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BILATERAL MANIPULANDUM TO SYNTHESIZE GROUND REFERENCED
AND INTERLIMB VISCOELASTIC LOADS
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1Department of Physiology, University of Graz, Austria

2Department of Biomedical Engineering and Physics, General Hospital Vienna, Austria
bstract – The bilateral system was designed to study limb
tiffness in different movement tasks. The mechatronics consists
f two angular voice coil actuators (±±±± 40 Nm) with embedded
otary (±±±± 20°) and torque sensors driven by voltage controlled
urrent sources. DSP software routines to synthesize isotonic
preloads, stretches) as well as viscoelastic load schemes (Voigt
odel) were implemented for each sensor-actuator. The

oftware further provides coupling of both sensor-actuators for
terlimb loads as well as real-time video functions for

xperiment guidance. The system’s performance was tested in
orearm extensions against ground referenced and interlimb
iscoelastic loads.
eywords – joint stiffness, bimanual contraction, interlimb
ynamics, force feedback

I. INTRODUCTION

mong other variables, limb stiffness is thought to play an
mportant role for the control of posture and movement [1].
imb stiffness reflects the myoactuator force to displacement

elationship. Depending on the external load, limb stiffness is
utonomously adjusted by such mechanisms as recruitment,
o-contraction and reflex modulation so that load
erturbations are damped out normally.

Viscoelastic loading alters the control and stability
roperties of a limb. For example if the stiffness of the load is
ocally higher than the myoactuator stiffness, an instability
ay occur. To study such myoactuator - load relationships, a
anipulandum with software features to synthesize arbitrary

sotonic and viscoelastic loads was developed. Bilateral
ystems to synthesize ground referenced loads are described
n literature [2]. This paper describes the development of a
ilateral system including a shared control scheme to
ynthesize also interlimb loads.

Fig. 1. Scheme of the bilateral manipulandum with ground referenced and
interlimb spring loads

Both load types are shown by spring elements in Fig. 1. If
e consider symmetrical extensions of both limbs, the

nterlimb load (CL-R) may be set to the same value as the
round referenced series load (CL + CR). It then depends on
inesthetic and visual cues whether a difference in the load
cheme is sensed during an extension. To exclude effects

from direct limb vision, a video interface with real-time
markers is needed for experiment guidance.

II. METHODOLOGY

A. Synthesis of a viscoelastic load
A linear viscoelastic load behavior is either described by a

parallel (Voigt model) or a serial (Maxwell model) spring-
damper arrangement [3]. Here the Voigt model with simple
memory (spring zero position) is considered further. To
synthesize this model behavior, the elastic and viscous force
components are gained from the measured deflection x(t), and
translated to the user interface by a force actuator, see Fig. 2.
Taking into account the mass m of the user interface, the
system’s differential equation (1) is given by:

For angular motions, with J as interface inertia, the system’s
deflection response α(t) to torque loading T(t) then is given
as the complex compliance or admittance:

In this transfer function (2) the coefficient C is used to set the
elastic component, and D to set the viscous component. For
D2<4JC  the interface inertia causes resonance oscillations
fres, such limiting the bandwidth of the viscoelastic synthesis:

With an additional acceleration component in the feedback
path the effect of the interface inertia may be reduced.

Fig. 2 Voigt model of viscoelasticity with hardware in the loop synthesis
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During bilateral operation, alternately ground referenced
and interlimb loads have to synthesized. Basically an
interlimb load behavior is achieved with a shared compliance
controller. In such a controller the measured deflections of
the left (αL) and right (αR) interface are reciprocally added to
both controller inputs αLc and αRc. To switch from the ground
referenced to the interlimb load scheme the matrix (4) was
defined:

With k = 0.5 the both sensor-actuators become coupled to
produce an interlimb viscoelastic load. The bi-limb torque
output during anti-parallel deflections (αL= αR) is:

During parallel deflections (αL= -αR) however, no bi-limb
torque (6) is produced:

For k = 0, both actuators are controlled locally. During anti-
parallel deflections the same bi-limb torque is produced as
during coupled operation (5), however without interlimb
force transmission.

B. Sensor-Actuator mechatronics
During experimentation with a manipulandum, the

actuator superposes to the limb’s myoactuation. The unforced
actuator therefore has to follow the limb’s motion without
perceivable friction. To meet the limb’s force generating
capacity (about 40 Nm for the forearm), the actuator further
must be powerfull. At least the actuator’s inertia has to be
kept small in order to avoid mass loading during operation
(the limb inertia around the elbow joint is at about 0.06
kgm2).

Fig.3. Electromechanical design of the rotary voice coil actuator with sensors
and forearm fixation.

To meet these requirements a angular voice coil with ±
20° stroke range was chosen for actuation, see Fig. 4. The
coil consists of a four pole assembly (∅ = 25 cm, R =1.22 Ω,
L =4.9 mH) moving in a permanent magnetic stator field
(BEI Inc, USA). The coil’s motion is sensed by a precision
capacitive angular sensor with a low mechano-electrical
delay (Trans-Tec, Model 600, USA). Strain gauges are used
for sensing the transmission torque between coil rotor (JR =
0.0055 kgm2) and forearm interface lever (JL = 0.0083 kgm2).
The first mechanical resonance with blocked lever was found
at 169 Hz. The actuator is powered by a voltage controlled
current pump in order to avoid viscous friction from back-
EMV. Torque output is specified linear up to 40 Nm,
however cooling is necessary for higher levels (> 10 Nm).
Coulomb friction from coil suspension (steel ball bearings)
could be kept below 0.01Nm, resulting into a force dynamics
of about 70 dB.

