
Abstract- The arterial baroreflex system may be divided into
the mechano-neural arc from pressure input to sympathetic
nerve activity (SNA) and the neuro-mechanical arc from
SNA to arterial pressure (AP). We explored a new strategy
to estimate total baroreflex gain (Gbaro) using an equilibrium
diagram between the mechano-neural and neuro-
mechanical arcs. In 8 anesthetized rabbits, a neck suction
procedure (NS) was simulated by shifting isolated carotid
sinus pressure above AP by 30 mmHg. NS shifted the
mechano-neural arc alone, yielding the slope of the neuro-
mehcnaical arc around the operating point. A lower body
negative pressure procedure (LBNP) was simulated by 5-
ml/kg hemorrhage. LBNP shifted the neuro-mechanical arc
alone, yielding the slope of the mechano-neural arc around
the operating point. By multiplying the slopes of the neuro-
mechanical and mechano-neural arcs, we obtained Gbaro

under baroreflex closed-loop conditions. We also estimated
Gbaro from the relationship between isolated carotid sinus
pressure and AP under baroreflex open-loop conditions.
Gbaro estimated by the equilibrium diagram matched
reasonably well with that estimated by the open-loop
method (y=1.06x−0.09, r2=0.96, SEE=0.15). In conclusion,
Gbaro could be estimated using the equilibrium diagram
without opening the baroreflex negative feedback loop
when data obtained from NS and LBNP were combined in a
given subject.
Keywords-  open-loop analysis, closed-loop analysis

I. INTRODUCTION

Estimation of open-loop baroreflex gain (Gbaro) in terms
of pressure output relative to pressure input is essential for
evaluating the total buffering effect of the arterial baroreflex.
Although estimation of Gbaro based on the open-loop systems
analysis is theoretically straightforward, it has a practical

drawback that an isolation technique of the baroreceptor
regions is not applicable to clinical settings. Accordingly,
baroreflex sensitivity (BRS) of heart rate is widely used as
the substitute for Gbaro in clinical settings. Although BRS has
shown to be of clinical importance, information on BRS
alone is not sufficient for thorough characterization of the
arterial baroreflex system as a negative feedback system. As
an example, the extent of attenuation of exogenous
disturbance by the arterial baroreflex could not be assessed
by BRS. In contrast, the extent of the attenuation is
calculated to be 1/(1+Gbaro) if Gbaro is specified. The aim of
the present study was to develop a new strategy to estimate
Gbaro without opening baroreflex negative feedback loop. To
achieve this, we applied the framework of equilibrium
diagram analysis between sympathetic nerve activity (SNA)
and arterial pressure (AP) [1, 2] to the data obtained from
animal models for neck suction (NS) [3] and lower body
negative pressure (LBNP).

II. THEORETICAL CONSIDERATION

The arterial baroreflex system may be divided into two
principal arcs: a mechano-neural arc representing the
relationship between AP input and SNA output, and a neuro-
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Fig. 1. Closed-loop operation of the circulatory system.
Arterial pressure (AP) alters sympathetic nerve activity
(SNA) via the mechano-neural arc, whereas SNA in turn
affects AP via the neuro-mechanical arc.
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mechanical arc representing the relationship between SNA
input and AP output (Fig. 1). Changes in AP alter SNA via
the mechano-neural arc, whereas changes in SNA, in turn,
affect AP. AP is maintained against exogenous perturbation
by this closed-loop negative feedback of the arterial
baroreflex system.

With respect to the static characteristics of the two arcs,
we can construct an equilibrium diagram for the two arcs as
shown in Figure 2. The intersection between the two arcs
gives an operating point of the arterial baroreflex [1, 2]. In
the equilibrium diagram, Gbaro around the operating point can
be calculated by multiplying the slope of the neuro-
mechanical arc (∠NM) and that of the mechano-neural arc
(∠MN). Estimation of Gbaro using the equilibrium diagram is
comprised of the following steps.

First, suppose that NS is applied to test the circulatory
system. Since NS increases effective pressure to the carotid
sinus baroreceptors, SNA at a given AP decreases, thereby
shifting the mechano-neural arc leftward. Because the neuro-
mechanical arc is unaffected by NS, the operating point
moves from point "a" to point "b" during NS (Fig. 2). ∠NM
is then estimated by the slope of a line "a-b" relative to the
horizontal axis.

