational frequency (Fig. 11) increases as the load index is increased. 

Note that an actuator with the optimum actuation strain of about 10% can operate at a 

higher frequency than the actuator with a larger (15%) actuation strain, because of its 

lower weight and thicker face-sheet, which together provide a higher bending stiffness 

(Figs. 7a and 8a). 

A major interplay to be addressed in a final optimization is that between weight and 

cost. The former is governed by the overall weight, described above, and the latter by 

aspects of the manufacturing related to the number of elastomer layers, «^,„,, needed 

to realize the weight objective. To assess some aspects of this interplay, the lowest 

weight is plotted as a fimction of the number of layers for a fixed end load of ION a.nd 

actuation strain, e^ =10% (Fig. 12). For this example, the weight has a minimum 

when rijji^ = 5. This curve, combined with independent information about cost, could 

be used to elaborate this interplay. 

There may be other limits imposed by breakdown, not specifically introduced in this 

optimization. All such information should be included in further optimization studies. 

5. COMPARISON WITH SHAPE MEMORY ALLOY (SMA) 

ACTUATOR 

A comparison is made with a bias spring one-way SMA actuator with similar 

geometrical configuration (Liang and Roger, 1992; Lu et al., 2001) (Fig. 3). The 

design of the passive structure remains the same. The SMA wire is resistively heated. 

When assembled with a helical spring, the recovery force generated by the shape 
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memory alloy compresses the spring. Then, when the wire is cooled, the stress 

induced in the SMA by the spring is designed to be large enough to enact the reverse 

transformation, causing the SMA wire to revert back to its initial length. 

The design variables are the face-sheet thickness ?^ IL, the thickness of the core 

members t^./L, the SMA wire diameter dJL, the core thickness H/L, the mean 

coil diameter of spring D/L, the spring wire diameter d/L, the actuation strain e^. 

and the remnant strain e^. The design parameters are listed in Table 3. Other 

parameters are the same as those used for the elastomer actuator. The minimum 

weight as a function of the authority is plotted for both systems subject to the same 

design requirement, 5„/L=5% (Fig. 13). Given the similarity in the achievable 

levels of authority, the choice between these two systems would be based on other 

considerations, especially power, frequency and cost. 

6. CONCLUSION 

A flexural actuation system based on the operating principles of electro-elastomers 

has been analyzed. An actuating element has been emphasized in which the primary 

variables are the geometrical dimensions and the failure modes. A design that 

integrates this basic unit into a high authority flexural actuation system has been 

explored. An optimization procedure has been devised and used to determine 

preferred designs. 

The analysis establishes the authority (product of end displacement and load to be 

lifted), at specified electric field (5kV), by determining the minimum weight as 

fiinctions of the actuation strain and the number of electro-elastomer layers. The 

dimensions of the constituents at the minimum weight emerge from the analysis. 

A comparison with a one-way shape memory alloy system reveals that, for the same 

weight, full advantage can be taken of the power and frequency attributes of the 

electro-elastomer. 
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An assessment of the minimum weight against the number of electro-elastomer layers 

"y/7m provides a basis for a future weight/cost trade-off analysis. 

APPENDIX 

/. Failure Modes 

Three failure modes may occur: face yielding, core yielding, and core buckling. Face 

yielding occurs when tensile stress in the face equals yield strength. To avoid face 

yielding at the clamped end: 

A^ 
E^BL 

^f\B\L 
Ljt 

■1<0 (Al) 

where Ej^ is the Youn^ modulus. To avoid core yielding: 

1 A^ 

E^BL sinyS 
-1<0 (A2) 

Beam theory is adopted to study the buckling of the core (Weiemicki et al, 1991). 

The Euler buckling load F^ for the core is: 

where EJ^ is the bending stiffness, and k^ is the effective length factor for column 

buckling, determined from structural steel design practice (Tall, 1974; Weiemicki et 

al., 1991) as: 

k = 
(n^C,+2){n^C,+2) 

nil 2 

(A4) 

Here, 

Q = 

sin/3 
UH 

LL 

E Bt^ 

ML„„^,:?^3i„^ 
H 4H 

^m^E,L r r\^ 

cosjS E^r   E^ B \tcJ 
+ 3 

f , A 

V   ^c  J\'^BJ R. 

E X sin plE.Btj 
\1H AH 

tan/?-l- 
E Br 
4H 

sin/3 
36   Ef 

cosjS E^. 
+ 3 
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with 

2A ^ P' 

PI 

l>m? 

12Z 

3 A 

^lEjBt}    E Bt'^ 

12Z,,. 12(2A)      ._^. ^ 

In the above expressions, the equivalent stiffness of the actuation element consists of 

the stiffness of the spring (Wahl, 1963) and the electro-elastomer multi-layer, which 

can be described as: 

{El) KE. 

64 
{D + d + 2t^)'-{D + d)' 

16M^D(2G+EJ 
(A5) 

Failure can be avoided if the member stress <7^ arising from the applied force N is 

less than the critical stress F I Bt : 

12 N 
EjBL Ec 

(L 
;r'sin^j3 f).M.o (A6) 

To determine the tip deflection, the small constraining effect from the core is ignored. 

The stiffness of the electrodes is also neglected. The length change upon actuation, 

AZ, = Ejl, causes the beam to bend upwards, with a tip deflection ^ given by: 

f=(riJf(i-'=°^^/z (A7) 

The tip deflection 5, due to external force A^ applied at the free end is (Allen, 1969) 

A_i N 
E^BL 

B 
L 

+ 
N 

E^BL 

E^n- 
D.. (A8) 

where D^^ and D^ are the equivalent flexural and transverse shear stiffness of the 

actuator, respectively: D^^ can be derived from simple beam theory (Zenkert, 1995): 

D^ = {E^a{\ + £,)+KL^^;i^^ + ^ +3^ !_,, J _(!_, 
where 

1 E^Bt^jH +t^)- {E,a{\ + e,) + KL,^,)H 

2 E^a{\+e,) + KL^^, + Ej.Bt^ 

is the distance between the neutral axis of the actuation element and the center of core, 

D^ can be described as (Lu et al., 2001): 
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Based on the overall deflection 8 = 5^-82, the deflection constraint for the actuator is 

given by 

8j. = 8^-8,>8, (A9) 

where 5„ represents the minimum deflection that the actuator must attain to satisfy 

design objectives. 

2. Natural Frequency 

For a cantilever fixed at one end, the resonance frequency in bending is (Young, 

1989): 

G7 = ^'-^ (AlO) 2nL^ y m ^ 

where ^=1.875 for the first mode and 4.69 for the second mode, D^   is the 

equivalent bending stiffness of the cantilever, and m = W / L is the mass per unit 

length. 
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Table 1 Material parameters used in the example study 

Young^  Modulus Yield Strength Density 

Material E{GPa) OyiMPa) p{Kglm') 

Aluminum Alloy 2014-T6 75 400 2790 

VHB4910Tape 3.10"^ 960 

Polymer 2 40 1300 

Music wire A228 210 7800 
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Table 2 Design parameters used in the example study 

Width B (m) 0.01   . 

Length L (m) 0.1 

Corrugation angle {p) tan"'VI =54.7° 

Minimum size of music wire (mm) 0.1 

Minimum deflection 5Q / Z, 5% 

Pre-strain in x direction e^^ 500% 

Pre-strain in y direction e^^ 600% 

Applied voltage (kF) 5 

Initial thickness of 3M VHB4910 tape {ZQ) (mm) 1 
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E, =90GPa 

at = 300MPa 

Table 3 Design parameters of the SMA actuator 

£^ = 30GPa 

(jf = lOOMPa 

p^^i^ = 6500 kg/m' £™x = 6.7% 
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Abstract 

Sandwich plates comprised of truss cores faced with either planar trusses or solid sheets are optimally designed for 
minimum weight subject to prescribed combinations of bending and transverse shear loads. Motivated by recent ad- 
vances in manufacturing possibilities, attention is focussed on plates with truss elements and faces made from a single 
material. The optimized plates are compared with similarly optimized honeycomb core sandwich plates fashioned from 
the same material. Sandwich plates with solid sheet faces and truss cores are highly efficient from a weight standpoint. 
These are also studied for their performance as compression panels. Optimized compression panels of this construction 
compare favorably with the most efficient stringer stiffened plates. © 2001 Elsevier Science Ltd. All rights reserved. 

Keywords: Truss plates; Octet truss; Optimal design 

1. Introduction 

Recent developments in the manufacturing of truss structures appear to greatly extend their application 
possibilities. New efficient casting-based procedures have been devised which permit entire truss structure 
components to be produced at scales ranging from millimeters to tens of centimeters. Two examples are 
shown in Fig. 1. Electro-deposition has been used to form truss structures at an even smaller scales with 
elements whose diameters can be as small as fifty microns (Brittain et al., 2000). Efforts are underway to 
determine the stiffness of truss structures and to assess their strength, both.experimentally and theoretically 
(Wallach and Gibson, 2000). 

Well designed structures using truss elements can be highly efficient from a weight standpoint, as will be 
established for plates in this paper. They have additional potential by virtue of their open structure for 
multi-functional applications. For example, sandwich plates with solid skins and truss cores Can serve as a 
heat transfer elements simultaneously carrying loads. The cavity between the skins could be used for 
storage of a liquid or pressurized gas in other applications. Honeycomb core sandwiches or conventional 
stringer stiffened construction does not facilitate either of these dual purposes. 

'Corresponding author. Tel.: +1-617-495-2848; fax; +1-617-495-9837. 
E-mail address: hutchinson@husm.harvard.edu (J.W. Hutchinson). 

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. 
PII: 50020-7683(00)00315-2 
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Fig. I. Sandwich plates. Octet truss plate whose members are identical (top) and sandwich plate with truss core (bottom). 

The two types of plate structures considered in this paper are shown in Fig. 2. One has triangulated 
planar truss faces, while the other has solid sheet faces. Each has a truss core with 120° in-plane symmetry. 
The plates are uniform (untapered). The length of the members in the core is L^ and the core thickness is He. 
The angle between the core members and the faces is (p^ = sin~'(//c/Ic)- In the present study, only solid 
circular members will be considered, and the core member radius is R^. For the plates with truss faces (Fig. 
2a), the length and radius of the solid circular face members are denoted by If and R( where, 

L, = ^3{Ll-Hi). (1) 

The thickness of the solid isotropic sheets comprising the faces of the sandwich plates in Fig. 2b is denoted 
by t[. The 120° symmetry of the plates ensures that their bending and in-plane stretching stiffnesses are 
isotropic. 

While more efficient designs might make use of distinct materials for the core and faces, here we will limit 
the possibiUties by taking a common material for all truss members and face sheets. The Young's modulus, 
Poisson's ratio, uniaxial yield strength and weight density of the material are denoted by E, v, ay and p, 
respectively. The designs will account for buckling and plastic yielding of the faces and core members. 
Optimal designs will be sought, wherein the weight is minimized subject to the failure constraints for 
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(b) 

)k. 
H. 

Fig. 2. Plate structures with truss cores, (a) Plates with planar truss faces. The darker members are top face members, the lighter solid 
members the bottom face members, and the dashed members the core members, (b) Plates with solid sheet faces. 

specified combinations of bending moment and transverse shear force. In addition, optimal design of the 
plates as compression panels will be considered. The weight per unit area of the plate with truss faces is 

W = ly/lizp 

and that of the plate with solid sheet faces is 

W = 2p t[ + 
LcR: 

V3Ll-H^ 

(2) 

(3) 

2. Plates with truss cores and truss faces subject to bending and transverse shear 

The general situation envisioned for the design problem is that the uniform, infinitely wide plate must 
carry a maximum moment per unit length M and a maximum transverse shear force per unit length V. 
Bending occurs only about the direction parallel to the loading line. A wdde plate under three-point loading, 
with force per unit length, 2P, at the center is a prototypical example. Each half of the plate carries a 
uniform transverse shear load per length, V ^ P, and a maximum moment per length, M = PI, at the 
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center, where (. is the half-length of the plate. In this example, the maximum moment and the maximum 
shear transverse force are attained at the same point, but that is not essential nor to be expected. In the 
general situation, the ratio of the maximum moment to the maximum transverse force (both per unit 
length), 

(4) 

defines a quantity with dimensions of length which will be central in the analysis. The study is limited to 
relatively thin plates in the sense that the thickness, H^, is assumed to be small compared to t Thus, Lc/i 
and Lf/i will also be small. 

An essential step in the optimization process is the determination of the maximum member forces in 
terms of maximum moment and maximum shear force. To facilitate the analysis, the truss joints are ide- 
alized as pin joints offering no rotational resistance from member to member or to the faces. The member 
forces are expected to be given fairly accurately by this idealization, which is widely used in truss analysis. 
However, the buckling resistance of the truss will be underestimated, thereby overestimating the weight of 
the optimal structure. Implications of the assumption of pinned joints will be discussed later in the paper. 

The truss plate of Fig. 2(a) is not statically determinant: for each repeating unit of the structure there are 
three more unknown member forces than joint equilibrium equations. Nevertheless, simple expressions for 
member forces can be obtained from equilibrium considerations alone for certain load orientations. For the 
load orientation parallel to A-A' in Fig. 3, the deformation involves bending about a single direction {A-A"), 
assuming appropriate constraint at infinity in the transverse direction. The members in the faces parallel to 
the load Hne undergo no straining and their forces are zero. The remaining member forces can be obtained 

V r 

\        /     \        / 

^     /       ^     / \    / \    / 
\ / \ / 
V \L  

A' TV 

Ft=-yLA) 

f]^ 
H. 

f,= 
MLf 

F^ = ^(^) '       2   X 

ML        UJX 

ML, 

''^-li- 
1+ 

(— as, 
Fig. 3. Nonzero member forces in the truss plate at section A-A'. The load line is parallel to A-A', and the members which are parallel to 
A-A' carry zero force. 
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from the method of sections. Consider a typical section A-A' shown in Fig. 3, where the moment per unit 
length and transverse force per unit length carried by the plate at that section are M aad V. The members 
with nonzero forces are labeled in Fig. 3. The method of sections gives the member forces neighboring A~A', 
as detailed in Fig. 3. The forces in the core members are 

If terms of relative order Ltji are neglected in the expression for the force in the face members, the members 
inclined to the load line experience 

(6) 

with due account for the sign difference between the top and bottom members. Forces in all the other 
members can be derived from these formulas by accounting for the shift of M and V from section to section. 

The magnitude of the maximum force in a core member is thus related to the maximum shear force per 
unit length, V, by 

-Mk} (7) 

This force is compressive if V acts downward in Fig. 3, which will be assumed in the following. (Note, for 
example, that the truss in a three-point bend configuration experiences a sign of V on one side of the center 
and the opposite sign on the other. In this case, therefore, the maximum compressive load in a core member 
is always Eq. (7)). Let the maximum moment per unit length be M, it follows that the magnitude of the 
maximum force in a face sheet member is 

"^^ = ^(1)' (8) 

acting as compression in one of the faces and tension in the other, depending on the sense of M. 
The four constraints on the maximum member forces are 

j^fk.\^ aynRl (face member yielding), (9a) 

^ (k) ^ 1^, (face member buckling), (9b) 

Hf ( — ) < OyTiRl, (core member yielding), (9c) 

^' (F) ^ ^^' ^"'"'"^ "^^^^^^ buckling). (9d) 

The two conditions on buckling take the beam members to be simply-supported at their ends, consistent 
with the pinned joint idealization. In each case, this approximation provides a lower bound to the actual 
member forces which can be sustained. Later in the paper, we will provide some indication of the extent to 
which the underestimate of the critical buckling loads affects the optimization outcome. Improvement of 
the present analysis will require more accurate formulas for the buckling constraints (9b) and (9d). 
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2.1. The optimization problem 

The maximum load quantities, M and V, are assumed to be specified and i is given by Eq. (4). The 
material properties are also specified. Define four dimensionless geometric design variables as 

x= (x,,X2,X3,;c4) = iRi/e,Lr/E,Rje,Hcm, (10) 

where Lj£ = ^yxj+xl/3. The dimensionless weight per unit area of the truss plate from Eq. (2) is 

; = 2V37r 2;c^;c^' +xlxfylxl+xl/3 (11) 

The optimization problem requires the minimization of W/pi with respect to x subject to the four con- 
straints in Eq. (9), which in dimensionless form become 

-L. (!—](—] xThix:' < 1, (face member yielding), (12a) 

_J_ f Z_ Wj-^Ar^xj' ^ 1, (face member buckling), (12b) 

i flL'] (—)x2xfx^^Jxl+xl/3^ 1, (core member yielding), (12c) 
TC \EMJ \(TY J ^ 

4 f Zl^2^3"%"' (^ + 4/^f^ < 1' (core member buckling). (12d) 
K^ \EMJ 

There is one dimensionless material parameter in the problem, oy/E, and only one dimensionless load 
parameter, V^/{EM). 

