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ABSTRACT 

Significant advances have been made in several aspects of the computational modelling of 
turbulent combustion. PDF model calculations have been performed of turbulent piloted-jet non- 
premixed flames. The results demonstrated the ability of the methodology to account, accurately, 
for the local extinction and reignition observed experimentally in these flames. It was shown 
that these flames can be sensitive to the temperature of the pilot and to radiative heat loss. A 
new approach has been developed for the efficient computational implementation of combustion 
chemistry. The rate-controlled constrained equilibrium method has been combined with the in 
situ adaptive tabulation algorithm to produce a unified dimension-reduction/storage-retrieval 
methodology for the computationally-efficient implementation of combustion chemistry. Test 
calculations demonstrated that this methodology has comparable accuracy to augmented reduced 
mechanisms. Ideas from the conditional moment closure and the mapping closure have been 
combined to produce a new approach for modeling molecular mixing in turbulent reactive flows. 
The new methodology has been shown to describe accurately (for the first time) the mixing of 
two scalars. A methodology has been developed for obtaining stochastic models for Lagrangian 
velocity and acceleration based on DNS data from homogeneous turbulent shear flow. It has 
been shown that the acceleration model provides a remarkably accurate representation of the 
observed Lagrangian velocity-acceleration two-time correlations. In collaboration with the group 
of Prof. P. Givi, advances have been made in the implementation of a combined LES/PDF 
methodology for'modeling turbulent reactive flows. The approach based on the velocity filtered 
density function has been applied to a spatially-developing mixing layer and shown to account 
well for the major processes in this flow. 

INTRODUCTION 

The design process for gas-turbine combustors and aerospace propulsion systems could be 
significantly improved if accurate and affordable CFD tools were available. While turbulent 
combustion models are used in the design process, the models currently employed are not 
sufficiently accurate. PDF methods promise the capability of greater accuracy, through their 
ability to treat the chemistry in sufficient detail, and to fully account for turbulence-chemistry 
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interactions. The work performed in this research project has significantly contributed to the 
development and demonstration of different aspects of PDF methods. 

The research has focused on the following topics. 

1/ PDF calculations of turbulent non-premixed piloted jet flames. 

2/  The development of a new methodology (based on rate-controlled constrained equilibrium 
and in situ adaptive tabulation) for the efficient implementation of combustion chemistry. 

3/ The development of a new approach (related to the mapping closure and the conditional 
moment closure) for modeling mixing in turbulent reactive flows. 

4/ The development of stochastic Lagrangian models for velocity and acceleration in turbulent 
flows, and a methodology to determine the model coefficients involved from DNS data. 

5/ The implementation and demonstration of the approach based on the combination of large 
eddy simulation and PDF methods. 

The work on each topic is described in the following sections, and more completely in the 
publications given below. 

PDF CALCULATIONS OF PILOTED NONPREMIXED FLAMES 

The piloted nonpremixed flames studied experimentally at Sandia (Barlow & Frank 1998) 
provide an excellent test of turbulent combustion models. These flames show distinct levels of 
interaction between turbulence and chemistry because of the increasing jet bulk velocities from 
flame D to F: flame D is close to equilibrium with a small amount of local extinction, whereas 
flame F is on the verge of global extinction. In each of these flames, the amount of local 
extinction reaches a peak at an axial distance of about 30 jet radii, with re-ignition occurring 
downstream. Several advanced approaches based on LES, CMC and PDF methods have been 
applied to compute these phenomena and have made significant progress. Notably, the joint 
PDF calculations of these flames by Xu and Pope (2000) and Lindstedt et al. (2000) show the 
best detailed agreement obtained between computations and the experimental data. 

The PDF calculations of Xu & Pope (2000) and Tang et al. (2000) are capable of calculating, 
quantitatively, the observed phenomena of local extinction and reignition. These calculations are 
based on the modelled transport equation for the joint PDF of velocity, turbulence frequency, and 
composition. The sub-models of this method include the simplified Langevin model (SLM) for 
velocity and the Jayesh-Pope model (JPM) for turbulent frequency (see Pope 2000). The 
molecular mixing is modeled by the Euclidean minimal spanning tree (EMST) model of 
Subramaniam & Pope (1998), which features mixing locally in the composition space through 
interacting particles with neighboring particles. The reaction mechanism used is the 19 species, 
15-step augmented reduced mechanism of Sung et al. (1998) which includes NO chemistry, and 
is denoted by ARM2. The chemical reaction calculations are performed using the in situ adaptive 
tabulation (ISAT) algorithm (Pope 1997). It should be pointed out that for each full-scale PDF 



method calculation, the solution to the reaction equation system (20 dimensional) is required (of 
order) lO' times. IS AT can handle these computations economically and accurately. Recent 
work on PDF methods for these flames-now described-concerns sensitivity to the pilot flame 
temperature and to radiative heat loss. 