Second, suppose that LBNP is applied to test the
circulatory system. Since LBNP causes the redistribution of
blood volume toward the lower body, AP at a given SNA
decreases during LBNP. Thus, the neuro-mechanical arc
shifts downward during LBNP, whereas the mechano-neural
arc remains unchanged. The operating point would move
from point "a" to point "c" during LBNP (Fig. 2). ∠MN is

then estimated by the slope of a line "a-c" relative to the
vertical axis.

Finally, Gbaro is calculated by multiplying ∠NM by ∠MN.

III. METHODS

In order to validate the strategy described in the previous
section, we performed an animal experiment as follows.
Eight Japanese white rabbits were anesthetized via
intravenous injection (2 ml/kg) of a mixture of urethane (250
mg/ml) and α-chloralose (40 mg/kg). Bilateral carotid
sinuses were isolated from the systemic circulation and
intracarotid sinus pressure (CSP) was servo-controlled.
Bilateral vagi and aortic depressor nerves were sectioned to
eliminate the effects of cardiopulmonary and aortic arch
baroreflexes. The stainless steel wire electrodes were
attached to the left cardiac sympathetic nerve to record SNA.
CSP, SNA, and AP data were digitized at 200 Hz and stored
on the hard disk of a dedicated laboratory computer system
for later analyses.

Protocol 1 (open-loop protocol). CSP was changed
stepwise from 60 to 140 mmHg with an increment of 20
mmHg. Each pressure step was maintained for 60 s, and the
AP response was measured by averaging the last 10-s data
during each pressure step. Gbaro around the operating point
was estimated from the least-squared fit of a logistic
function to the CSP-AP data pairs [4].

Protocol 2 (NS model protocol). CSP was adjusted to AP
in order to close the baroreflex negative feedback loop. After
the steady state of AP was reached, CSP was raised above
AP by 30 mmHg for 60 s to mimic NS (positive CSP
deviation) [3]. CSP was also dropped below AP by 30
mmHg for 60 s to mimic positive pressure around the neck
(negative CSP deviation). ∠NM around the operating point
was calculated from the slope of linear regression for the
SNA-AP data pairs obtained before and during the CSP
deviations.

Protocol 3 (LBNP model protocol). CSP was adjusted to
AP in order to close the baroreflex negative feedback loop.
After the steady state of AP was obtained, hemorrhage of 5
ml/kg was performed to mimic LBNP. AP-SNA data pair
was obtained 60-s after the completion of the hemorrhage.
The blood was then restored. ∠MN around the operating
point was calculated from the slope of linear regression for
the CSP (and thus AP) and SNA data pairs obtained before,
during, and after the hemorrhage.

After estimating ∠NM and ∠MN in Protocols 2 and 3,
Gbaro around the operating point was calculated from
∠NM×∠MN. To expand the range of Gbaro to be tested, the
three protocols were repeated using unilateral CSP input.
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Fig. 2. Equilibrium diagram between sympathetic nerve
activity (SNA) and arterial pressure (AP). Thick curves
indicate normal equilibrium. a: normal operating point. b:
operating point during neck suction (NS). c: operating
point during lower body negative pressure (LBNP). ∠NM:
slope of the neuro-mechanical arc. ∠MN: slope of the
mechano-neural arc.



IV. RESULTS

Figure 3 shows typical recordings obtained from
Protocols 1, 2 and 3. In Protocol 1, CSP was increased
stepwise from 60 to 140 mmHg. SNA and AP decreased in
response to the increment in CSP. In Protocol 2, CSP was
adjusted to AP for 0-1 min, then increased above AP by 30
mmHg for 1-2 min. CSP was again adjusted to AP during 2-
3 min, then decreased below AP by 30 mmHg for 3-4 min.
SNA and AP decreased in response to the positive CSP
deviation, whereas increased in response to the negative
CSP deviation. In Protocol 3, CSP was adjusted to AP
throughout the protocol. AP (and CSP) was decreased by the
hemorrhage. SNA increased via the arterial baroreflex. The
opposite responses in AP and SNA were observed during the
restoration of blood.