2.2. The optimal plate truss 

The optimization problem has been solved using a sequential quadratic programming algorithm which is 
* included in the IMSL Library. The material is assumed to be representative of a relatively high strength 
alummum with ay/E = 0.007. The optimization is carried out for specified values of V^/{EM). An effective 
parameter tracking method uses the solution at one value of V^/{EM) as the initial guess in the iteration for 
the solution at a smaller V^/{EM), because this guess necessarily satisfies all the inequalities in Eq. (12). The 
solution is presented in Figs. 4 and 5. Both the dimensionless weight parameter and the member geometry 
parameters are plotted against V/VEM, rather than V^/{EM), because the variations are neariy linear in 
V/Vin. The plots are terminated at V/y/EM ^ 0.002. Larger values of V/VEM would generate plates 
that would not be considered as thin. Over the entire range of V/y/EM plotted, three of the constraints in 
Eq. (12) are active: face member buckling and yielding, and core member buckling. 

2.3. Optimal plate truss with identical face and core members 

Consider a subset of truss plates, known as octet trusses (Fuller, 1983), comprised of identical members, 
i.e., 

R[=R, = R,    Li = L, = L,    and   H^^ SJTIIL (13a) 

with 
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Fig 4 Normalized weight per unit area of optimized truss plates as a function of the dimensionless load parameter {oy/E = 0.007). 
The upper curve applies to an octet truss plate whose members are all the same. The lower curve is for a fully optimized truss plate with 
distinct face and core members. 
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Fig. 5. Member sizes for the fully optimized truss plate, where l^MjV {ay/E = 0.007). 

xx=R/i,    and   JCZ = i/^. (^^^) 

This subset is interesting from the vantage point of its geometric aesthetics, and plate trusses in this class 
(Fig. 1) have been constructed in both plastic and metal. Eqs. (11) and (12) become 

W 
pi. 

= ()y/2>n£;x2', (14) 

and 
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J_ f ZlV A V-2^1, (face member yielding), (I5a) 
y/2n\EMj\(TYj 

^T—Vr^^^l, (face member buckling), (15b) 
n^   \EMJ 

J^(!!.)(L)xfx2^l, (core member yielding), (15c) 
y/lK\EM ) \aY j 

^ (Yl^x;^x', ^ 1, (core member buckling). (15d) 

Comparison of Eqs. (15a) and (15c) reveals that the core members will never yield before the face 
members if -hx2 < 1, which will always pertain to slender plate trusses. Similarly, \/3x2 < 1 ensures that 
face member buckling will always precede core member buckling. Thus, only face member yielding and 
buckling need to be considered. Anticipate that face member buckling governs, i.e., from Eqs. (15a) and 
(15b): 

and 

^;,-l=_£_       _:_       . (17) 

Then one notes immediately from Eqs. (17) and (14) that the normalized minimum weight per unit area 
depends precisely linearly on Vj\fEM according to 

^ = i^_L. = 9.861-^. (18) 

The minimum is attained for any combination of xi zndxi satisfying Eq. (17) and\/3;fr2 < 1. Note also tha.t if 
the equality in Eq. (16) is met together with Eq. (17), corresponding to simultaneous buckling and yielding 
of the face members, the minimum is still given by Eq. (18). Further inspection of the constraints reveals 
that if yield holds but buckling does not, then the normalized weight exceeds Eq. (18). It follows, for 
all VIS/EM, the minimum weight is given by Eq. (18), since x\ and X2 can always be chosen to meet 
Eqs. (16) and (17). The minimum weight relation (18) for truss plates with identical members is included in 
Fig. 4, and it can be seen to lie between 20% and 30% above the minimum weight for the truss plates, whose 
core and face members are not constrained to be the same. 

Minimum weight octet trusses with identical members are not unique. K family of trusses exists, specified 
by Eq. (17) and limited by Eq. (16), for which each truss is at minimum weight. A curious outcome of this 
nonuniqueness is that any plate truss whose members are identical is a minimum weight truss for some 
particular loading. More precisely, given a geometry specified by xi and xi, determine V/y/EM from Eq. 
(17). If Eq. (16) is met, it follows that the truss is minimum weight at V/y/EM. 

With reference to the dimensional Eqs. (9a) and (9b), it can be seen that V plays no role in the opti- 
mization of the truss plate with identical members. The design of this restricted class of plates is, in effect, 
designed under a pure moment M. This is revealed by rewriting Eq. (18), with the aid of Eq. (4), as 
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D Bottom Face Attachment Point 

Top Face Attachment Point 

Fig. 6. Nodal lines of the face sheet buckling mode for sandwich plates with truss core. Compression is in the horizontal direction. A 
"+" within nodal lines represents an upward deflection, while a "-" denotes a downward deflection. 

member buckling. The choice k = 1 corresponds to simply-supported conditions at the member ends. This 
choice, which will be used in most of the computations, neglects the rotational constraint provided by the 
other members and the face sheet at each end. This choice will certainly underestimate the maximum al- 
lowable shear force associated with core member buckling. The other extreme choice is k = 4, corre- 
sponding to fully clamped conditions at each end. This choice is expected to significantly overestimate the 
maximum shear force at buckling. Predictions based on the two limiting choices, k = 1 and 4, will be 
contrasted to assess the sensitivity to this constraint of the optimal design. 

The weight per unit area (3) and the constraints (21) are written in dimensionless form using t-M/V 
and the four design variables 

x^{Uli,R,li,H,IIL,dli). (22) 

The normalized weight per unit area, Wlpi, and the four dimensionless constraints involve only a^jE (and 
V, which is taken to be 1/3 in the calculations) and V'^/{EM), as well as x. For a given ay/E, the relation of 
Wlpi to V^/{EM) is universal for the optimally designed sandwich plate. That relation is plotted in Fig. 7 
over the range for which the plates can be considered slender or "thin" for ar/E = 0.007 with k=\. The 
associated values of the design variables are plotted in Fig. 8. The active constraints over the entire range 
plotted are face sheet yielding and buckling, and core member buckling. If the geometry of the core truss is 
constrained in the same manner as was considered of the octet trusses in Section 2, i.e., such that and 
d = Ljyjl, then there are only three independent design variables, u/i, Rdi and HJL The optimal 
sandwich plate in this sub-class is also included in Fig. 7, where it can be seen to be only slightly heavier 
than the fully optimized structure. The important implication is that this special core geometry appears to 
be almost as promising as the fully optimized core. The same three constraints noted above are active. 

As remarked above, the assumption of simply supported truss member ends {k = 1) is conservative, 
leading to an overestimate of W/pL The effect of taking the end conditions to be fully clamped [k = 4) is 
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Fig 7 Normalized weight per unit area as a function of the dimensionless load parameter for optimally designed sandwich plateswith 
truss cores (cr/E = 0.007, v = 1/3 and k = 1). The geometry of the plate for the upper curve is constrained such that He = sJll'iU. 
The lower curve is for the fully optimized plate. 
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Fig. 8. Face sheet thickness and core member size for the fully optimized sandwich plate {<7y/£ = 0.007, v = 1/3, k = 1). 

seen in Fig 9 where both curves have been computed for the unconstrained core geometry. Full clampmg 
is unconservative such that the predicted trend for Wjpi is expected to underestimate the optimal weight of 
sandwich plates with truss cores. The fact that the spread between the two estimates in Fig. 9 is relatively 
narrow in spite of the significant difference between the two modeling assumptions suggests that the pinned 
jointed idealization used in this paper may not give rise to significant error. To the left of the vertical line m 
Fig. 9, the clamped case has the same three active constraints noted for the case A; - 1. To the right of the 
line, all four constraints are active. 
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Fig. 9. Comparison of optimal weights of fully optimized sandwich plates with truss cores for two choices of core member end 
conditions: k = 1 (simply-supported) and fc = 4 (clamped). 

4. Weight comparison: truss plates, sandwich plates with truss cores, and honeycomb sandwich plates 

Fig. 10 compares the weight per unit area of the fully optimized truss plate of Section 2 and that of the 
fully optimized sandwich plate with the truss core (with k=\) from Section 3. Included in this plot are 
the corresponding results for optimized honeycomb sandwich plates, where both the face sheets and the 
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Fig. 10. Comparison of optimal weights of truss plates, sandwich plates with truss cores {k = I), and sandwich plates with honeycomb 
cores all with ar/E = 0.007 and v = 1/3. The two plates with truss cores are fully optimized. Two cases of the honeycomb plates have 
been considered: the core thickness fixed at HJt^Q.V, and the core thickness taken equal to that of the sandwich plate with truss core 
at the same value of V/s/EM. 
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honeycomb core are made from the same material as the other two plate structures (crlE = 0.007 and 
V = 1/3) As in the case of the other two plate structures, the sole dimensionless loadmg parameter m the 
optimization of the honeycomb sandwich is V^I{EM). The optimization analysis of the honeycomb 
sandwich is outlined in Appendix A. Four competing failure modes have been considered: face sheet 
buckling and yielding, and core web buckling and yielding under shear. The four design variables are face 
sheet thickness core thickness, web thickness, and the size of the honeycomb hexagon. The fully optimized 
honeycomb sandwich has a much larger core thickness than either of the two other plate structures ana- 
lyzed here So thick, in fact, that the honeycomb sandwich could hardly be considered to be thm and would 
be unlikely to be a realistic contender. To make a meaningful comparison, two restricted optimization 
calculations have been performed for the honeycomb sandwich plates. In one, the thickness of the hon- 
eycomb sandwich, H,, was set equal to the thickness of the truss core sandwich plate at the corresponding 
value of V^KEM) (Fig. 8a). In the other calculation, the thickness of the honeycomb plate was set to be 
H/e = Ol over the whole range of V^/{EM). In each set of calculations, the optimization was then per- 
foraied with respect to the other three design variables. The outcomes of these restricted optimizations for 
the honeycomb sandwich are plotted in Fig. 10. 

It is striking that the weights of the optimized sandwich plates with truss and honeycomb cores are so 
similar Sandwiches with honeycomb cores are generally regarded as the lightest weight plate structures. 
The comparison of Fig. 10 suggests that truss cores may be equally effective for sandwich plates. Oppor- 
tunities associated with an open core and possible advantages in face/core bonding may augur well for 
employment of truss cores. .   ..    u   , r 

The optimal weight estimates in Fig. 10 have been determined under approximations to the buckling 
-' strengths of each of the three types of plates (e.g. pinned joints and simple supports at joints, where the 

webs or beam members merge with the faces). All the approximations tend to underestimate the buckling 
capacity and thus it is expected that the optimal weight estimates in Fig. 10 are all overestimates. Further 
work will be required to refine these estimates and to fully certify the relative weight advantages of the three 
types of plate structures. It seems to us, that of the three types, the design weight of the truss plate is hkely 
to be reduced the most by more accurate buckling analysis. This assertion arises from our expectation that 
the major error following from the idealization of pinned joints is in the cntical load for buckling of the 

truss faces. 

5. Plates with truss cores and solid sheet faces designed as compression panels 

The competitive performance under transverse loads of the sandwich plates comprised of solid sheet 
faces with a truss core motivates their consideration as candidates for compression panels. Here, attention 
is focused on simply supported wide plates of length, i, designed to carry a prescribed compressive load per 
unit length P. (Note that (. in this section is defined differently from the previous sections.) In the spirit of a 
study by Budiansky (1999), the optimal design will be compared with optimally designed stringer stiffened 
construction, which is among the most efficient for applications requiring light weight. As m the earlier 
parts of the present study, attention is limited to sandwich plates made from a single matenal. The structure 
is the same as that in Section 3, and the notation of that section continues to apply. Specifically, the task in 
this section is to minimize the weight per unit area (3) of the plate subject to the failure constramts, which 
now include overall buckling of the plate in the wide column mode. As before, only the loading regime 
leading to relatively thin plates will be investigated. 

Under axial compression P, the face sheets of the unbuckled plate carry all the load such that the forces 
in the truss members are zero. Yielding or buckling of the individual truss members are no longer limi- 
tations on the design. However, the transverse shear stiffness of the core enters into the overall buckling 
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Strength of the plate. The elastic buckling load for a simply supported wide plate of length e having bending 
stiffness D and transverse shear stiffness 5 is (Allen, 1969) 

J crit  — 
(23) 

(24) 

Only the face sheets contribute to the bending stiffness: 

where, as in Section 3, it is anticipated that t{/Hc < 1, such that the approximation given above can be 
used. The transverse shear stiffness (which is isotropic) depends on the truss core members according to 

„    nERlH^ (25) 

Thus, the overall buckling constraint is 

P^Porif (26a) 

There are three other potential failure modes which potentially constrain the design, the first two of 
which were employed in Section 3. Avoidance of face sheet yielding requires 

P^lOytu (^^''^ 

while the condition for localized face sheet buckling requires 

49      n^ Et] 
P<   (26c) 

2I6(I-v2)(l2-if2)- 

The remaining failure mode which must be considered is a compressive kinking mode, which can occur if 
the transverse shear stiffness is very low. This is a localized mode of buckling, in the order of the thickness 
of the plate, in which the core shears cause a kink in the centerline of the plate (Allen, 1969). The constraint 
against kinking '\sP<,S, or, by Eq. (25), 

P< 
TzERlHl ■c-'c 

y/^Ll 
(26d) 

The optimal design problem is the minimization of ^ in Eq. (3) with respect to U, U, Re and H^, subject 
to the four constraints (26). Again, let d = ^JL] - H^, and take the vector of dimensionless unknowns to 
be as defined in Eq. (22). Then, the problem becomes the minimization of the dimensionless weight per 
area 

W/ipi) - 2 xi+ro4\A3+4/(^^) (27) 

subject to the four constraints: 

i/'jLVAUj-'^l, (face sheet yielding), 

^ 1, (overall buckling), (28a) 

(28b) 
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(L\ 216(1-v^)    31 ^ 1   (face sheet buckling), (28c) 

L] ^x-M'-(xi+xlf' < 1, (localized kinking). (28d) 

The prescribed dimensionless load parameter is Pl{Ei), and the two material parameters are cyfE and v. 
The outcome of the optimization analysis is shown in Figs. 11 and 12 for a^jE = 0.007 and v = 1/3. 

Both the full optimization with respect to the four variables and the geometrically constrained optimization 
are included with H^ = ^/iJSLo, corresponding to the same tetrahedral core geometry considered in Sec- 
tions 2 and 3. The range of the load parameter has been chosen to be consistent with the stated condition 

(W/pl)xlO 

12 r 

10 

8 

3    : 
6   - 

sandwich plate, H =(2/3)^"L 

hat-stiffened plate 

fully optimized sandwich plate 

■      I       .111 

(p/Eiy'^xio'' 

Fig 11 Normalized weight per unit area as a function of the dimensionless load parameter for optimally designed simply-supported 
wide panels under axial compression (cy/E = 0.007 and v = 1/3). The upper and lower curves are for the sandwich plates with a truss 
core, constrained with H, = V^ic and unconstrained, respectively. The middle curve is an optimized hat-stiffened single layer plate, 
which is regarded as one of the most efficient structures for this application. 

0.12 r 0-12 r Constrained 

4 6 
(P/EO^'^xlO^ 

4 6 

(P/El)^'^xlO^ 

Fig. 12. Normalized variables specifying the optimal truss core sandwich plates in Fig. 11: (a) unconstrained case and (b) constrained 

case (He = ^JTJTIL^. 
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Fig. 13. Normalized weight per unit area for truss core sandwich plates with constrained geometry {Ho ■■ 
designs and for three values of ay IE, all with v = 1/3. 

2/3Ic) for strictly elastic 

that the plate be relatively thin. Plots of the design variables for the optimum plates are displayed in Fig. 12 
revealing that Hjl. approaches 1/10 at the upper end of the range of the load parameter plotted. The 
kinking mode is never active over the entire range of the load parameter considered. The more heavily 
loaded compression panels have three of the constraints active in the optimal design: overall and face sheet 
buckling and face sheet yielding. More lightly loaded panels (below the jump in the slope of the curves) 
buckle at the design load simultaneously in the overall and localized face sheet modes, but are stressed 
below yield. j  • u 

Included in Fig. 11 as a standard for evaluating the performance of the optimal truss core sandwich 
plates is the weight for an optimal hat-stiffened plate (Budiansky, 1999), also with ff//£ = 0.007 and 
V = 1/3. Hat-stiffened plates are generally regarded to be one of the most efficient light weight constructions 
for compression panels. The unconstrained truss core sandwich plates are lighter than the hat-stiffened 
plates, while the constrained design is only slightly heavier. 

