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Abstract-This paper evaluates the accuracy of the pulse transit 
time method for determining diastolic blood pressure using 
intra-arterial blood pressure as a reference. First, the paper 
describes the method. Then it discusses two sets of 
measurements which were carried out to determine the 
accuracy of the method with cardiac operated patients and 
healthy young volunteers. The thus obtained accuracies were 
+0.7 mmHg ± 10.7 mmHg for the cardiac patients and -6.6 
mmHg ± 10.5 mmHg for the young volunteers, respectively. 
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I. INTRODUCTION 

 
In 1998, we introduced a noninvasive electronic palpation 

method for measuring blood pressure [1]. In this method, a 
cuff is attached over the brachial artery and a multi-element 
transducer array is employed to sense pulsations in the radial 
artery. Diastolic blood pressure is defined as the point where 
the blood pressure pulse amplitude starts to decrease, while 
systolic blood pressure is defined as the last pulse detected. 

To test the method, measurements were carried out on 
healthy volunteers and some cardiac patients. With the 
healthy volunteers, the achieved accuracy was �0.8 mmHg ± 
4.6 mmHg for diastolic and �1.5 mmHg ± 5.0 mmHg for 
systolic blood pressure. The measurements were made during 
cuff inflation, as it provides more stable readings than 
deflation.  

As mentioned previously, blood pressure was determined 
on the basis of changes in pressure pulsation amplitude. 
Blood pressure amplitude is slightly higher in the radial 
artery than in the brachial artery, due to reflections from the 
peripheral arteries and arterioles. The amplitude discrepancy 
varies depending on individual vascular properties 
(vasoconstriction/vasodilation), thereby complicating the 
determination of diastolic blood pressure. 

However, cuff pressure affects not only amplitude, but 
also transit time. As the increasing cuff pressure level 
approaches the pressure in the brachial artery, the pulse 
transit time from the aorta to the radial artery is 
correspondingly delayed. This effect is illustrated by Fig. 1. 
In the ideal model, the time elapses continue to rise until the 
systolic pressure level is achieved. Thus, the maximum 
transit time change equals the time a blood pressure pulse 

takes from the diastolic to the systolic pressure point, i.e., 
from the bottom to the top level  

This method has been reported in papers published by 
�antić, �aban and Lacković [2, 3] and Kerola, Kontra and 
Sepponen [4]. The first two papers deal with diastolic blood 
pressure determination in a finger, while the third paper 
describes both diastolic and systolic blood pressure 
measurements in the brachial artery. The main problem in 
finger measurements is that blood pressure in a finger is not 
identical to that in the brachial artery, which is the standard 
measuring point. The third study [4], on the other hand, is 
impaired by the fact that the distance between the two sensors 
under the cuff was short. Thus, when cuff pressure exceeds 
diastolic pressure, thumbing blood volume on the upper side 
of the cuff results in rocking, which may lead to noisy sensor 
signals. 
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Fig. 1. Time elapses caused by cuff pressure exceeding 

diastolic arterial pressure. 
 

In the electronic palpation method, a transducer is 
positioned on the radial artery at some distance from the cuff. 
Consequently, the sensor records only pulsations in the 
artery. 

 
II. METHODOLOGY 

 
A set of measurements was carried out in the intensive care 

unit at the Oulu University Hospital during the winter 
1998/99. The test subjects were patients who had undergone 
cardiac surgery (either bypass or valve operation, or both) 
during the day the measurements were made. The study was 
approved by the Ethical Committee of the University of Oulu. 
It was presumed that most of the patients suffered from 
atherosclerosis. 

A laptop PC with a National Instruments data acquisition 
card (DAQCardTM 700) was used to acquire signals produced 
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by a DATEXTM patient monitoring system and a blood 
pressure measurement device. The device consists of a 
standard 13 cm cuff, a wristwatch-type four-channel pressure 
transducer array, an amplifier/connection unit, an automatic 
pressure controlling unit and a microprocessor unit for 
determining blood pressure. Signals were sampled at 100 Hz. 
The transducer array was based on electro thermo mechanical 
film [5, 6], and was specifically designed to detect radial 
artery pulsations. Signals produced by the transducer were 
amplified and band-pass filtered. Cuff pressure signals were 
amplified and band-pass filtered by an amplifier unit. 

A connection from the DATEXTM device gave an ECG 
signal and the patients' radial and pulmonary artery blood 
pressure. The automatic pressure-controlling unit started cuff 
pressure inflation and telemetrically sent pressure data to the 
processor unit. 

The medical staff of the hospital department contributed to 
the measurements. The patients (totaling 51) were measured 2 
- 5 times depending on their artifacts and post-operational 
shivering. All told, 152 measurements qualified for later 
analysis. Most patients were measured in the afternoon shortly 
after their operation and again in the morning, when they were 
awake and less affected by medication.  

Fig. 2 presents the original and filtered pulse transit time, 
intra-arterial blood pressure (IAP), cuff pressure, the 
electronically palpated signal and the ECG signal as a 
function of time in a typical measurement. The pulse transit 
time was measured from the ECG�s R-spike to the top of the 
electronically palpated pulse. This particular patient seems to 
have arrhythmia, and, because of that, oscillometric blood 
pressure methods may give erroneous results. The figure 
shows that a large variation in pulse amplitude has a 

negligible influence on pulse transit time. However, owing to 
weak sampling resolution (10 ms), the transit time signal must 
be filtered before further analysis. For this purpose, five point 
moving median filtering followed by five point moving 
average filtering were found to be adequate (the upper curve 
in Fig. 2). 