Figure 4 shows a representative equilibrium diagram
between SNA and AP obtained from one animal. The solid
and open circles represent the neuro-mechanical and
mechano-neural arcs, respectively, obtained from Protocol 1.
The solid triangles represent the SNA-AP data pairs
obtained from Protocol 2. ∠NM indicates the slope of liner
regression for the SNA-AP data pairs. The open triangles
represent the AP-SNA data pairs obtained from Protocol 3.
∠MN indicates the slope of liner regression for the AP-SNA
data pairs. Gbaro was estimated by multiplying ∠NM and
∠MN together.

Gbaro estimated using the equilibrium diagram between
SNA and AP (Protocols 2 and 3) matched reasonably well
with Gbaro estimated by the open-loop method (Protocol 1)
across the 8 animals (y = 1.06x − 0.09, r2 = 0.96, SEE =
0.15).

V. DISCUSSION

Mohrman and Heller first proposed the concept of
equilibrium in the arterial baroreflex system based on the

negative feedback nature of the arterial baroreflex system [1].
We confirmed that the operating point of AP was well
determined by the intersection between the mechano-neural
and neuro-mechanical arcs using a baroreflex open-loop
experiment in a previous study [2]. The equilibrium diagram
of the arterial baroreflex system indicates that Gbaro can be
estimated by multiplying the slope of the neuro-mechanical
arc and that of the mechano-neural arc around the operating
point. If we intentionally disturb one of the arcs, the slope of
the other undisturbed arc can be estimated around the
operating point as shown in Figure 2. Once the disturbances
on the two arcs are combined in a given subject, Gbaro can be
estimated from ∠NM×∠MN. We confirmed this framework
of estimating Gbaro in the anesthetized rabbit model for NS
and LBNP.

Neck suction is frequently used to estimate baroreflex
function in clinical settings. However, because of the
counteraction by the aortic baroreflex, NS alone does not
allow us to estimate Gbaro in terms of pressure output relative
to the pressure input [3]. However, the equilibrium diagram
method is not flawed by the counteraction by the aortic
baroreflex during NS. Since the counteraction by the aortic
baroreflex takes place in the mechano-neural arc, the neuro-
mechanical arc remains unchanged during NS even in the
presence of the aortic baroreflex. The aortic baroreflex
merely attenuates the amount of leftward shift in the
mechano-neural arc induced by NS. Therefore, we can
obtain ∠NM using NS by simply ignoring the counteracting
effect of the aortic baroreflex.

We assumed that LBNP would shift the neuro-
mechanical arc downward via blood volume redistribution
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Fig. 4. Typical equilibrium diagram and estimated slopes
of the mechano-neural and neuro-mechanical arcs.  The
open circles indicate AP-SNA data pairs obtained from
Protocol 1. The solid circles indicate SNA-AP data pairs
obtained from Protocol 1. The solid triangles indicate
SNA-AP data pairs obtained from Protocol 2. The open
triangles indicate AP-SNA data pairs obtained from
Protocol 3.

Fig. 3. Typical recordings of carotid sinus pressure (CSP),
sympathetic nerve activity (SNA), and arterial pressure
(AP) obtained from Protocols 1, 2, and 3. hem:
hemorrhage, res: restoration.
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without affecting the mechano-neural arc (Fig. 2). With
vagal nerves kept intact, however, LBNP would affect SNA
not only via the arterial baroreflex but also via
cardiopulmonary low-pressure baroreflexes. To integrate the
low-pressure baroreflexes into the equilibrium diagram
method, characterization of the vagally mediated low-
pressure baroreflexes by treating AP as a system variable
would become necessary. This formulation has rationale in
that the central role of the baroreflex systems is the
maintenance of AP but not of central venous pressure. As an
example, Hosomi et al. analyzed interactions between high-
and low-pressure baroreflexes during mild hemorrhage by
treating AP as a system variable [5]. Nevertheless, further
studies are clearly required to determine whether the
equilibrium diagram method is truly valid when low-
pressure baroreflexes are operative.

VI. CONCLUSION

Gbaro can be estimated without opening the baroreflex
negative feedback loop using the equilibrium diagram of the
arterial baroreflex system. We assume that NS and LBNP
can be used to shift the mechano-neural and neuro-
mechanical arcs, respectively. Although further studies are
clearly required before actual application of the equilibrium
diagram method in clinical settings, the presented
framework would be a new step toward estimating Gbaro in
terms of pressure output relative to pressure input in clinical
settings.
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