The results for the more lightly loaded optimal panels buckle below yield and therefore depend only on 
the elastic moduli. However, the upper limit of P/iEi) for strictly elastic design depends onay/E. Fig. 13 
presents the weight per unit area as a function of the load parameter for three values of (Xy/£ for optimized 
compression sandwich plates with truss cores. These results are for plates with cores subject to the geo- 
metric constraint //c = \f^U, but results for the fully optimized panels follow the same trend. The weight 
of the more heavily loaded panels increases sharply with decrease in yield strength material. 
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Appendix A. Optimized honeycomb sandwich plates 

Sandwich plates with honeycomb cores are used in Fig. 10 to gauge the performance of the truss plates 
and the sandwich plates with truss cores. The faces and the honeycomb core are assumed to be made of the 
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Fig. 14. Conventions for honeycomb core analysis. 

same material, as was the case of the other two structures.The face sheet thickness is u, the core thickness is 
He, the thickness of the honeycomb web is h, and the length of each side of the honeycomb hexagon is L^. 
The weight per unit area is 

(A,l) 

The analysis follows that of the truss core sandwich fairly closely, with similar approximations. The 
maximum moment per unit length and transverse shear force per unit length are again denoted by M and V 
and oriented parallel to the section A-A' in Fig. 14. The transverse shear force is assumed to be carried 
entirely by the honeycomb core. Under these assumptions, the stress in the face sheet is 

while the average shear stress in the core web oriented perpendicular to the load line is 

Tc = 
tcHc 

The weight per unit area is minimized subject to the following four strength constraints: 

M 

M 

^(TY, (face sheet yielding), 

379K^Etj 
C 

tfH, ^ 1728(1 - v^)Ll 
, (face sheet buckling), 

4,TY, (core web yielding), 

5.35| + 4| 

tcHo 
% "-r. V 

^ 12(l-vi) 

< 12(l-vi) 

if Ic > He 

if Ho > ic, 
(core web buckling), 

(A.3> 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
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Fig 15 Nodal lines for face sheet buckling mode for sandwich plates with honeycomb core. The compression direction is horizontal. 
To comply with the constraint of the core geometry, simple support conditions are taken along the horizontal nodal lines, and clamped 
conditions are assumed along the vertical nodal lines. 

where TY = ffr/Vl- The face sheet buckling mode is approximated by a rectangular pattern with dimensions 
3Ic/2 by y/3Lc and clamped on the edges parallel to the load line and simply supported on the edges 
perpendicular to the load line. This choice was made to model the constraint of the honeycomb core on the 
sheet buckling mode, as indicated in Fig. 15. The average shear stress in the core is equated to the yield 
stress in shear to determine (A.6). Core buckling is assumed to be associated with a plate subject to uniform 
shear TC of dimension ic by H^ and simply supported on all its edges (Timoshenko and Gere, 1961). The 
simple support conditions underestimate the rotational constraint of the adjoining webs and the face sheets. 

When cast into dimensionless variables in the manner of the previous sections, the only load parameter is 
VIS/EM and the material parameters are OY/E and v. Computations minimizing the weight subject to the 
four constraints have been carried out for OY/E = 0.007 and v = 1/3. Over the entire range of the loading 
parameter considered in this paper, the value Hji of associated with the optimum was greater than 0.15. 
This is not a thin plate and it is highly unlikely that such a plate would be considered in an application. To 
make a meaningful comparison between the honeycomb core sandwich and the other plate structures, two 
different constraints on H^ were considered: (i) Hji was fixed at 0.1 for all values of V/yfEM and (ii)_Hc/^ 
was taken to be same as H^/i for the fully optimized truss core sandwich plate at each value of V/VEM.In 
each of these two cases, the honeycomb core sandwich was then optimized with respect to the remaining 
three variables. The results are shown in Fig. 10. Over the entire range of the load parameter plotted, the 
optimal honeycomb core sandwich exhibits simultaneous face sheet yielding, face sheet buckling and core 
buckling. 
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ABSTRACT 

The performance of sandwich panels with plain weave, metallic, textile cores manufactured 

using a transient liquid phase bonding process has been characterized. The response of the cores 

has been measured and analyzed in shear and compression: that for the panels measured in 

bending. The characterization has been performed for weaves configured in both square and 

diamond orientations (relative to the face sheets). Dramatic differences in performance exhibited 

by the two orientations highlight the fundamental influence of core topology on load capacity 

and weight. The superior performance demonstrated for panels with the diamond cores is 

explicitly related to the avoidance of bending moments on truss members. The measurements of 

the core properties, as well as the panel performance in bending, have been correlated with beam 

theory models. The correlations have allowed a preliminary optimization that demonstrates 

performance benefits relative to competing concepts. 

Keywords: sandwich panels, cellular metals, lightweight structures, textiles, optimal design 

1.   INTRODUCTION 

Progress toward the design and implementation of robust, ultra-light materials and systems has 

directed attention toward cellular-metal-based concepts. Panels with topologically configured 

cores and dense face layers have been demonstrated to have attractive performance 

characteristics [1-5]. An example for flat panels in bending is presented on Fig. la. The key 

features are as follows, (a) Panels having cores with a stochastic cellular topology are not weight 

efficient, but have the benefits of relatively low cost [6] and excellent robustness [7,8]. (b) 

Periodic structures, such as truss core panels having tetragonal and pyramidal topology, exhibit 

superior thermostructural characteristics [2-4]. They are at least as weight efficient as the best 

competing concepts and, moreover, have multi-functionality advantages [9]. (c) The benefits to 

be realized by using configured cores increases for curved, relative to flat, panels because of the 

biaxial nature of the strain (Fig. lb). 

Approaches for creating cellular metallic panels based on textile technology have the potential 

for improving the performance/cost ratio [10,11]. The method uses a commercial plain weave 



metal fabric as the basic unit and adopts a transient liquid phase (TLP) bonding strategy for 

creating robust nodes at wire crossovers and for attaching the core to the faces (Fig. 2) [11]. This 

study examines the performance of stainless steel panels fabricated using this technology. 

2.   TEXTILE-BASED CORES 

2.1 Concepts 

The literature on the performance of panels in bending and compression has highlighted the 

salient failure modes, as well as providing test protocols for evaluating performance [2,4-8,12]. 

The most important modes for metal structures consist of core shear, core compression and face 

yielding. Face wrinkling and debonding are rarely encountered. Core designs and test methods 

that address and probe the core failure modes are most relevant. 

Plain weaves provide two basic core design options: (a) "squares" with trusses parallel and 

perpendicular to the faces and (b) "diamonds" with both sets of trusses oriented at 45° to the 

panel faces. These two orientations highlight the key role of topology (section 2.2). The square 

topology is expected to have inferior in-plane shear strength arid stiffness, because the trusses 

experience bending upon shear loading of the panel. The diamond topology should exhibit 

excellent shear characteristics, because the trusses are in either tension or compression, with 

minimal bending. In either design, the curvature introduced into the individual struts as a result 

of the weaving process is likely to diminish the performance. The measurements described in 

section 4 establish weaving factors applicable to the design of minimum weight structures. 

2.2 Core Properties 

Diamond Weave 

The response of the core in shear and compression is assessed using beam theory, neglecting the 

weaving-induced strut curvature present in the (1,3) plane (see Fig. 3). When the diamond core is 

subject to in-plane shear stress,T, as depicted on Fig. 3, the trusses are alternately in either 

tension or compression, with minimal bending. Equilibrium requires that each be subject to axial 

stress, a„ = ±r. When failure occurs by yielding, equating this stress to the tensile/compressive 

yield strength for the constituent alloy, a^, the shear yield strength of the core, Xy, becomes: 



{nlA)CyD' = T:\W,W^ (1) 

where W^ and W^ are the cell dimensions depicted on Fig. 3 and D is the truss diameter. Noting 

that W, = 2D, the relative density is related to the dimensions by: 

= (;r/8)W^,/W2 

and inserting (2) into (1) gives: 

x\lGy=-pn (3a) 

This strength is large relative to other truss designs [3], because this topology maximizes the 

shear resistance in the (1,2) plane. It is twice that for plates with either the tetragonal or 

pyramidal truss cores [2-4,10]. In practice, the strength is expected to be lower than (3a), 

because of the imperfections around the nodes caused by the weaving. This degradation is 

expressed through a knock-down factor, a (< 1), such that: 

x[lay = apl2 (3b) 

The shear strength in the other (1,3) plane has yet to be ascertained, but is expected to be lower. 

When failure occurs by elastic buckling, the compression on the truss is: 

n^eE{DIW^f 2-2 k'n 
c,= ft ~ /_ //l\ r>2 {nlA)D 

en'pEW, 

El 
16 

(4) 

%W^ 

where / is the moment of area and it is a measure of the rotational constraint at the junctions 

{k = \ when there is no constraint and k = l when clamped). The core shear strength when 

buckling dominates is thus: 



Comparing (5) with (3), core yielding should occur in preference to elastic buckling when: 

80,^ (6) 

It will be shown below that the inequality (6) is satisfied for most cores of practical interest. 

The diamond topology would have performance limitations imposed by core crushing were it not 

for the constraint provided by the faces. Absent constraint, the core would expand laterally, as it 

compresses, and a bending moment, M, would be induced in the trusses: 

M = ayD^/6. (7a) 

With M related to the compressive stress, Oc, by: 

M = acW^W^/S, (7b) 

the compressive strength would become: 

£c ^2(27^ |5   3/2 (8) 
Or 3       iw^ ^ 

In practice, the faces limit the transverse expansion to: 

«, = ^^ (9) 

with V the Poisson ratio. This displacement allows the development of a moment: 

M = ^^^4K (10) 
32^W. 

The stress associated with this moment is small, relative to the axial stress in the trusses. That is, 

the constraint negates the degradation due to bending. The final result for the compressive 

strength is: 

Or _ ccpl^ ..o^P (11) 
Cy    l + i9/64)vp^WJW^      2 



Accordingly, the yield surface for the core is that depicted on Fig. 3b. 

Square Weave 

The compressive strength is obtained trivially as: 

^ = a^ (12) 
(Jy 2 

Moreover, equilibrium requires that the shear strength of the squares be half the unconstrained 

compressive strength of the diamonds, as evident from the bending moments on the wires (see 

(7) and (8)). It is given by: 

. 1 _\3/2     fiiT" 

(13) 

Note that in comparing topological architectures, the relative core shear strengths for the 

diamond and square weave topologies is: 

(Tv) 4^f2 iw. \''Y'square -r v ^      ^^       j 

3.   MEASUREMENT PROTOCOL 

Textile-core sandwich panels were made from stainless steel, using procedures elaborated in 

[11]. They were evaluated using a flat platen bend test methodology [7] [Fig. 4]. The tests were 

designed to promote core shear failure, by choosing relatively thick faces and a thin core 

(Appendix, Table 1), after making certain assumptions about the core shear strength. The platen 

fixtures were ground from high strength steel and attached to the sample using a high strength 

adhesive. Displacements were applied using a servo-electric test frame. The induced loads were 

measured continuously, as well as the displacements at the center-point and the underside of the 

sample, directly beneath the center platen. Optical images of the structure were recorded during 

testing to characterize the deformation mechanisms and failure modes. Images were captured 

using a high-resolution digital camera equipped with a long focal-length lens. 



The shear and compressive properties of the cores were measured independently on sections cut 

from larger panels. The test approaches, elaborated elsewhere [2], are depicted on Fig. 5. For 

shear testing, the faces had thickness three times that for the flexure panels, in order to avert 

premature failure by either face yielding or plastic buckling. The faces were attached rigidly to 

the loading plates to minimize rotation. Based on previous analysis [2], the influence of the small 

normal stress induced by using this method is expected to be small. The loading and imaging 

systems are the same as those used for the panel bending measurements. 

The yield characteristics of the face sheets were independently evaluated by tensile testing of 

sections extracted from sandwich panels. This approach assures that changes in alloy properties 

during panel fabrication are captured. A gage attached to the reduced section measured the strain. 

4.   MEASUREMENTS AND ANALYSIS 

4.1 Core Characterization 

The plain weave core has been manufactured from type 304 stainless steel with a truss radius, 

R^ = 356 fim, and cell size, W^2 = 3.18/nm, with nodes rigidized by transient liquid phase 

bonding (Figs. 2,3a). The separation between adjacent layers in the structure is, W, = 1.42 mm. 

The relative density has been determined by standard weight measurement methods as: p = 0.22. 

Based purely on the wire geometry (and accounting for the bending of the wires induced in the 

weaving process), the density should be p « 0.21. The slight difference lies in the addition of the 

TLP bonding agent. 

42 Face Sheet Properties 

A representative tensile stress/strain, cr(e), curve measured on a section prepared from one of 

the faces after bonding is presented in Fig. 6a. Unload/reload lines obtained at several plastic 

strain levels establish the Young's modulus. The side view of the sample after testing (Fig. 7a) 

shows remnants of the core structure after extraction from the panels. These remnants affect the 

relation between the load/displacement response and the stress-strain behavior, as evident from 

the local thinning (Fig. 7b). To calibrate the configuration, the unload-reload compliance is 

matched to the known modulus of the 304SS material, E = 193 GPa. 



Thereafter, the loading response is fit to a Ramberg-Osgood representation: 

e = a/E+P((j^y/E)(a/a'y)'' (15) 

where <7^ is the yield strength, A^ the strain hardening exponent and /3 a stress coefficient. The 

fit to the stress/strain measurements (Fig. 6b) indicates that: j3= 3/7, A^ = 10.3, (Ty = 158 MPa 

and Ey^Cy IE = S.2x 10"^. This fit is used in the subsequent analysis to interpret the panel 

bending, shear and compression tests. Since the core is made from the same alloy and has been 

subject to the same thermochemical treatment, it is assumed to have the identical stress/strain 

response. 

43 Core Compression 

Compression tests were conducted on sections cut from the as-manufactured panels. The sections 

had cross-sectional dimensions of b = 21.3mm, w = 31.8 mm for the square configuration and 

b = 21.3mm, w = 23.6mm for the diamond configuration, such that (A')^^„ = 6.8x 10"^ m^ 

and (A')ji^„^ =5.0x10'^ m\ The load/displacement responses were recorded and optical 

images of the section captured on the digital imaging system. The images [Figs. 8,9] indicate 

that some of the exterior trusses are non-load bearing, especially in the. diamond orientation. 

Accordingly, there is some ambiguity in converting the applied load to stress. In the following 

plots, the trusses at the extremities are fully discounted. 

The stress/strain curve for the diamond orientation, ascertained in this manner, is presented on 

Fig. 10a. The onset of non-linearity occurs at about 10 MPa. There is subsequent strain 

hardening up to a peak stress, (aD^,.^,^ = 17 MPa. Beyond the peak, rapid softening occurs. 

The optical images and their correlation with the imposed stresses [Figs. 8,10a] indicate that the 

stress maximum is associated with plastic buckling. The compressive load capacity can thus be 

addressed in terms of buckling expressions, coupled with the above beam theory results. 

For a Ramberg-Osgood material (15), the plastic buckling strength, a^j, is given by the implicit 

formula [5]: 

r^^-. = f^l + ^Arf^T (16) 



Inserting the cell dimensions and the Ramberg-Osgood coefficients into (16) indicates that, for 

rigid nodes (it = 2) the stress on the trusses at buckling becomes: (7^^ = 222 MPa.With the 

premise that the face-constrained result (11) provides the appropriate representation, the peak 

compressive strength becomes: 

<TL./<^p. = «P/2 (17) 

Inserting the relative density and the measured peak strength, as well as the plastic buckling 

stress determined from (16), the knockdown factor for the diamond structure in compression is 

found to be: a === 0.10. 

The corresponding results for the square orientation [Fig. 10b] indicate that the stress maximum 

is (cr;^)^ ^„ = 18 MPa, again dictated by plastic buckling. Inserting the measured stress 

maximum and the plastic buckling stress into (17) indicates essentially the same knockdown 

factor, a = 0.74, 

The small knockdown effect is surprising given the presence of imperfections, such as the wire 

curvature caused by weaving and the non-uniform chemistry/structure at the nodes due to the 

TLP bonding. This finding remains to be explained. The slightiy larger degradation for the 

diamond orientation suggests that the face constraint is less effective than implied by the analysis 

in section 3. Nevertheless, the crush resistance substantially exceeds the unconstrained strength. 

4.4 Core Shear 

The loads imposed in shear are converted into shear stresses, T, by using the load-bearing cross- 

section described above. The overall shear strains, y, are determined from the displacements and 

core thickness. The plastic shear strains induced in the core, y^,, are obtained by measuring the 

change in the weave angle from the optical images. The stress/strain results obtained in this 

manner are summarized on Fig. 11. Images taken during the tests are presented on Fig. 12. 

The results for the diamond core specimen indicate that yielding commences at about 

(^r)d,»m>nd " 17 ^P^■ 'ft then strain hardens and reaches a peak at stress, (T^),,^^ = 37 MPa. 