Diastolic pressure can be defined as the point where the 
pulse transit time begins to increase. This turning point can 
be accurately determined by using �triangle conversion�. In 
this method, all time values are recalculated in order to get an 
isosceles triangle, and line fitting is used to get the accurate 
turning point.  

Firstly, time values have to be inverted to obtain 
decreasing time values. Then, the equation used in the 
method based on decreasing palpation amplitude (the second 
signal from the bottom in Fig. 2) is applied to obtain new 
values: 
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where Tnew(i) is a new time value for index (i), Told(i) the 

old time value for index (i) and (n) is the index value for the 
last measured pulse. This triangle is not yet isosceles, so it 
has to be truncated and converted. Three successive 
conversions are sufficient for an accurate determination of 
diastolic pressure. Fig. 3 presents these three triangles, with 
the third triangle and line fittings printed in a thick line. The 
corresponding diastolic blood pressure is marked with a black 
square on the cuff pressure curve. Systolic pressure is 
determined by the last pulse detected (the black circle).  
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Fig. 2. From top to bottom: original and filtered pulse transit time, intra-arterial blood pressure and cuff pressure, 

electronically palpated signal on the radial artery and ECG signal. 
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The figure shows that if the triangle is not isosceles, the 
crossing point of the line fittings will shift the determined 
diastolic pressure slightly to a higher or a lower level.  

Because the method records not only ECG, but also intra-
arterial blood pressure, the transit time turning point can be 

measured from the diastolic point in the intra-arterial pressure 
wave to the top of the electronically palpated signal. In fact, 
diastolic blood pressure can be measured with a noninvasive 
transducer array on the radial artery in both wrists and the 
cuff on one arm.  
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Fig. 3. Three triangle conversions for the transit times shown in the previous figure and line fittings for the isosceles 

triangle. 
 

III. RESULTS 
 

Firstly, blood pressure values from the electrically 
palpated signal's (second signal from the bottom in Fig. 2) 
amplitude were determined using the triangle conversion 
method described above. On average, the method offered an 
accuracy of +4.4 mmHg ± 13.2 mmHg for systolic and an 
accuracy of +10.0 mmHg ± 15.9 mmHg for diastolic blood 
pressure. The figures clearly overestimate both pressures for 
the seriously ill patient group. 

The transit time method (using the diastolic point of IAP 
as a reference) achieved a better accuracy: the mean error for 
systolic blood pressure was +0.8 mmHg ± 9.4 mmHg. 
Relative to the electric palpation method, the figure is about 9 
mmHg smaller. Also the standard deviation is much smaller, 
because variations in pressure amplitude do not have a great 
effect on transit time. 

Fig. 4 presents these diastolic pressures as a function of 
intra-arterial pressure (IAP). The correlation coefficient R of 
these pressures is 0.68, and the line fitting coefficient 
(obtained by using the least square sum method) and constant 
are 0.89 and 7.4, respectively. These values are credible for 

old, seriously ill cardiac patients (66 years in average), who 
are assumed to have atherosclerosis.  

y = 0.89x + 7.4
R2 = 0.46
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Fig. 4. Diastolic blood pressure measured by the pulse 

transit time method as a function of intra-arterial blood 
pressure (using the diastolic point of IAP as a timing 

reference). 
 
In the measurement set conducted on healthy volunteers 

[1], the amplitude method produced a mean error and 
standard deviation of �0.8 mmHg ± 4.6 mmHg for diastolic 
blood pressure. The transit time method, on the other hand, 
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fared worse: the error was -6.6 mmHg ± 10.5 mmHg. The 
result attests that the transit time method underestimates 
diastolic blood pressure. The explanation is that the transit 
time starts to be delayed even before cuff pressure reaches 
the diastolic level. 

When using the R-spike of ECG signals as a timing 
reference, the average transit time without pressure in the 
cuff was 183 ms ± 33 ms. As cuff pressure increased, the 
maximal transit time change was 101ms ± 34 ms, on average. 
The rising time (10%�90%) for a blood pressure wave was 
80 ms ± 15 ms, which constitutes approximately 80% of the 
transit time change. The obtained accuracy in the 
measurements was +0.7 mmHg ± 10.7 mmHg. At these 
pressures, the correlation coefficient R was 0.66, and the line 
fitting coefficient and constant were 0.98 and 2.2, 
respectively. The diastolic pressure data points are presented 
in Fig. 5. 
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Fig. 5. Diastolic blood pressure obtained by the pulse 

transit time method as a function of intra-arterial blood 
pressure (using the R-spike as a timing reference). 

 
With the cardiac operated patient group, the mean error 

was found to vary with the patients' obesity level and arm 
circumference. Consequently, both factors are assumed to 
have an effect on accuracy. Figs. 6 and 7 present these errors 
as a function of arm circumference and body mass index. As 
can be seen, diastolic pressure errors are independent of these 
parameters. 
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Fig. 6. Diastolic blood pressure errors as a function of arm 

circumference. 
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Fig. 7. Diastolic blood pressure errors as a function of 

body mass index. 
 

 
IV. CONCLUSION 

 
Diastolic pressure can be determined by the point when 

the transit time start to increase. The R-spike of ECG signals 
or the diastolic point in the other radial artery can be used as 
a time reference. Both methods give better accuracy than 
methods based on amplitude change. Diastolic pressure errors 
are not strongly dependent on arm circumference and body 
mass index. 
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