C. DSP control and visual interface
There are two control problems that have an influence on

the systems performance. One problem is the coil and
interface mass. This mass has to be considered as double
integrator with a 180° phase delay for sinusoidal motion. If
put into a digital feedback loop, with coefficient C as gain,
the processing delay further increases the phase delay
leading to self-excited mechanical. To avoid such resonance
oscillations, which might be harmful to the user, a small
viscous component D is always necessary.

The second problem arises from the differentiation to
synthesize the viscous component. Differentiation amplifies
the transducer’s noise and if performed digitally, the
processing delay further lags the differentiator’s phase shift
of 90°.

To reduce both problems, a small processing cycle would
be advantageous. For technical control, a processing cycle of
about 1/10 of the system’s bandwidth is proposed [4].
Considering the bandwidth of human control, which is about
10 Hz, a processing cycle of 10 ms then seems to be enough.
However, to achieve stable viscoelastic loads, up to values of
C = 300 Nm/rad and D = 5 Nms/rad with the system
components described above, a much smaller processing
cycle of 1ms showed necessary.

The signal layout of the implemented DSP control scheme
is given in  Fig. 4. The main processing blocks are the signal
mixing stage, the filter stage and the controller stage. Filters
and controllers are realized by rational transfer functions.
Additionally to viscoelastic loads, isotonic loads, stretches,
and vibrations are needed for experimentation and
identification of limb stiffness. Arbitrary function generators
projecting to each output channel are used for their synthesis.
Further function generators are used to modulate the signal
paths and for set point control of the viscoelastic load. To
generate angle dependent torque and viscoelastic load pattern,
a content addressable memory was implemented further.

A floating point DSP-board, based on a TMS320C31-50
chip with galvanically isolated 16 bit AD/ DA front ends and
a parallel interface for PC communication, was developed for
process control of the two sensor-actuators, see Fig. 5. Within
each process cycle (1kHz) bidirectional data transfers are
performed between the DSP-board and the PC. The PC runs
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under LINUX-RT at a process cycle of 10 ms. To avoid
flickering of the realtime video markers, both the PC and the
video cycle were synchronized to the DSP cycle. Horizontal
and vertical markers (for synergistic limb movements) were
implemented. In the left display field the scope for signal
inspection, and in the right field the task sequencer for
experiment guidance [5] is seen.

III. EVALUATION

To evaluate the system’s dynamics, the admittance
magnitude of the unloaded interface lever was determined.
As there was no force source available to excite the lever, a
electrical test signal was used instead. The test signal
(sinusoidal sweep) was superposed to current source, see
input Ftest in Fig. 2. Form the measured deflection response,
two characteristica in the 0.2 to 50 Hz frequency band were
determined, see Fig. 6. The dotted curves are simulated
responses according to equation (2), however for sampled
data (MATLAB control toolbox).

Fig. 6 Frequency responses of angular displacement to torque input
(- measured data, ... simulated data)

In the weakly damped response (C =200 Nm/rad, D =0.5
Nms/rad) the measured resonance peak is about 20% higher
than in the simulated response, obviously due to hidden
delays in the system hardware. In the second response (C =25
Nm/rad, D = 2.0 Nms/rad) a relative high correspondence is
found over frequency.

To evaluate the system for physiological studies, bi-limb
extensions against three elastic loads with same given torque
level (10 Nm) were performed. The loads are: #1 ground
referenced at low stiffness (k = 0, C = 100 Nm/rad), #2
ground referenced at high stiffness (k = 0, C = 250 Nm/rad)
and #3 interlimb (k = 0.5, C = 250 Nm/rad). The viscous
coefficient D was adjusted to critical damping.

The measured extensions are shown in Fig. 7. During #1
an almost stable equilibrium was maintained, indicating that
the limb behaved stiffer than the load. In #2 both limbs
fluctuate around their equilibrium, indicating that the load
stiffness was higher now (although the limb’s force
generation capacity is not reached). As seen in the phase plot
below, the fluctuations weakly correlate, indicating shared
control in bi-limb postural tasks. In #3, during interlimb force
transmission, both fluctuations became coupled.

Fig. 7 Bilateral arm extension test. Upper plot: measured extensions versus
time, lower plots: interlimb fluctuations  (1-20 Hz) for the loads #2 and #3.

IV. CONCLUSION

A realtime controlled sensor-actuator system for viscoelastic
load synthesis and interactive experimentation was described.
By using voice coil direct drives for actuation, a high system
dynamics at low mass loading was achieved. A special
feature is the bilateral control mode, which allows to study
bi- and interlimb sensory-motor functions. This bilateral
manipulandum may also be used for clinical applications, to
assess joint muscle tone [6], or for sensory-motor retraining
of stroke patients.
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