Over this range, the images reveal that the trusses in compression exhibit plastic buckling, while 

those in tension stretch. The peak load is coincident with tensile rupture of some of the stretched 

trusses. Comparing the measured yield strength with (3b) indicates that there is essentially no 



knockdown (a-1). The extra load capacity beyond yield is assumed to be associated with strain 

hardening of trusses subject to tension. 

The corresponding results for the square core indicate that yielding commences at about 

(Ty)^ ^^.'^l.SMPa. Again, significant strain hardening occurs. The test is halted at a 

displacement equivalent to that imposed on the diamond core sample. 

It is evident from Fig. 11 that the shear resistance of the two core topologies is very different. 

The ratio of the shear yield strength for the two core topologies is predicted from (14) as: 

(TrLa™n./(Tr).,„a«=9.4. A ratio of 9.2 is measured experimentally. 

4S Panel Bending 

The load/deflection responses for the panels in bending are presented on Fig. 13. Note that the 

stiffness and the yield load are appreciably larger for the panel with the diamond orientation. The 

yield load for the diamonds is (Py),;^,^ = 1.4 A:A^, and only (Py)^^, = 0.9 kN for the squares. 

Beyond yield, with both core configurations, the load capacity systematically increases as 

additional displacement is imposed until reaching a plateau (at which point the tests were 

discontinued). The maximum loads are similar, though somewhat larger for the diamond 

orientation than for the square. This small difference is not representative of the performance 

advantages of the diamond weave, because both panels are far from optimum (see section 5) 

such that the failure mechanisms differ, as discussed below. When optimized, the diamond cores 

sustain loads at much lower weight than square cores. 

Images taken during the tests reveal the most important consequences of the topology (Fig. 14). 

In the square orientation, the response is dominated by shear yielding of the core: apparent from 

the shear distortion of the cells in the region between the load platens, as well as the plastic 

hinges in the faces at the inner and outer platens. These core characteristics are attributed to truss 

bending (section 3). The beam theory expression governing the limit load is that for core shear 

with plastic hinging of the faces (Appendix, A3): 

P^^ = ——ay+2bcr'y 



Inserting the independently determined values of the face yield strength and the core shear yield 

strength, the predicted limit load can be calculated. The limit load equations (see Appendix), 

utilized here are based upon elastic-perfectly plastic yielding of the constituent alloy. Therefore, 

as indicated in Fig. 6b, the face yield strength is taken to be Oy =215 MPa for this and 

subsequent calculations. The limit load determined for core shear (with plastic hinging) is 

calculated as: P^^^LSikN. Superposing on the measured load/displacement curve indicates 

that the measured load significantly exceeds that predicted by the beam theory formula based on 

the yield strength. 

In the diamond orientation, the response is quite different. Now the cells in the shear region 

between the load platens retain their shape, indicating that they resist plastic shear: for the 

reasons discussed in section 3. Moreover, there is no crushing beneath the central platen, 

consistent with constrained compression. Instead, failure occurs by plastic stretching of the face 

at the center. Accordingly, the limit load is within the face yield domain, given by (Appendix, 

A4): 

_4bh^[l + c/h]<7y 
• FY 

p     = ---    L-.^.-..     y^^^ -^la: 

Inserting the measured values of the elastic-plastic face yield strength, Oy, and the core yield 

strength, the limit load is predicted to be, Ppy = 3.46 kN. Again, this is appreciably lower than 

the measured value. 

For both configurations, the calculated limit loads are much smaller than the measured load 

maxima. A related discrepancy has been found in earlier studies [7], particularly when the 

response is controlled by face yield. That discrepancy was resolved by implementing a full 

numerical simulation [7]. Three factors are involved in the discrepancy, (i) The strain hardening 

of the faces beyond yield enhances the load capacity and could elevate the limit load by as much 

as 50%. (ii) The use of finite width platens diminishes the bending moment (relative to that 

assumed in beam theory), resulting in a load elevation of order 10 - 20%. (iii) The rotation of the 

outer supports during the testing (see Fig. 14) also diminishes the bending moment and, based on 

the observations, could account for another 10 - 20% load elevation. The sum of these three 

contributions is expected to account for most of the discrepancy. Numerical simulations are 

needed to provide a final resolution. 

10 



5.    PRELIMINARY PERFORMANCE COMPARISON 

The performance of the diamond core panels may be compared in a preliminary manner with 

other design concepts. For the present weave geometry, at typical yield strains, e^ «10'^ elastic 

buckling only becomes important (6) when p< 0.0012 and can be discounted. Moreover, 

because of the high shear strength of the diamond core, the failure loads are assumed to be 

limited by face yielding. With this premise, the moment per unit width, M*, at failure is obtained 

from (A4) as: 

M'^^=/iCa^ (18) 
Ab 

where C = c + /i = c for thin faces. The weight per unit area is given by [6]: 

W' = p,{2h + cp) (19) 

where p, is the solid material density. Eliminating h and assuming thin faces, gives: 

W* lp, = 2M' IcGy+cp (20) 

Differentiation and setting dW* Idc = Qio obtain the minimum, gives an explicit core thickness: 

c„^= 421^10, p (21) 

Inserting back into (20) gives the non-dimensional minimum weight: 

V 
^ = K.n /psL^ 2V2p/e,-7=^ (22) 

The shear force, V = M* /L, has been used since the associated load index, V I^EM' , allows 

direct comparison with minimum weight designs previously derived for tetragonal and 

hexagonal honeycomb cores [1,3] (Figs. 1 and 15). To allow a meaningful comparison, a yield 

strain, 6^ = 0.007, pertinent to structural Al alloys, has been used [1,3]. Then, at the lowest 

applicable core density (p = O.Ol), the weight from (22) becomes, ^ = 3AVI^M' 

(Fig. 15a): indicative of structures lighter than both honeycomb and tetrahedral truss core 
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panels over most of the load range. For a larger relative density (p = 0.05), the weights are 

larger (Fig. 15b), but still competitive given the other attributes of the textile system. 

The applicability of (21) is checked by determining the core shear response, upon inserting (20) 

into (A3). This assessment reveals that face yield only occurs in preference to core shear when: 

<   ££L (22) 

For core densities in the range, p>0.01, and for typical yield strains, Sy «10"\ this inequality 

signifies that face yielding should dominate provided that the load index satisfies: 

V/^JEM' <0.0Q2 

This is the range having practical relevance [13,3] (Figures 1 and 15). 

A reservation pertinent to (22) is that the actual core thickness implied by (20) may become 

unacceptably large [3]. If a limiting thickness, c' / L = 0.1, is imposed, the weight increases to: 

T = 
(c*/L)ej. EM 

+ p(c*/L) = 3.0x10' 
EM 

+ 0.001       (23) 

When superposed on Fig. 15b, this weight is seen to be slightly less than that for honeycomb 

core panels having the same thickness. This comparison affirms the potential for lightweight 

panels made with diamond weave cores when in-plane bending loads are relevant. Recall, 

however, that the woven core is anisotropic and that the weights will be larger when out-of-plane 

loads are involved. 

6.   IMPLICATIONS AND CONCLUSIONS 

Truss core panels with plain weave cores have been fabricated and tested in bending. The 

observations provide a vivid demonstration of the role of topology. The panels with square 

weaves have core members susceptible to bending. They fail by core shear with inferior load 

capacity.   Panels with the same weave in the diamond orientation have a much lower 

12 



susceptibility to truss bending. Accordingly, they have a high resistance to core shear and fail by 

face yielding with superior load capacity. 

The response of the diamond core has been analyzed using beam theory and the expectations 

correlated with measurements. The knock down factor associated with weaving imperfections 

has been ascertained. It is relatively small, a = 0.7. With two basic assumptions, the overall 

performance of diamond core flat panels subject to axial bending has been evaluated. Namely, as 

the core density is reduced, (a) the same failure mechanisms apply and (b) the knockdown factor 

is unchanged. The analysis indicates that this design is competitive with panels made with 

hexagonal honeycomb cores, subject to several caveats and restrictions. 

(i) The core is anisotropic and the properties in the (1,3) plane remain to be determined. For 

biaxial bending, the unknown out-of-plane properties are expected to be performance limiting. 

(ii) Upon reducing the relative density to realize weight benefits, larger knockdown factors from 

weaving imperfections are likely, diminishing the benefits of the design. Performance 

measurements conducted with much lower density cores are needed. 

(iii) Concepts based on hollow wires [11] woven in the diamond topology are thought to be an 

attractive approach for reducing the relative density, while retaining minimal degradation from 

weaving imperfections. However, higher costs may be prohibitive, and weaving processes 

problematic due to the limited flexibility of such hollow wires. 
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APPENDIX 

Notation 

D Truss diameter 
L Span length of bend specimen 
W^ Ply spacing 
W^ Cell size 
R^ Truss radius 
R Platen width for platen 3-Point bend testing 
b Depth of load-bearing cross-section 
w Width of load-bearing cross-section 
k Nodal response parameter for elastic or plastic buckling (1-^2) 
A" Area of load-bearing cross-section 
p^ Density of the solid constituent material 
p Relative density 
c Core thickness 
^opi Optimum core thickness 
c* Limiting core thickness 
h Face sheet thickness 
C Effective panel thickness 
B Overhang length for bend specimen 
P Applied load 
P Crush load of core structure 

c 

P^s Limit load for panel bending (failure controlled by core shear with full plastic hinging) 
P^ Limit load for panel bending (failure controlled by face yielding) 

Py Yield load recorded during panel bending 
P Peak load measured during panel bending 

max ^^ ■■ 

a Applied stress 
o"^ Axial stress exerted on truss members 
(Ty Yield strength of constituent alloy 
Oy Yield strength of core structure 
(Tfc Compressive stress on trusses for failure occurring by elastic buckling 
(Tc Core compressive strength 
o'Lr Peak stress measured during compression testing 
a j Compressive strength for panel failure controlled by plastic buckling of truss members 
(7y Yield strength determined through Ramberg-Osgood analysis 
(7^ Yield strength determined for elastic - perfectly plastic behavior 

e Strain 
£y Yield strain 
E        . Elastic (Young's) modulus 
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A^ Strain hardening exponent 
fi Strain hardening behavior stress coefficient 
a Knockdown factor 
/ Moment of inertia 
M Bending moment 
M* Bending moment per unit width 
V Poisson ratio 
u^ Expansion of core in plane of ply 
T Applied shear stress 
Ty Core shear yield strength 
Tj Core shear strength when buckling dominates 
T" Peak shear stress sustained by the core structure 

ntox 

y Shear strain 
7 , Plastic shear strain 
V Shear Force 
W * Weight per unit area 
W^ Weight per unit area of minimum-weight structure 
*F Non-dimensional minimum weight index 
Ucs Non-dimensional limit load for type I core shear conditions 
Ucs Non-dimensional limit load for type II core shear conditions 
Tlfy Non-dimensional limit load for face yield conditions 
Ur Non-dimensional limit load for core compression (indentation) 

Panel Bending Formulae [6] 

Results for the limit loads exhibited by panels in bending, needed for the analyses conducted in 

the text, are summarized here for convenience. In the core shear domain, the load depends on the 

response in the overhang, length B. Shear in the overhang occurs when, 

Blc<{il2){hlcf{aylx'y) (AI) 

When (Al) is satisfied, the limit load is [6,10]: 

n^, = Pc,/feLa,=2(ft/L)' + 2(c/L)(l + 2B/L)(T^/<T,) (A2) 

where Oy is the flow strength at the strain level induced in the face sheet. Absent shearing in the 

overhang, plastic hinges form at the outer platens and the limit load becomes: 

15 



Yl'^, = PcslbLGy = A{hlLf+2{clL){x',l(7,) (A3a) 

which for the diamond core (3b) is: 

(n;is).,v,.w=4(/t/L)' + «p(c/L) (A3b) 

When/ace yielding predominates, the corresponding limit load is: 

n,y^P,y/bL(Jy  =  ^^ ' + \   T  \    i^'y   / Gy) 
4h^[l + c/h]   fc_ 

Ah^[\ + clh] 
(A4) 

Normally, the second (core compression) term can be ignored. 

Crushing of the core occurs when the load reaches [6]: 

Pc=2bh-sl(7yC7y+Rbc(j'y (A5) 

with R being the width of the platen. Using the result for the compressive strength of the core 

from section 3 gives: 

Yic^PclbLay = {hlL) 
ap    apR 

^^^ 2        2h 
(A6) 

Comparison with (A3) indicates that, except for localized zones of pressure, R/h<5, crushing 

will not occur in preference to core shear. 
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FIGURE CAPTIONS 

Figure 1. The minimum wieght of a structure as a function of a given collapse load, for 

panels subject to imposed bending moments, comparing competing concepts for 

sandwich panel configurations. 

Figure 2. The minimum weights of curved panels in compression, as a function of collapse 

load, illustrating performance benefits associated with truss-core sandwich panel 

constructions relative to competing concepts. 

Figure 3. Schematic showing the stresses experienced by individual struts in the diamond- 

configuration sandwich panel core, along with the resultant yield surface for such a 

topologically-configured structure. 

Figure 4. Schematic of the platen three-point bend configuration developed for, and used to, 

experimentally probe core-dependent sandwich panel failure mechanisms [7]. 

Figure 5. Illustrations of the test configurations used to measure the (a) shear and (b) 
compressive stress/strain behavior for the core configurations. 

Figure 6. The tensile stress/strain response for a segment of the face sheet structure extracted 

from a sandwich panel construct. In (a) the unload/reload segments are fit to 

evaluate the modulus of the structure, while in (b) the stress/strain response is fit to 

a Ramberg-Osgood relation to determine yield and strain hardening characteristics. 

Figure 7. Optical images of the (a) edge and (b) face of a segment of the face sheet after 
tensile straining, showing the remnant core structure and its effect on the overall 

development of plastic deformation. 

Figure 8. Images of the diamond-configuration core structure loaded in compression, 

illustrating that peak load is correlated with plastic buckling of core struts. 

Figure 9. Images of the square-configuration core structure loaded in compression, again 

illustrating that peak load is correlated with plastic buckling. 

Figure 10. Stress/strain curves for the (a) square-configuration and (b) diamond-configuration 

core structures loaded in compression. The load points corresponding to the images 

captured during testing (Figs. 8 and 9) are indicated. 

Figure 11. Shear stress/strain curves for the (a) diamond and (b) square configuration cores. 
Note the substantially larger peak stress measured for the diamond configuration. 
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Figure 12. Images detailing the mode of failure for the (a) diamond and (b) square 

configuration core structures loaded in shear. 

Figure 13. Load-displacement responses for the square and diamond topology panels tested in 

3-point bending, (a) Overall load-displacement behavior, illustrating the peak load 

measured with each structure and comparison with analytical limit loads based on 

beam theory, (b) The behavior at small displacements, showing a significant 

difference in both the initial yield points and stiffnesses of the two core 

configurations. 

Figure 14. Optical images captured during bend testing of panels with (a) square and (b) 

diamond configuration cores. Note that the square core configuration leads to 

failure by core shear, with full plastic hinging at the outer loading points. For the 

diamond core configuration, failure initiates with face sheet yielding under the 

center load point, with no evidence of core shear between the center and outer load 

points. 

Figure 15. Comparison of the minimum-weight performance characteristics of competing, 

topologically-designed core structures, affirming the potential for lightweight 

panels with diamond-configuration textile core structures. Compared are cores 

having: (a) the lowest applicable core density (p = O.Ol), and (b) higher density 

cores (p = 0.05). 
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TABLES 

Table 1: Specimen Design 

Face Sheet       Core Material        h/L c/L h c(mm)    L(mm)       R/L B 

304 SS 304 SS 0.0149     0.0620       2.09 8.67        140.0       0.114       40.0 
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PERFORMANCE OF SANDWICH PLATES WITH TRUSS CORES 

Nathan Wicks and John W. Hutchinson 
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Cambridge, MA 02138 

Abstract 

Sandwich plates with truss cores fashioned from straight struts have distinct advantages 

relative to other constructions, including those with honeycomb cores. In addition to 

opportunities.afforded by their open architecture, the truss core sandwich plates meet or exceed 

the load carrying capacity of other competitive constructions. The weight of truss core sandwich 

plates subject to a crushing stress and arbitrary combinations of bending and transverse shear are 

optimized subject to buckling and plastic yielding constraints and then compared with the weight 

performance of other types of optimized plates. Several issues central to the optimization 

process are addressed by a fundamental model study. These include the relation of designs based 

on a pure moment loading to those based on combined moment and transverse shear and the 

accuracy needed to model the various modes of buckling that must be taken into account in the 

design process. 

Keywords: Sandvidch plates; Truss cores; Optimal design; Buckling; Plastic yielding 

1.   Introduction 

New focus on sandwich plates with truss cores has been motivated by potential 

multifunctional applications that exploit their open architecture as well as their apparent superior 

strength and stiffness (Evans et al., 2001). Moreover, new methods have been devised which 

permit "micro" plates with truss cores to be manufactured (Brittain et el., 2001). In the present 

context the terminology "truss core" refers to a core constructed from beam elements but not 

folded plates, as is sometimes implied. A preliminary study (Wicks and Hutchinson, 2001) has 

revealed that the performance of optimized sandwich plates with truss cores is competitive with 

more widely used constructions, including sandwich plates with honeycomb cores and stringer 

stiffened plates. A more extensive study of the performance of optimized truss core sandwich 

plates is undertaken in the present paper.  We begin by investigating the optimal design of a 



model two-dimensional truss structure subject to pure bending (see Fig. 1). The various buckling 

modes of this structure can be analyzed exactly, providing insights into the validity of the 

approximations that are usually invoked in the optimal design of more complicated structures 

such as truss core sandwich plates. The model problem also reveals the connection between an 

optimal configuration designed to carry a pure moment and its counterpart designed to carry a 

combination of moment and transverse shear force. The second part of the paper specifically 

addresses the optimization of sandwich plates with truss cores subject to a crushing stress, 

bending, and transverse shear. The optimal configurations are compared to optimized plates 

with honeycomb cores. 

2.   A two-dimensional truss under pure moment 

The infinite truss shown in Fig. 1 carries a moment M = PH^. Each member is taken to have 

a solid circular cross section, with radius Rf for the horizontal members and radius R^ for the 

inclined core members. All members are made from the same material whose Young's modulus 

is E and yield stress in tension is Cy. All members have length L such that each triangular 

group is equilateral and H^ = V3L/2. Individual truss members are assumed to be slender (i.e. 

R/L« 1) and they are regarded as beam-columns. At the joints, the members are assumed 

rigidly connected to one another such that ends of each member meeting at a joint undergo the 

same displacements and rotation. Only in-plane deformations are considered. 

2.1 Bifurcation buckling analysis: exact formulation 

The analysis reveals all possible bifurcation buckling modes of the truss and the associated 

critical moments. Two distinct modes of importance emerge: a mode with half-wavelength equal 

to the member length wherein compressed members buckle between their joints and a longer 

wavelength mode. 

As is customary in investigations of this kind, the pre-buckling load is approximated as being 

carried entirely by the horizontal members. This is an excellent approximation since the axial 

forces in the core members are zero and the elastic energy induced by bending in the pre- 

buckling response is extremely small. The bifurcation buckling analysis is given in the 

Appendix. Each member is represented as a beam-column, and its deformation is expressed in 

terms of the displacement components and rotation at its ends where it connects to adjoining 



members. The eigenvalue problem for the bifurcation mode is formulated exactly as an infinite 

set of finite difference equations involving the joint displacements and rotations. The equations 

admit sinusoidal solutions with a wavelength X. With M^{X) denoting the minimum eigenvalue 

at a given A, the critical moment governing bifurcation is the lowest value of M,(A) over the 

entire spectrum of X. The full spectrum of eigenvalues is spanned for the range of wavelengths, 

1 < X / (2L) < oo, as discussed in the Appendix. 

Examples of the eigenvalue spectrum are plotted in Fig. 2. In the example with the larger 

ratio, RJRj, the lowest eigenvalue is associated with the short wave mode (A = 2L), 

corresponding to buckling of the compressed horizontal members between their joints, as 

depicted. The other eigenvalue spectrum shown is for very slender core members relative to the 

horizontal members. In this example, the lowest eigenvalue is associated with a longer wave 

mode (A « 3.6L). This longer wave mode appears when the ratio, /?, IR^, is very small, as will 

be quantified in the next section. The result from the approximate formula for the short wave 

eigenvalue that is presented in the next sub-section very accurately predicts the value plotted at 

A = 2L for both of the R^ IRf values shown in Fig. 2. 

2 2 Approximate results for short and longer wavelength buckling modes 

The model problem is sufficiently simple such that it is possible to use results firom the 

exact analysis to carry out an optimal design of the truss, and this will be done. The primary aim 

in conducting the model study, however, is to make use of the exact solution to assess the 

validity of using approximate formulas for the two buckling modes highlighted above. Optimal 

design of more complex structures under more general loads will generally employ approximate 

formulas of the type that will be introduced below. Thus, the present model problem affords an 

opportunity to quantitatively evaluate the accuracy of optimal configurations obtained using 

approximate buckling formulas. 

The scheme for estimating the constraining effect of the lower portion of the structure on 

the bucking of the horizontal members in the short wavelength mode is depicted in Fig. 3a. The 

top compression member is constrained to have zero deflection at each joint and its rotation is 

constrained by a torsional spring. The spring constant is determined from the problem depicted 

in Fig. 3b where a moments of equal magnitude but alternating sign act on the remaining part of 



the truss. If the effect of the tensile load P on the bottom horizontal member is neglected, the 

torsional spring constant can be determined exactly as 

%EL\.    16 ,    8 7^3 ^ 2 -1 

*^=«'«=T|'^f«'*itl4"^j ■ '=i^ <" 

where / =7rR,* /4 and I.=izR*IA. If the horizontal members are much thicker than the core 
f f C C 

members such that q = Q, then K = %EIJL,md this is identical to case where the core members 

are attached to a rigid foundation. The eigenvalue equation for the critical load P for an infinite 

beam having zero deflection and constrained by the above torsional spring at equally spaced 

distances L is 
         / ,    \ 

KL P  L 
 cot 
\EI^ 2 \EI,2J AEI^ 

(2) 

By expanding (2) in a Taylor series about ^PIEI^L^K (appropriate for sufficiently small 

KL/EL) and retaining up to and including terms of second order, one obtains the explicit 

approximation for the short wavelength buckling load 

P  L    K     lr?rV .   KL 
■ = —+ 

EL 2    4 \^A) ^AEI, ^^^ 

Results for the critical buckling moment from the exact analysis are compared in Fig. 3c with 

results from (3) for the frill expression (1) for K, and the two sets are in good agreement for 

values of RjRj up to about 0.5. In this figure, M^ denotes the critical moment with K = 0 

corresponding to simple support of a beam of length L. An even better approximation is seen to 

pertain for the case where the base horizontal members are taken to be rigid, i.e. K=SEIJL. 

The lowest eigenvalue is associated with a "long" wavelength mode only when 

RJR^hecomes smaller than a transitional value. Fig. 3d is a plot of the transition value of 

RJR. as a function of R^/L at which the long wavelength mode has the same eigenvalue 

(buckling moment) as the short wavelength mode (A = 2L). The condition that ensures that the 

short wavelength mode is critical is well approximated by 



^>-0.00313+ 2.62--^ (4) 
Rf L 

An approximate approach to estimating the critical load associated with the "long" 

wavelength mode has the compressed beam resting on an elastic foundation where the spring 

constant for normal displacement is obtained for triangular core elements rigidly supported at the 

bottom beam. The critical load from such an analysis is P = 2^EIjS, where the spring constant 

is 5" = IU'^R^KE /L*. Equating this critical load with the short wavelength critical load based on 

simple support at the nodes gives the approximation to the transition as 

RjRj = K'^RJJI^^L = 2.0lRy/L. The error in this result compared to the transition (4) is due 

to the fact that the so-called long wavelength mode, in fact, is not really long compared to the 

member length. 

In the optimization described below for a pure moment loading, condition (4) will be 

invoked as a constraint on the design. It is conceivable that a lighter weight design might be 

attained if Rc/Rf were allowed to become even smaller. However, as we shall see, the inclusion 

of any realistic level transverse shear in the design process ensures that R^R/ is well above the 

transition ensuring that short wavelength buckling is critical. 

2.3 Optimization of the two dimensional truss subject to pure moment 

The dimensions of the truss members, R^,Rf and L, are now identified that give the lightest 

weight given that the truss must support a prescribed moment Msuch that the force carried by 

the horizontal members is P = 2M /V3L. With w as the weight per unit volume of the material 

comprising the members, the weight per unit length of the truss is W = 2;zw(i?/ + R/j. The 

horizontal members must not exceed yield requiring, V3;r<Tj,/?^^L/2>M, while the short 

wavelength (3) and long wavelength (4) buckling conditions provide the respective constraints 

r       rr-r. V s 
—Jt 

2 
^. ^ Klf + _£L 1 J^ > M and    ^ > -0.00313 + 2.62^ 
4    m4>'     ^Elf L Rf L 

Plastic buckling of the horizontal members is not explicitly considered since it is excluded by the 

constraint on plastic yielding. The yielding constraint could be replaced by a constraint on 

plastic buckling, but this would have relatively little influence on the optimal design. Except for 



materials with very high strain hardening, the plastic buckling load is only slightly higher than 

the load at plastic yield and for this reason the constraint on plastic yielding is only slightly 

conservative. 

The only length quantity other than unknown member dimensions is (M/£)'". To put the 

optimization problem in non-dimensional form, introduce dimensionless member variables as 

x = (x ,X2,X2) = iRf,Rc,L) /(MI £■)'". The dimensionless optimization problem requires that the 

dimensionless weight, W l[w{M I Ef'^] = 1K{X^ + x^), be minimized with respect to x subject 

to the three constramts noted above, i.e. 

8 
- + J- + /: 
2    V4 

A^ 
^^'   ' ■   '^ ■ '-   x,V'>l (5) 

^>-0.00313+ 2.62-^ 
^1 ^3 

Here, £„ = (j„ / £ is the yield strain and k is 

The yield strain is the only parameter in the dimensionless optimization problem. For a 

numerical example, take Ey = 0.007 corresponding to a high strength aluminum considered in the 

eariier study (Wicks and Hutchinson, 2001). The solution to the optimization problem is 

;c, = 1.4088    ;c, = 0.19249     x, = 26A51    W l[w{M IEf"] = \2.1QZ (6) 

All three constraints in (5) are active for the solution. 

3.   The optimal two-dimensional truss subject to both moment and transverse shear force 

Now suppose the same truss at its most severely loaded section carries a moment M and a 

shear force V.   Let £ = M/V and assume that e»L, wWch necessarily holds if the truss 



contains multiple sections. (A cantilever beam of length i loaded with a force V at its free end 

experiences the moment M = W at its supported end.) The most heavily loaded core members 

are subject to forces ±lV/yl3, depending on their inclination and the direction of the shear 

force, while the most heavily loaded horizontal members are subject to 2M /(VSL). 

With M and V prescribed, the truss weight is to be minimized by selecting R^,Rj. and L 

subject to the three constraints imposed in the previous sub-section (long and short wavelength 

buckling and yield of the horizontal members) plus an additional two constraints: buckling and 

yield of the core members. The prior discussion of plastic buckling being excluded by the 

constraint on plastic yielding applies here as well. Now, the long and short wavelength buckling 

conditions for the compressed horizontal members are clearly approximate because the moment 

and, therefore the axial load, vary from member to member. As is customary in optimization 

studies, the conditions are nevertheless assumed to apply "locally". This approach is appropriate 

for a slender structure with i»L for which the axial forces will change by a small amount 

from member to member. Since the design is based on the maximum moment carried by the 

structure, this approach will underestimate the buckling loads and lead to a conservative design. 

A set of dimensionless variables different from that employed above is used: 

X = (xpXj.Xj) = (/?^,/?„L) /£. With this choice, W /(wf) -2K{X^ + x^) must be minimized 

with respect to 3c subject to the five constraints 

STc^d   fl—'" 
8 2    ^4      ) 

4     -1 : ^ shortwavelengthbuckling 

^>-0.00313 +2.62-^, longwavelengthbuckling 
Xi ^3 
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SK 
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Now there are two dimensionless parameters in the problem. By and the dimensionless load 

combination, Q.= V^ l{EM'^). The core members are taken as clamped at the ends in evaluating 



their elastic buckling loads, consistent with the optimal outcome wherein the truss has face 

members which are more than twice as thick as the core members. 

The solution to the optimization problem can be determined with a nonlinear 

optimization routine such as that available in the IMSL Library for numerical analysis. For 

ej.=0.007, the dimensionless weight of the optimal truss is plotted against V/(£Af^)"^ in Fig. 

4a, while the member dimensions for the optimal truss are shown in Figs. 4b, 4c, and 4d. This 

plot spans the entire range of loading for which the truss can be regarded as being a relatively 

slender beam. Note that at the largest value of V/CEM')"^ shown, LU is 0.20. The constraints 

active over the entire range plotted are short wavelength buckling, yield of faces, and elastic 

buckling of the core members. The aspect ratio of the core members is such that the long 

wavelength buckling mode is not at issue (i.e. the left hand side of second constraint in (7) 

greatly exceeds the right hand side). 

The dimensionless results for the pure moment problem in (6) can be re-expressed in 

terms of the non-dimensional variables used in (7) and in Fig. 4 as 

In this form, V is an inessential parameter that appears in the normalization on both sides of the 

equations in the same manner. Thus, the results for the truss optimized under a pure moment can 

be directly compared with the optimal truss designed to carry both moment and transverse shear 

force, and that comparison is included in the several parts of Fig. 4. Even when the shear force is 

very small, the pure moment design always underestimates the weight of a truss designed to 

carry both moment and shear force, although the error in weight is not very large. More 

significantly, the member dimensions of the truss designed to carry only a pure moment are very 

different from those based on the combined load design. While the optimal dimensions for L /^ 

and /?, /^ are comparable for the two cases, the pure moment analysis underestimates RJihy 

as much as 400% compared to the combined load analysis over the load range plotted. 

The optimal values of R^ IR^ for the combined moment and transverse shear case are all well 

within the range where the short wave buckling mode is the lowest buckling eigenvalue, as 

already emphasized. A lower weight design under pure moment optimization might exist if the 



constraint requiring the short wavelength mode to be critical were relaxed. This would hardly be 

worth pursuing given that essentially any transverse load applied to the structure excludes the 

possibility of the long wavelength mode. Sizing the core members to carry the transverse shear 

ensures that they are sufficiently substantial such that the long wavelength mode does not occur. 

For the two-dimensional truss beam, at least, a optimal design based on a pure moment appears 

to lead to a structure which is inadequate even when very small transverse shear loads are 

applied. 

4.  Optimization ofSandwich Plates with Truss and Honeycomb Cores 

Optimizations of sandwich plates with truss cores and with honeycomb cores have been 

performed previously (Wicks and Hutchinson, 2001). In this section we optimize sandwich 

plates with truss cores subject to bending, transverse shear, and a crushing stress, as shovm in 

Fig. 5. A more accurate approximation for the critical buckling stress of the face sheets than that 

employed earlier is introduced in this paper. A similar optimization is also performed for a 

honeycomb core sandwich plate to provide a weight performance comparison. 

As in the examples discussed above, the design focuses on uniform plates even though for 

specific load distributions a tapered plate might be more weight efficient. The objective in this 

paper is to uncover the relative performance of truss core sandvdch plates relative to honeycomb 

construction. More efficient designs might also make use of distinct materials for the core and 

faces. Here, to limit the possibilities, we restrict attention to a common material with weight 

density w for all core members and face sheets. The tetragonal truss core is comprised of 

tripods whose members all have length L^ and a solid circular cross-section of radius R^. The 

weight per unit area of a plate with truss core and solid face sheets is 

W = 2w (9) 

with tj as the face sheet thickness and H^ as the core thickness. Conventions for the tetragonal 

core structure are shown in Fig. 6a and 6b. The honeycomb core is a regular hexagon with 

height H^ (the core thickness), web thickness f,, and web length L^. The weight per unit area of 

sandwich plate wdth the honeycomb core is 

Ht 
W = 2w ''^TS (10) 



where t. is the thickness of each face sheet.  The conventions for the honeycomb cores are 

shown in Fig. 6c. 

The performance of tetragonal and honeycomb cores under shear and compression are of 

particular interest in sandwich plate design. Key design properties of the two cores are the 

elastic shear modulus, the crushing strength (both yield and elastic buckling), and shear strength 

(again, both yield and elastic buckling). These properties are tabulated in Fig. 7a, expressed in 

terms of the relative density (pj of the core defined as the volume of core material per volume 

of core. The properties in Fig. 7a are for a regular tetragonal core (HjL^=^>j2/3). Of 

particular relevance is the scaling of the elastic buckling properties of these cores. For the 

tetragonal core, the buckling strength scales with the core relative density squared. For the 

honeycomb core, the buckling strength scales with the core relative density cubed. To illustrate 

the importance of this factor, the crushing strength properties of both cores as a function of core 

relative density have been plotted for a representative yield strain of 0.007 in Fig. 7b. For low 

density cores, typical of those used in sandwich plates, the tetragonal core is significantly 

stronger. This observation points to the potential advantage of tetragonal core structures for use 

in sandwich panels. 

4.1      Sandwich Plate with Truss or Honeycomb Core 

The general situation envisioned is again that of a uniform, infinitely wide plate subject 

to amajdmum moment per unit length M and a maximum transverse shear force per unit length 

V. Bending occurs only about the direction parallel to the loading line. A wide plate under 

three-point loading with force per unit length 2P at the center is a prototypical example. Each 

half of the plate carries a uniform transverse shear load per length, V = P, and a maximum 

moment per length, M = P^, at the center, where ^ is the half-length of the plate. In this 

example, the maximum moment and the maximum shear transverse force are attained at the 

same point, but that is not essential nor to be expected. In the general situation, the ratio of the 

maximum moment to the maximum transverse force (both per unit length), 

V 



defines a quantity with dimensions of length which is central in the analysis. The study is 

limited to relatively thin plates in the sense that the thickness, H^, is assumed to be small 

compared to i. Thus, 4, the core member length, will also be small compared to ^. 

The four constraints in the optimization under moment and transverse shear are face sheet 

yielding, face sheet buckling/vwinkling, core member yield, and core member buckling. In this 

study, a constraint on crushing strength is also included because sandwich plates optimized 

without this constraint tend to be susceptible to crushing. This is especially true for honeycomb 

core plates. Consider a plate subject to a uniform crushing stress cr^, as shown in Fig. 5. The 

tetragonal core member forces due to this crushing stress are  ^^a^L^cPjlH^  where 

r2 

This crushing stress adds two more strength constraints to the optimization - core 

member yielding and buckling under crushing stress. The six constraints are thus 

M ■ < (jy (face sheet yielding) 

where K = 

(face sheet buckling) 
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HjcRl       ' 
< CTj. (core member yielding) (H) 

1 < r^ (core member buckling) V3VJL, ^ it^ER^ 
H,KRI -   L; 

a^ < —f—^-7-^ (core member crushing yield) 

^c - —r i i'' ^'^^^^ member crushing buckle) 

The elastic buckling stress of the compressed face sheet is associated with a sinusoidal mode 

varying only in the compression direction with nodes at the lines where the joints of the core 

tripods are attached to the face sheets. The K factor above is used to model the rotational 

resistance of the core tripods on the face sheets at the nodes.  This factor assumes that these 



tripods are clamped at the lower (tensile) face, based on the accuracy of the equivalent 

assumption in the earlier 2D problem (see Fig. 3b). No "long wavelength" constraint is present 

due to the results of the earlier 2D problem - the other core constraints (core yield and buckling) 

size the core members such that the long wavelength modes are suppressed. These buckling 

constraints for the core members are valid for members assumed to be clamped at the face 

sheets. 

The weight per unit area and constraints are v^itten in dimensionless form using 

i = MlV and the four design variables x=^[t^/i,Rji,Hjl,dli). The normalized weight per 

unit area, W/wl, and the six dimensionless constraints involve only the parameters: Gy/E 

(taken as 0.007 in the calculations), v (taken as 1/3 in the calculations), VJ^EM, and the 

normalized crushing strength, ajoy. The solution to this optimization problem was again 

found using an IMSL subroutine. The details of the honeycomb core analysis can be found in 

the earlier study on this topic (Wicks and Hutchinson, 2001). 

4.2      Optimization with no constraint on the crushing stress 

The fully optimized (minimum weight) results for these structures in the absence of any 

constramt on crushing stress is shown in Fig. 8a. The plots are terminated at V/->fEM =0.0018, 

as larger values of v/^fEM generate plates that would not be considered thin, and thus the range 

of VI4EM for which the results have been presented comprise the foil range of relevance. The 

estunate of the face sheet buckling condition for the tetragonal truss core is more accurate than in 

the earlier study (Wicks and Hutchinson, 2001). However, there is little difference between the 

earlier results and those presented here. As before, the foil honeycomb optimization results in 

plate thickness H^ of more than 0.10^ which is unrealistically thick. Here optimal results are 

shown both for the case where Hji for the honeycomb core is constrained to be less than 0.10 

and where HJE is constrained to be identical to that of the optimal tetragonal core structure at 

the same V/^JEM. Thus, with no crushing stress, the optimal honeycomb core strucfore is the 

lighter weight design, over the entire range of transverse shear load parameter, although the 

relative advantage is not large especially when the two cores have the same thickness. 

In Fig. 8b the crushing strength of these optimal structures are plotted.   Clearly the 

optimal tetragonal core structure is far superior in this regard.   Indeed, it is seen that the 



honeycomb core is unusually vulnerable to crushing. The superiority of the tetragonal core is 

due to two effects - its inherent advantage at low densities, as illustrated in Fig. 7b and the fact 

that the optimal tetragonal core plate has somewhat higher core density than the optimized 

honeycomb core plate. 

4.3       Optimization with a crushing stress constraint 

To illustrate the effect of the crushing stress constraints, the optimization was run at a 

mid-range load combination corresponding to V/VEM = 0.001, over a range of crushing stress 

from 0 to 2% of the material yield stress, (jy. The results from this optimization are shown in 

Fig. 9. Both the minimum weight and the core relative densities are plotted. At the higher 

values of prescribed crushing stress (above about 1.4% of the material yield stress), the 

optimized tetragonal core is the lighter of the two structures. The honeycomb structure has a 

higher core density at the higher levels of crushing stress in order to counteract its inferior 

crushing resistance properties. 

For the tetragonal core structures, face member yield and buckle are active constraints 

throughout the load range plotted. At low values of crushing stress (below about 1.5% of the 

yield stress), core member buckle (jfrom the transverse loads) is an active constraint. At higher 

values of crushing stress, core member crush buckling becomes active. The core members of the 

optimized tetragonal core have H^ > V2/3L^ corresponding to members oriented closer to the 

perpendicular to the face sheet than is the case for a regular tetrahedron. This orientation 

increases both the crushing strength of the core and the ability of the core to resist face sheet 

buckling (by decreasing the wavelength of the buckle). 

The full honeycomb optimization results in plate thickness H, of more than 0.10^ over 

the low end of the loading range. This is not a thin plate and such a design would most likely not 

be considered in an application. In order to make a meaningful comparison between the plates 

with honeycomb and truss cores, Hj£ for the honeycomb was constrained to be less than 0.10 

over the entire optimization. With no crushing stress, the active constraints for the honeycomb 

plate are face yield, face buckle, and core web buckle. Above low levels of crushing stress (as 

low as 0.2% of the yield stress), the active constraints switch to face yield and core member 

crush buckling. These constraints remain active throughout the higher crushing stress levels 

shown in Fig. 9. ' ,/ " ' 



One final optimization comparison is shown in Fig. 10. In this example, the crushing stress 

is fixed at 2% of the yield stress of the material, while the V/4EM load combination varies over 

the same range previously plotted. In the presence of this crushing stress, the optimal tetragonal 

core structure is actually lighter than the optimal honeycomb core structure over the entire range 

plotted, although the difference between the weights of the two designs is small. A design 

constraint requiring a crushing strength of 2% of the base material yield stress is not 

unreasonable. Constraints for certain applications might dictate even larger crushing strengths. 

5.  Conclusions 

Truss core construction appears to be as efficient as honeycomb core construction for 

sandwich plates optimally designed to carry prescribed combinations of moment and transverse 

force when a realistic minimum crushing strength is imposed. If the constraint on the crushing 

strength is relaxed, optimized honeycomb core plates have a slight weight advantage, but their 

crushing strength is exceptionally low. By contrast, the truss core has an inherent crushing 

advantage at the low core densities typical of most sandwich plate designs. It is this advantage 

that wins the day when a design constraint on crushing strength becomes important. Given the 

very close competition between the two methods of construction from a weight perspective, the 

advantage outcome is likely to hinge on other issues such as ease of manufacture, vulnerability to 

delamination or moisture, and multi-fimctional capabilities. In each of these categories, truss 

core sandwich construction has distinct possibilities that may tilt the advantage in its favor. 
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Appendix A. Bifurcation Buckling Analysis of the Planar Truss under Pure Moment 

Figure 11 shows the unit cell for the finite difference analysis. In the j* cell, there are 

two types of nodes and four types of members. The force and displacement quantities are 

expanded in perturbation series about the pre-buckling state in the usual way i.e. 

iV^ = -P + (^^ +..., N* = P+ ^^ +..., w* = <^* +..., etc.   The six equations of perturbed 



nodal equilibrium (force balance in two directions and moment balance, at each node type) can 

then be written in matrix form: 

K,Fj = 0 

where F is a vector of the 22 force-like quantities which enter into the perturbed equilibrium 

equations. (A^*, V*, M*are the axial force, shear force, and moment respectively in the k"" 

member of the j* unit and «*, w*, 0* are the displacements and rotation of the k"' type node of the 

j* unit.) Thus, /<: is a 6 by 22 matrix. 

Treating each member as a beam-column, the force quantities are related to the 

displacement components and rotations at the ends of the members: 

where U isa. vector of the 18 displacements and rotations at the j* joints and the joints adjacent 

to these joints. B is a 22 by 18 matrix relating these quantities. These relations for a beam of 

length L with a compressive axial force P are: 

E4, 
N{0) = N{L) = -^[u{L)-u{0)] 

M(0) = - 

M{L) = 

2EI 
L 

2EI 

3C„ 
2C.o0(O) + C,o0(L) -^{w{L) - wiO)) 

2Q,e{L)+c^em - ^(w{L) - w(0)) 

v(o)=y(L)=^ 
2C 

C^{d{0) + e{L))-^(w{L)-w{0)) 

where A is the member cross-sectional area and QQ, C20, C^^, and C^ are the stability functions 

(Bleich, 1952) defined as: 

p(sinP-PcosP)     ^   _        P(l-cosF) 
»-'in — '10 

c  = 

c  = 
4(2-2cosP-PsinP)    ^^    6(2-2cosP-PsinP) 

P(P-sin P) _ PsinP 
 L  C    = 

2(2-2cosP-PsinP)    ""    12(2-2cosP-PsinP) 

where P = [PL^/EIY is the dimensionless load parameter used in the beam analysis.  These 

relations can be analytically continued to cases with tensile or zero axial load. 



Solutions are assumed of the periodic form u)=e'^'Cy, w) = e'^'C.^, etc. Displacement 

quantities are then expressed as: 

where the C„ are 6 complex constants that determine the buckling mode. The set of equilibrium 

equations can then be written: 

K,B,kD^,C„, = 0 

In order to find bifurcation solutions, the matrix K^^B-^D^ must be singular. In 

dimensionless form, this matrix is a function of the dimensionless quantities /i, Rf/L, RjL, 

and M/EL^ . Physically, these quantities are the wave-number of the periodic solution, the 

slendemess ratios of the horizontal and core members, and the dimensionless buckling moment 

(the eigenvalue of the system). 

Computations were performed to calculate the lowest eigenvalue ( M/EL^ ) for a given set 

of {fi,RjL,RjL). The determinant of the matrix is non-negatiye, dropping to zero at the 

eigenvalues and then increasing again. This is due to the fact that in this complex formulation 

the eigenvalues are double-roots. In the numerical computations, the eigenvalues were found by 

looking for zero-crossings of the derivative of the matrix determinant. 
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FIGURE CAPTIONS 

Fig. 1 Geometry ofthe two-dimensional infinite model truss. 

Fig. 2 Eigenvalue spectrum, M^{X), for R^/L = 0.05, for two core radius values (RjL = 0.02 

and/?^./L = 0.004). 

Fig. 3 Approximate analysis of the short wavelength buckling mode (a)-(c) and the border 

between the long and short wavelength buckling (d). 

Fig. 4 Weight per unit length (a) and member dimensions (b)-(d) for optimally designed two- 

dimensional truss carrying moment M and shear force V for Sy =0.007. The results for the 

truss designed to carry a pure moment M are also included for comparison. 

Fig. 5 Loading situation for panels under transverse loading (a) and crushing stress (b). 

Fig. 6 Conventions for tetragonal (a)-(b) and honeycomb (c) core structures. Transverse load 

lines are parallel to A-A'. In (b) solid core nodes are at the upper face sheet, and open nodes 

are at the lower sheet. 

Fig. 7 Table of properties of regular tetragonal and honeycomb core sandwich panels (a). 

Crushing strength of regular tetragonal and honeycomb core sandwich panels as a function of 

relative density (b). 

Fig. 8 Normalized weight per unit area of optimized tetragonal and honeycomb core sandwich 

panels subject to transverse shear and moment (a). Two cases of honeycomb panels have been 

considered: the core thickness fixed at Hj£ = 0.1; and the core thickness taken equal to that of 

the sandwich plate with truss core at the same value of v/^EM. Crushing strength of the 

optimized tetragonal and honeycomb core structures (b). The honeycomb panel resuhs are for 

the core thickness fixed at Hj£ = 0.1.  (Cy = 0.007) 

Fig. 9 Top solid lines are minimum weights for tetragonal and honeycomb core structures 

subject to crushing stress as well as normalized transverse load value v/^EM = 0.001 . Bottom 

dashed lines are the core relative densities for these optimized structures. [£y = 0.007) 

Fig. 10 Normalized weight per imit area of optimized tetragonal and honeycomb core sandwich 

panels subject to a crushing stress of a JcTy =0.02, as well as transverse shear and moment. 

Here the honeycomb core thickness has been constrained such that Hj£ < 0.1. (e^ = 0.007) 

Fig. 11 Unit cell for exact 2D finite difference buckling analysis. 
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ABSTRACT 
Theoretical studies have indicated that truss core panels with a tetragonal topology support bending and 
compression loads at lower weight than competing concepts. The goal of this study is to validate this 
prediction by implementing an experimental protocol that probes the key mechanical characteristics while 
addressing node eccentricity and structural robustness. For this purpose, panels have been fabricated from a 
beryllium-copper alloy using a rapid prototyping approach and investment casting. Measurements were 
performed on these panels in flexure, shear and compression. Numerical simulations were conducted for 
these same configurations. The measurements reveal complete consistency with the stiffness and limit load 
predictions, as well as providing a vivid illustration of asymmetric structural responses that arises because 
the bending behavior of optimized panels is dependent on truss orientation. 

1. INTRODUCTION 

Truss core panels have been identified as candidates for ultra-light structures that experience predominantly 
bending or compressive loads [1-5]. Theoretical results have explored truss core and face member 
topologies that realize the minimum weights. These preferred designs require that, in regions where the 
core experiences shear, the trusses experience only compression or tension (no bending). The octet truss 
topology has this characteristic [6]. The unit cell for the core is depicted on figure lb and the plan view on 

figure la. 

The shear stress/strain response of the octet truss core is slightly anisotropic [1,3,5], differing in the 
responses exhibited by panels of type A and B (fig 1). Type A panels are emphasized in this study. When 
such panels undergo bending, the most highly stressed trusses (A4' on fig. la) can experience either 

*schiras@princeton.edu. ph. (609)258-0844, fax (609) 258-6878 



tension or compression, depending on the sign of the imposed shear force, V. This difference results in 

asymmetries, vividly demonstrated below. At the optimum, panels made from materials having high yield 

strain (e„ = 0.007), are predicted to fail by simultaneous elastic buckling of the compressed core 

members, with yielding and wrinkling of the faces [1]. As e^ decreases, the failure modes change to 

simultaneous core yielding with yielding and wrinkling of the faces. Theoretical results reveal that the 

optimized truss core design is capable of sustaining bending and compression loads at weights at least as 
low as the lightest competing designs [1,7,8]. The truss design has the additional merit that its open micro- 

architecture allows secondary functionality, such as cooling and actuation [4,8,9]. When designed for 
minimum weight, the optimized panels (as well as honeycomb panel analogues) have relatively thin face 

sheets [1,3]. This thinness causes them to be susceptible to face penetration by sharp objects, and other 
related damage modes. Accordingly, designs with thicker faces are generally used (subject to a weight 

penalty), dictating that this study assess panels with thicker-than-optimum faces. 

The goal of the present study is to examine the capabilities of near-optimized panels, with the focus on core 

performance. The approach is to use measurements conducted on fabricated truss core panels to probe the 
mechanical performance and to correlate with the theoretical expectations. A previous study [3,5] has 

provided several insights relevant to the design of the present samples. Namely, in the earlier work, in the 
negative orientation (fig. lb), susceptible to failure by compressive yielding of core members, while the 
measured load capacities were in accordance with the analytical results, there were discrepancies in the 
stiffness. Moreover, in the converse (positive) orientation, governed by yielding of the core members in 

tension, failure occurred prematurely by rupture of the nodes, rather than by yielding, resulting in a 
disparity with the predictions. This detrimental failure mode was attributed to the relatively low ductility of 
the cast aluminum alloy [3,5], in combination with node eccentricity [10]. Accordingly, to realize the range 

of failure modes, the constituent material should have sufficient ductility to suppress premature rupture and 
the nodes must be designed to minimize eccentricity. These realizations guided the experimental study 

reported in the following sections. 

In order to correlate with the measurements, new simulations of panel performance are conducted. These 

arc based on the precise topology used in the experiments, as well as the measured stress/strain response of 
the new casting alloy. In the simulations, the full force/displacement responses of panels in bending and 

shear are predicted and these results are superposed on the measurements. 

2. EXPERIMENTAL PROTOCOL 

The underiying concept is to devise bending, shear and compression tests on panels with optimal and sub- 
optimal core configurations that probe panel load capacity, stiffness and failure mechanisms. The 

configurations to be tested arc designed with thicker-than-optimum face sheets as well as cores ranging in 
topology from optimal [1] to sub-optimal. A "gap" design was used for the nodes, wherein the intersection 
of the truss axes was located at the mid-plane of the optimized facesheet. To within I00\im, this geometry 

was used in all of the fabrication and testing. 

Ductility requirements are achieved by selecting a ductile beryllium/copper alloy which exhibits a strain-to- 
failure in excess of 20% in the as-cast state. The panels were fabricated using a rapid prototyping and 

investment casting procedure elaborated in the next section. Four fabrication restrictions have enforced 



some limitations on the panel design, (i) It has not been possible to cast truss members either having an 
aspect ratio (L^ / R J > 28 or faces having thickness, tj < 1.5mm ■ (ii) The largest panel that could be 

prototyped in the available system had a length, L< 15cm. (iii) The final samples had dimensions that 
varied from design specifications by up to 7%, despite rapid prototyping to account for an expected 1.8% 
shrinkage upon casting, (iv) Some warping of the panels during casting was unavoidable. Deviations from 
planarity are about 0.3mm over the length, L. 

The casting limitation on the truss radius, when considered in combination with the optimal truss aspect 
ratio for a chosen loading condition [(v I JEM = 0.002,(/L^ / R^)^p, = 22.4] determined the core dimensions. 

The corresponding optimal face sheet was much thinner than casting procedures could produce. 
Furthermore, due to warping, the faces could not be ground to the optimal thickness. Accordingly, all of the 
tests were performed with panels having faces up to 7 times thicker than the optimum, consistent with the 
dictates of commercial practice. For this purpose, panels were fabricated with constant face thickness, 
t. = 1.5mm, truss length, 4 = 14.01 /nm and core thickness, H, = 11.44mm, but three different truss radii: 

R =0.58,O.69,0.83tt/n. For these three radii, the relative core densities are, respectively (see equation 

A5): 2.25%, 3.24% and 4.64%. The smallest radius gave a truss aspect ratio closest to the optimum [1]. 

3. FABRICATION 

3.1 Rapid Prototyping 

Integrated face sheet and truss core sandwich panels were made by using rapid prototyping to fabricate 
ABS (acrylonitrile-butadiene-styrene) patterns, which were then used for investment casting from-a high 
thermal conductivity berryllium/copper casting alloy (Cu-2%Be). Rapid prototyping has gained wide 
interest in the design community since it provides a means of: (a) visualizing new product ideas and, (b) 
fabricating parts for functional testing. Since the basis is a computer generated three-dimensional solid 
model of the object, it provides the convenience of creating panels of optimal, near optimal and sub- 
optimal designs for performance evaluation. A slicing algorithm defines tool paths for the outer boundaries 
of each layer and the areas in which material needs to be filled. This information is downloaded to a rapid 
prototyping machine to generate the part. In this work, an extrusion-based, fused deposition modeling 
(FDM) process commercialized by Stratasys Inc., Eden Prairie, Minnesota was used [11]. 

The FDM process chosen uses ABS in filamentary form as the modeling material. The material is fed into a 
temperature-controlled heater/liquifier through counter-rotating rollers, and is then extruded through a fine 
nozzle in a semi-liquid state (fig.2). A second liquifier and nozzle system is used to extrude an easily 
dissolved material for a support structure, which can be removed upon build completion. Prior to applying 
the slicing algorithm, the part is rotated to the orientation that minimizes the support structure. The feeding 
system is contained in a head whose movement is numerically controlled in the X-Y horizontal plane. A 
constraint on the overall panel dimensions was imposed based on the space available in the rapid 
prototyping machine. 

The CAD model was built as an assembly of two face sheets and a truss core design. The panel length was 
selected to provide adequate overhang beyond the spacing of the outer load supports (21 = 148.8 mm) and 
the panel width to accommodate four cells (fig. 1). For beryllium-copper, a shrinkage allowance of 1.8% 



was added to the final pattern dimensions. After rapid prototyping, the parts were placed in a soluble 
concentrate and water solution at 70°C to dissolve the support structure. After the parts were sufficiently 
dry, a coat of clear acrylic spray was applied to fill-in gaps between the individual layers of the model. 

3.2. Investment Casting 

The ABS patterns were coated with a liquid wax and cleaned with isopropyl alcohol. Seven wax gates were 
placed in a staggered arrangement to ensure a quick molten metal feed into the two face sheets (fig. 3). 
Casting wax runners were then placed connecting the seven gates. Three vent channels were provided at the 
center and two ends of the sandwich panel to allow gases to escape from the mold during ABS bum-out 
(fig. 4). The gated patterns were dipped in a ceramic slurry containing colloidal silica (supplier. Ransom 

. and Randolph), and Zircon (ZrSi04). After allowing the slurry to drain, the patterns were then coated with a 
fine-grained Zircon. The shells were allowed to air dry at approximately 23°C for about a day and a half. A 
second dip was done in a slurry containing colloidal silica (Nyacol) and Zircon. After draining the excess 
slurry the patterns were again coated with Zircon and allowed to dry. The procedure was repeated for 2 
more layers of the second slurry mix (3rd and 4th overall layers) and medium grain fused silica. The last 
three layers (5th-7th) used the second slurry mix followed by a coarse grained fused silica in order to add 
strength to the shell. After the 7th layer had dried, the patterns were dipped one last time (referred to as the 
"seal" coat) in the second slurry mix to prevent the sand from the previous coats from falling off the shell 
and getting inside the cavity at the burnout stage. After the seal coat was dry, the tips of the vents were 
ground to allow gases to escape during the ABS burnout process. 
The ceramic shelled ABS panels were preheated to 900°C, placed in a furnace, the temperature ramped up 
to 1066°C and held for 1.5h. The hollow shell molds were removed and allowed to cool to room 
temperature for inspection of cracks. Residual ash in the shells was removed by rinsing with water and a 
high pressure air jet. The vents were plugged with a refractory cement and the shells placed back in the 
furnace and heated to -QSCC. The alloy was induction melted in a 14 kg crucible and poured in to the 

mold at 1425°C. 
When the shells had cooled after casting, the shell material was removed using a high pressure water jet 
The runner system was cut-off at the gates and ground flush with the surface of the face sheets using a two- 
stage grinding operation. 

3.3 Microstructure and Defects 

After fabrication and before testing, metallurgical sections were made at various locations in the panels. A 
random section (fig. 5) shows the dendritic structure expected for this alloy. Sections made through several 
of the nodes (fig. 6) revealed casting porosity. 

4. TEST DESIGN 

4.1 Constituent Properties 

The basic stress/strain behavior for the Cu/Be alloy has been measured in the following manner. A face 
sheet from one of the cast panels was cut away from the core and a flat coupon tensile specimen prepared. 
The reduced gage section had dimensions, 6x2x45mm. The specimen was tested in a servo-hydraulic 



machine by using friction grips, witli strain gages centered on both sides of the mid-section. The 
stress/strain curve obtained on the as-cast material is plotted on figure 7. In this condition, the material has 
a tensile ductility exceeding 20%. It has a 0.2% offset yield strength of 300MPa. The unload/reload lines 
confirm a Young's modulus, E = \30GPa. The considerable strain hardening can be captured using the 
Ramberg-Osgood formulation: 

E=a /E+aEyic/Gyf (4.1) 

The measurements afford an excellent fit to (4.1), as evident from fig.7, with: 
a'=l,N = 7A,ay = 29lMPa,ey = 2.23xl0'^. 

4.2 Three-Point Bending 

The panels were tested in three-point bending by using a procedure similar to that described elsewhere [12], 
and as depicted in figure 8. Flat-faced loading platens 16mm wide were adhesively-bonded to the faces of 
the panels. The loads were applied through lubricated rollers inset into the platens that allowed the 
specimen to rotate upon bending, with minimal friction. Strain gages were bonded to the tensile face at two 
locations. One set was attached to the face immediately opposite the inner platen. Strains were monitored 
in both 0° and 90° orientations. A second set was attached to the same face mid-way between the center 

and outer platens. The tests were performed in a servo-electric test frame. The load, load-point 
displacements and strains were measured simultaneously. 

An assessment of the expected failure mechanisms for each of the panels described in section 2 provides 
perspective prior to testing. By inserting the properties of the as-cast alloy (figure 7) into the beam theory 
formulae in the Appendix, the limit load, P^, needed to cause failure by core and face yielding can be 

estimated for each configuration, as plotted on figure 9. (Face wrinkling is another possible mechanism 
[1,13]. But, at the face thickness achievable in the fabricated panels, it always occurs at a much higher 
force than the two yielding mechanisms). Note that panels with all three core radii are predicted to fail by 
core yielding, although the largest approaches the transition from core yield to face yield. 

4.3 Shear and Compression Tests 

The configuration used to obtain shear stress/strain curves for the core is shown in figure 10. Three 
guidelines were used in the design, (i) The avoidance of significant tensile stress normal to the core to 
prevent premature rupture of the nodes, (ii) Minimization of the normal stresses induced near the ends, (iii) 
Sufficient rigidity to minimize rotation of the nodes at the face sheet. The resultant design comprised a 
static frame rigidly attached to a thick base and a moving element with the freedom to displace vertically 
but not horizontally. The parts interact through two 6cm linear bearings (circulating ball guide blocks and 
rails) that assure rigid linear motion with minimal friction. The test specimen was rigidly attached to the 
sliding component by means of holes tapped into the face. In some cases, a steel spacer was used to assure 
that the loads were aligned with the center of the sample. The load was applied in a servo-electric test 
frame. 



Since transverse displacements are induced during shear, as elaborated in section 6, a means for 
accommodation that minimizes the induced stresses was incorporated. This was achieved by embedding an 
array of pins into the face of the static frame. These were inserted into matching holes in the panel face. 
The lateral movement occurred by displacement of the holes in the plate relative to the pins. Friction was 
reduced by polishing and lubricating the contact surfaces. Samples were designed to minimize the 
development of a moment by arranging a singular row of nodes on the face sheet displacing through the 
pins. 

In order to explore the crushing characteristics, compression tests were conducted in the orientation normal 
to the panel faces by simply compressing a reduced panel (4x4cm) between large flat platens within a 
servo-electric test frame. 

4.4 Observations 

During the above bending and shear tests, a high resolution digital camera was connected to the testing 
frame in order to capture side-view images of the core, while the tests were being conducted. These images 
were used to identify the failure mechanisms and to determine the shear strains. 

5. MEASUREMENTS 

5.1 Panel Bending 

The load/displacement curves measured in bending are summarized on figure 1 la. A peak load, />^ is 

attained, at displacement, 5^, followed by softening. The panels with the two smaller truss radii fail by 

core shear (see figure l) and the softening is gradual. The panel with the largest truss radius fails \iyface 
yielding (see figure 8) and the softening occurs rapidly. All panels experience inelastic strain at small loads 
(see unload/reload lines on figure lib), with strong strain hardening prior to the load maximum. 

The variation in P   with the truss radius is indicated on figure 9. The bending stiffness, S. is ascertained 
insx " 

from the unloading compliance determined at displacements < 5^^. and plotted on figure 12. The "initial 

loading stiffness", 5,^,,.^ denoted on figure 1 lb, is about a factor 2 lower than 5g. A similar disparity arises 

in metal foams and foam core panels, because of local yielding at nodal stress concentrations [7]. 

Images of the test performed on the panel with the smallest truss radius (fig. 8) indicate that it fails by core 
shear and that the response beyond the load maximum is asymmetric. This happens because the trusses that 
experience the largest stresses are in compression on one side and in tension on the other. On the 
compression side, the trusses buckle plastically, resulting in large inelastic shear strains, causing plastic 
hinges at both the center and outer load platens. On the tensile side, the trusses stretch and sustain the load 
at essentially fixed strain, whereupon hinging only occurs at the center platen (that is, the panel remains 
straight at the outer platen). 



The corresponding images obtained on the panels with larger truss radii that fail by face yielding (fig. 8) 
indicate that, for all intents and purposes, the core remains elastic (undistorted), whereupon the plastic 
deformation is confined to the face sheet subject to tension. This face begins to neck and tear along the 
center-line at the load maximum (fig. 8d). The tear extends across the sheet as the displaceitient increases, 
but the core continues to support some shear stress, thereby inhibiting abrupt rupture of the panel. 

The output of the strain gages for the test on the panel with the smallest radius (depicted on fig. 1 la) is 
presented on figure 13a. The axial strains measured beneath the center platen have shape similar to the load 
point displacement. The unload/reload lines indicate that some face sheet yielding commences at quite 
small loads (about 2kN) and that, at the load maximum, the plastic strains in the faces are about 0.1%. The 
transverse strains at the center are consistent with a Poisson contraction of the face: with a Poisson ratio in 
the elastic range, \> = 0.25. At the mid-span location, the strain in the elastic range is half that at the center, 
as expected from beam theory. However, once the core yields (causing the face-sheet beneath the center 
load platen to become plastic), the face at the mid-span begins to unload, resulting in a compressive 
residual stress (apparent from extrapolation of the unloading lines). Note that the mid-span gage is on the 
side of the central platen Where the trusses buckle plastically, discussed next. 

The center 0° strain measured on one of the specimens that failed by face yielding is indicated on figure 

13b. The response up to the load maximum is similar to that for the other panel. At that stage, the central 
strain gage begins to unload as the tear in the face diminishes the retained load capacity. This occurs at a 
strain, e,=0.67%. 

5.2 Panel Shear 

The stress/strain responses measured in shear on specimens having the largest aspect ratio trusses are 
plotted on figure 14a. The strains were obtained from the optical images. They establish that the shear load 
capacity differs appreciably in the two orientations. That is, the limit load is lower in the negative 
orientation (defmed on the inset) wherein the most heavily stressed trusses are in compression, in contrast 
to the positive orientation that places the equivalent trusses in tension. 

The optical images indicate that, in the negative orientation, plastic buckling occurs at shear strains of 
about 2.35% (fig. 15). Conversely, in the positive orientation, the most highly stressed trusses stretch 
plastically and transfer load onto the compressed trusses. Due to a slight curvature of one of the truss 
members, plastic buckling occurred prematurely, at about 2.0% strain. Nevertheless, the truss under tension 
partially compensated for the buckling, allowing the sample to continue hardening. After testing it was 
noted that some of the trusses (about 10%) had ruptured at the nodes, presumably at locations where there 
is appreciable casting porosity (fig. 6). 

5.3 Crushing 

A simple compression test has been performed to measure the crushing characteristics of the core with the 
smallest diameter trusses. The result is plotted on figure 16. Note that the core sustains a peak stress, 
P     = 4.SMPa and then gradually softens. The optical images reveal that the trusses exhibit plastic 

buckling at the load maximum. 



6. SIMULATIONS 

Two simulations have been carried out to provide a direct comparison with the tests: (1) the isolated triad 
loaded by a shear force, and (2) the plate with the truss core loaded in three-point bending. In the plate 
simulation, a Timoshenko-type theory is developed in which the shearing behavior computed for the triad 
is used to specify the core stress-strain behavior. Details of the simulations are described below. 

6.1 Shear Loading of an Isolated Triad 

The triad unit of the octet truss core is depicted in figure lb, along with the two directions of shear force, 
F ■ The test fixture is expected to exert some force perpendicular to the direction of the shear force due to 

frictional sliding. This component is modeled by /; = fi^ where p, is the coefficient of friction, and the 

sense of F is opposite to the direction of sliding. The joints are modeled as pinned such that bending of 

the members is ignored in computing the relation between F^ and u. This approximation is standard in 

truss analysis and fully justified because the stretching forces parallel to the members completely dominate 
the forces generated by bending prior to buckling. The two equations of equilibrium in the current 
configuration are 

2FrtJy+Ffl=±\iF, 

where /?, and F, are the forces in the X and Y members and flie sign of the friction force must be 
consistent with the sliding direction. The strains in the members are computed exactly from the relation 
between their change in length and the two displacement components, u and v, of the top joint relative to 
the bottom face of the fixture. The stress in a member, <s = F I (ic/?/). is related to the strain by (4.1). 

Member Y is compressed for loading in the negative orientation, and will buckle when Fg attains 

the plastic buckling load. This member is taken to be clamped at each end such that the critical stress at the 
onset of plastic buckling is given by, a„, = -K^E,(R/ if, where E, is the tangent modulus of the stress- 

strain curve (4.1). A post-buckling analysis has not been carried out. For plate simulation, the shear force, 
F, is taken to be constant after buckling, ignoring the post-buckling fall-off. Plots of the normalized shear 

force calculated as a function of the overall shear strain, y = M / //^, are shown in figure 17 for a frictionless 

loading fixture and for |a = 0.2. The asymmetry associated with loading in the positive and negative 
orientations is apparent. The influence of friction is relatively small. These calculated results have been 
superposed on the measurements in figure 14b. The comparison will be discussed below. 

6.2 Three-point Bending of a Sandwich Plate with the Octet Truss Core 

To appropriately simulate the load/deflection response in bending, note that the contribution of the shear 
stiffness of the core must be taken into account in predicting elastic deflections. Moreover, once the core 
yields, the non-linearity of the load/deflection response becomes compounded by the asymmetry 



attributable to plastic buckling of core members on the right side of the beam. A Timoshenko-type plate 
theory that fully accounts for these aspects of core shear is introduced. The model is restricted to loads 
wherein the face sheets remain elastic. Conventions related to the theory are shown in figure 18. The 
displacement components of the center-line are denoted by [ u(x), w{x) ], and the core shear relating the 

displacement of the top face sheet (+) relative to the lower sheet (-) is y(x). The stretching strains in the 

top and bottom sheets are 

e, = M'+a)7/,/2,  e. =«'-co'//,/2 (6.2) 

where (o =y -w' and {)' =■ dQ /dx. The average stresses in the elastic face sheets are, o^ = Ee^ and 

{j  =£e_,with£ = £/(l-v^). The bending moments carried by the individual sheets are 

M =M = (S ' /12)v'. The contribution from the truss core to the net in-plane force per unit length, 

N, is neglected: whereupon, N = a^t^ + <3Jf = 0 and thus: a^ = -0_ = a • It follows immediately from 

(6.2) that M' = 0. 

The net moment carried by the plate (again neglecting the very small contribution of the core) is 

M = M^ -I- M. -aH^tf = (Et/1 (>)w'-EtfH^(ii' / 2 (6.3) 

Denote the nonlinear shear stress-strain behavior of the truss core by S(y), taken directly from the force- 

displacement relation of the triad, Ffy), in figure 17 by dividing the force by the area of the unit triad cell, 

S = F I {J3L ^ / 2). Equilibrium of the face sheets requires 

r^a' = S(Y) (6-4) 

The overall equilibrium equations are the standard for any beam theory, 

V'=p(x), M'=-V (6.5) 

The distributed lateral load per unit length vanishes: p = 0. The three-point bend problem is statically 

determinant such that 

M=Moix) = Q -i-M<x<-i 

=Pi{\ + xll^l2 -E<x<0 

=Pi{\-xli)ll Q<x<t 

= 0 i<x<i+M 

(6.6) 

where the length of the overhang is denoted by M and the loads are idealized as point forces applied at the 
center of the loading platens. 



The two ordinary differential equations governing co(x) and wix) (with y = 0) + w') are thus 

6 2 (6.7) 

Continuity across the points of application of the concentrated loads requires that all of w, w', \i and \i' 

be continuous: the latter two ensuring that y and a are also continuous. The jump conditions at the 

concentrated loads are satisfied because the two equations in (6.7) are based on the statically determinant 
distribution. The boundary conditions are w =0 at jc = ±^ and (B'= 0 at j: = i(^+ AQ: the second of 

these ensures that a = 0 at the free ends. The conditions that M and V vanish at the ends follow directly 
from (6.7). The equations in (6.7) can be put in non-dimensional form by letting z= xl t,(^d{) Idz 

and  w =w I f. such that 

w-XHJtff(a'=6Ma{x) 

0)"=25(00+ w) 
(6.8) 

where Afo =Mo /S/ and s =£^3/Et^H^- A parameterized function, 5(Y), was chosen to fit the 

_computedcun'.es.forthejrMinfijure„ for.Y.>Q). .Becausethe  

computed prediction for the triad in figure 17 slightly underestimates the experimentally measured 
maximum load (fig. 14), the value of 5 associated with onset of buckling in the present simulation was 
chosen consistent with ^ / (nRj^a y) = 1, in better accord with the experimental value. 

The system of equations (6.8) has been solved for the specific parameters associated with the three-point 
bend test in figure 8. This specimen has i^ = 0.575mm, and the overhang was taken as 20 mm. At each 

load P the system (6.8) is solved using standard numerical techniques for ordinary differential equations 
with Newton iteration to deal with the non-linearity due to 5(y )• 

The plot of load against maximum downward displacement is shown in figure 19. Prior to the onset of 
buckling in the core, the deflection of the beam is symmetric with respect to its center. However, once 
buckling starts on the right side of the beam, that side has less incremental stiffness and there is a tendency 
for slightly larger deflection than on the left, as has also been observed in the test (fig. 8). The deflection in 
the overhang on the right is also affected because it resists shearing displacements at that end of the beam. 
The beam deflection shortly before and after the onset of buckling is shown in figure 20. 

7. INTERPRETATION 

7.1. Analytical 
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The stress/strain response for the alloy (fig. 7) is used as input to the formulae in the Appendix in order to 
predict properties that can be compared with the measured values. The bending stiffness, Sg, is determined 

by evaluating the shear modulus of the core, <f, from (A5) and inserting into the Timoshenko beam theory 
result (A9). The measured stiffness values exceed these predictions (fig. 12), again exposing the limitations 
of this version of beam theory [12]. 

Assessment of the limit load, P^^ is performed in the following manner. When the failure occurs by core 

shear, the contribution of the core to P^^^ is obtained by evaluating x^ from (A6), upon equating Cy" to 

the stress for plastic buckling, a (A8), upon assuming fully-damped end conditions. To determine the 

contribution of face yielding, the strain at which the load attains the maximum (fig. 13) is superposed on 
the stress/strain curve (fig. 7) and the associated flow stress taken asaf^'. With these specifications 

fora"" and of", the load maximum may be estimated from (AlO), with and without hinges. The load 

maxima calculated in this way are compared with the measured values, both in table I and on figure 9 
(using averages from table I). The corresponding results for failure by face yielding are determined from 
(All) upon using the same procedure for determining a^'^'. The correspondence is seen to be quite good. 

The most significant discrepancy occurs for the largest diameter truss in the sense that, whereas core 
yielding is the expected failure mode, it actually fails by face yielding at a smaller load than predicted. 

The maximum stress needed to crush the core is obtained by again using the stress for plastic buckling 
o   (A7), determined for the same end conditions, and inserting into the result for the compressive strength 

(A7) for the appropriate relative density. This predicts a peak stress, P^^^ = 4.3MPa, somewhat smaller 

than the measured value, P^^^ =4.8MPa (fig. 16). 

The shear results are assessed using (A5) governing the shear modulus and (A6) dictating the shear 
strength, with (A8) as the effective inelastic strength, a"", in the negative orientation. The modulus is 

ascertained from performing a curve fit on the load curve and using the linear coefficient. The comparison 
is summarized on table I. Note that the measured shear modulus is entirely consistent with (A5). Moreover, 
the shear yield strength measured in the negative orientation is similar to that predicted by (A6). In the 
positive orientation, (A6) underestimates the measured strength when the offset yield strength is used for 
a"", because the strain hardening is not included. The correspondence is much improved when the 

hardening is introduced, as elaborated in the next section. 

7.2. Comparison with Numerical Simulations 

The comparison between the measured and calculated shear response for the core is presented on figure 14. 
The shear modulus ascertained from the unloading measurements is in close agreement with the calculated 
level. Moreover, the maximum shear forces, as well as the (positive/negative orientation) asymmetry found 
in the experiments, are accurately duplicated in the calculations. The only disparity is the lower strain 
hardening obtained in the measurements relative to the calculations. The origin is uncertain, but is 
tentatively attributed to the difficulty in preventing some rotation at the nodes in the present experimental 
arrangement (fig. 10). 

A comparison between the simulated load/deflection behavior in bending with the curve measured for the 
same panel is presented on figure 19. The simulation slightly underestimates the stiffness, but appreciably 
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underestimates the strength until the deflection becomes large (8-10mm). This discrepency is attributed to 
the significant lateral constraint exerted by the supports during bending. While this constraint does not 
affect results in the linear range, as deflections grow, a stretching force develops in the lower face sheet that 
is not accounted for in the analysis. Note that the present model has not incorporated the fall-off in core 
shear expected after buckling is well under way, and therefore does not predict the decline in load at large 

deflections. 

8. CONCLUSION 

The present series of experiments validates the performance of tmss core panels with tetrahedral 
coordination, in near-optimum designs. The creation of a "gap node" design, through a rapid prototyping 
approach, followed by investment casting, has been a critical element in demonstrating the full potential of 
the truss core panel. This node design has enabled the stiffness to attain expected levels and has suppressed 
undesirable failure modes [3]. 

Choosing an alloy that has high ductility when tested in uniaxial tension (greater than about 20%) appears 
to be necessary if the panel is to achieve its full load carrying potential. This ductility requirement appears 
to be related to the development of high hydrostatic stress concentrations near the nodes and the presence 
of casting porosity in the same vicinity. This finding highlights the challenges in manufacturing high 
performance panels by casting and points toward alternate approaches based on wrought materials, such as 
woven systems [14]. 

The present study has highlighted the substantial differences that arise in the responses of trusses that  
experi^ncetension relative to ttiose in compression. The trusses in tension continue to strain harden beyond 
yield, such that the load capacity of a panel increases as it shears. Conversely, the trusses in compression 
exhibit buckling after a small plastic strain, limiting the load capacity. This effect has been most vividly 
illustrated on panels tested in bending. In such tests, the panel response is asymmetric despite the fact that 
the trusses yield in the same manner on both sides. 

APPENDIX 

Analytical Results For Truss Cores and Panels [1,3,5,7,13] 

(i) Basic Characteristics 

For the type A panels (fig. la), upon application of a shear force, V, the trusses designated AA' experience 
the largest axial stresses, given by [1,3]: 

a=±^ (AD 
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where d = JL] - H^, with ^ the truss length, R^ its radius and H^ the core thickness. The positive and 

negative orientations are depicted on figures lb and 14. The transverse shear stiffness in this orientation is 

[1,3]: 

5=!E^ (A2) 

The stress in the faces is: 

a, = ±  (A3) 

where M is the bending moment {M=iV, where £ is the span). 

(ii) Core Properties 

The preceding'results can be used to determine the response of the core, upon relating its dimensions to the 
relative density, p^^^, using [3], 

The transverse shear modulus of the panel, G^ is obtained from (A2) and (A4) as [3]: 

^ (A5) 

The shear yield strength of the core, Ty, is obtained upon equating the stresses in the truss (Al) to the yield 

condition for the trusses {0^=0'^^') [3]: 

^c ,„core_(Hc']- (A6) 

The corresponding compressive strength, Oy, is [3]: 

-'core 

_.c I-core _ ^Hcf- (A7) 

For cases wherein the most highly stressed trusses are compressed and buckle plastically, a"" becomes 

the collapse stress, a ^, given by the implicit formula [3]: 
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2L   '   ' 

^o   ^ 
+aN 

v^i-y 
°-"' I (A8) 

where k is a measure of the rotational stiffness of the nodes (it ranges between 1 and 2), with a, A^, e y 
determined from the Ramberg-Osgood expression for the stress/strain curve (4.1). 

(Hi) Panel Properties 

The results for the core can be used to determine the bending properties of panels. The bending stiffness, 
5g, is given by [7,13]: 

1 _     2£^ H,£ (A9) 
SB    C^bEtJP'^C^bc^ 

where b is the panel width, c=H^ +tj, and, for three-point bending, C, = 48 and Q = 4. Substituting C" 

from (A5) into (A9) gives S,. 

The limit load P (V 12) depends on whether the panel fails by face yielding or core shear. When core 

shear predominates, the response at the outer.supports has an important influence. If plastic hinges develop, 
such that the overhang does not contribute to that portion of the load carried by the core, then [7]: 

The first term is the contribution from the plastic hinges formed in the faces and the second due to shear 
yielding of the truss core. Substituting T^ from (A6) into (A 10a) predicts the limit load. Absent hinges at 

the supports, the corresponding result is [7]: 

where H^^^^ is the overhang (see figure 3). 

When the panel fails by/ace yielding, the limit load is [7]: 

^face     4btf{c + tf)cyf""     bM (All) 
'max 

with a y obtained from (A7). 
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HGURE CAPTIONS 

Figure 1.   (a) A plan view of the panel with the octet truss core showing the two basic orientations, A and 

B. In this study only orientation A has been tested, 

(b) A schematic of the tetrahedral unit characterizing the core, with the notation used in the 

analysis incorporated. 

Figure 2. Schematic of the fused deposition modeling process. 

Figure 3. Attachment of wax runners and bum out vents prior to ceramic shelling process. 

Figure 4. Molten metal is poured into the ceramic shell after the ABS burnout process. 

Figure 5. As cast microstructure of Cu-2%Be. 

Figure 6.   (a) Cross-section through face sheet and a node. 

(b) defects at node - face sheet intersection. 

(c) casting porosity in face sheet. 

Figure 7. The tensile stress/strain response of the as-cast material, showing the Ramberg-Osgood fit. The 

unload/reload lines indicate a Young's modulus, E =I30GPa. 

Figure 8.  (a) Optical image of the side of one of the panels, truss core radius, R^ = 0.65mm, located in the 

bending fixture, showing the loading scheme. 

(b) Image of the same panel after testing 

showing the asymmetry of the displacements that occur upon testing. Plastic hinges are 

apparent at the inner platen as well as at the outer platen on the side that experiences large 

core shear strains (but not on the other side). 

(c) Image of a panel with larger trusses, R^ = 0.825m/n, that fails by face yielding. 

(d) Note the tear that has extended along the width at the center line of the face in tension. 
Figur¥9rThelimit loadspredicted as a fiinc^^^    of the truss radius, llie measured values are also shown for 

comparison. For the calculations, the core yield strength was taken to be the average value of the 

plastic bucklmg stress calculated using (A8) for the three geometries tested. The face sheet yield 

strength has been represented by the Ramberg-Osgood fit. 

Figure 10. The configuration used to determine the shear stress/strain response for the truss cores. 

Figure 11. (a) The load/deflection responses measured on the panels with the three truss radii. 

. (b) The result for the panel having the smallest truss core radius highlighting the existence of a 

load maximum, followed by softening, as well as the difference between the unloading 

stiffness and the initial loading stiffness. 
Figure 12. The effects of truss radius on the bending stiffness. Results expected from beam theory are . 

shown for comparison, as elaborated in the text. 

Figure 13. The face layer strains as a function of bending load 
(a) The panel having the smallest truss radius that fails by plastic buckling of the core. The mid- 

span gage is located on the side that experiences plastic buckling. 

(b) The panel with the largest truss that fails by face yielding. 

Figure 14. (a)The shear stress/strain curves for the panels measured in the tvyo principal orientations 

indicated on the insets conducted on panels having the smallest truss radius. Note the 

substantially larger limit load obtained for the positive orientation defined on the inset 

(most highly stressed trusses in tension). The strains were determined from the optical 

images, 
(b) The corresponding dependence of the shear force on the displacement relative to the core 

thickness, with the results calculated numerically superposed. 
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Figure 15. Optical images of the trusses after shear testing. 

(a) Positive orientation. 

(b) Negative orientation. 
Figure 16. The stress/strain response of the core measured in compression. 

Figure 17. The shear force/deflection response calculated for the core showing the asymmetry (refer to fig. 

14) and the effect of a friction coefficient (\i) operating at the loading fixture. 

Figure 18. The stresses and bending moments used for the analysis of the load/deflection response of the 

panel in bending. 
Figure 19. The simulated load/deflection response in bending for the beam having the smallest truss 

diameter with the measured curve taken from figure 1 la superposed. 

Figure 20. The calculated deflections of the panel in bending, presented at two of the load levels from 

figure 19. 
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(mm) 

Predicted Limit Load 

due to Core Shear (MPa) 

Predicted Limit Load 

due to 

Face Yieldinq (MPa) 

Measured 

Limit Load (MPa) 

Calculated 

Shear Modulus 

(MPa) 

Measured 

Shear Modulus (MPa) 

Truss Radius With Hinqes Without Hinqes Positive           Neqative 

0.58 3280 3480 7110 3870 323 337                     323 

0.69 4790 5200 8970 4680 

0.83 6810 7630 9680 7260 

Table 1 

Truss.Chiras.Tablel 
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