It was observed by Xu & Pope (2000) that calculations of flame F exhibit some sensitivity to the 
pilot temperature Tp which is specified as a boundary condition. The experimental data show Tp 
in the range 1860K-1880K, but the experimental accuracy may be no greater than 10-20K. This 
influence was studied systematically by performing calculations of flames D and F with pilot 
temperatures of Tp = 1860, 1870 and 1880K. For flame D it is found that the calculations are 
insensitive to Tp. But, as shown on Fig. 1, flame F exhibits extreme sensitivity. For example, at 
x/Rj= 15 and 30 the peak temperature decreases by about 500K and the mass fractions of OH 
decrease by a factor of more than two with a lOK decrease in pilot temperature. Similar trends 
exist for other variables. Particularly for NO, the results calculated using lower pilot 
temperatures give a perfect match with the experimental data at the first two locations shown in 
the figure. However, further downstream, all the modeled NO profiles overshot the peak value by 
a factor of more than two and do not predict correctly on the fuel rich side, although the 
temperature profiles seem to be satisfactory. 

Figure 2 shows another manifestation of the sensitivity to the pilot temperature. The burning 
index (BI) is defined to be unity for complete combustion and zero for complete extinction. The 
figure shows substantially different results for Tp = 1860K and Tp = 1880K, with the 
experimental data generally falling between these two calculated values. 

The effects of radiative heat loss were investigated by performing "adiabatic" and "radiant" 
calculations. In the former all heat loss is neglected: in the latter, radiative heat loss is accounted 
for from the primary radiating species, CO2, H2O, CO and CH4. We adopt an optically-thin limit 
radiation model, although the validity of this model for the 4.3-micron band of CO2 is still in 
debate. Implemented in the framework of ISAT, the model includes the above four gas-phase 
emitting species with their Plank mean absorption coefficients calculated by RADCAL. 

For flame D (not shown) the effect of radiation is to reduce the peak temperature by about 30K 
and to decrease the peak NO by 15%. Figure 3 presents the conditional mean profiles of four 
scalars, and shows completely different picture from the flame D results. For Tp = 1880K, the 
inclusion of radiation induces significant decreases in temperature and species mass fractions at 
the first three axial locations. The largest differences appear at x/Rj = 30 where the peak 
temperature decreases more than 500K and the species mass fractions decrease by a factor of two 
or three. This fact indicates that thermal radiation can significantly alter the local extinction 
status in this flame: not only is the NO chemistry strongly influenced by radiation, but also the 
reactions of other species such as OH and CO. The last column of Fig. 3 tells us that further 
downstream, the flame becomes closer to the equilibrium state as re-ignition takes place and the 
radiation tends to be less important. 

Evidently, flame F is extremely sensitive to a decrease in temperature, whether it arises from Tp 
or from radiation. 



EFFICffiNT IMPLEMENTATION OF COMBUSTION CHEMISTRY 

It is computationally prohibitive to use detailed hydrocarbon chemistry directly in turbulent 
combustion calculation. Two separate approaches have been taken to reduce the computational 
burden: dimension reduction, and storage/retrieval. Tang & Pope (2002) have combined these 
two approaches into a unified methodology. Dimension reduction is achieved through rate- 
controlled constrained equilibrium ((RCCE Keck, 1990); and storage/retrieval through the IS AT 
algorithm Pope (1997)). In this context, RCCE is preferred over other reduction methodologies 
(e.g., QSSA, ILDM), because of the guaranteed existence and continuity of the implied low- 
dimensional manifold. 

The combined ISAT-RCCE methodology is tested for a pairwise-mixing stirred reactor (PMSR) 
using the 31-species GRI 1.2 mechanism for methane. Three different tests (referred to as C\, Cj 
and C3) are performed. In Ci the constrained species are H2O, CO2, O2, CH4 and CO. Three more 
species (H2, OH, and O) are added to form the constraint subspace in C2, and in C3 another three 
species (C//3, C2//2 and C2//4) are included. Additional constraints are imposed on all 4 elements 
and enthalpy, and hence the dimension reductions are from 32 to 10, 13 and 16 for the three 
cases, respectively. To test the accuracy of the algorithm, we solve the entire ODE system (32- 
dimensional) by direct integration (DI) to get the accurate solution. Figure 4 shows the relative 
error in species compositions, temperature and density against their reference values for one 
particle (advanced over 2000 time steps in the statistically stationary state). It can be observed 
that, as the number of constraints increases, the error in the constrained species decreases. For 
C3, the relative errors in major species (including CO and H2) are under 3% with the errors of 
other constrained species being less than 10%. 

In Figure 5, the accuracy of ISAT-RCCE is compared to that of the augmented reduced 
mechanism of Sung et al. (1998)-which is based on the same detailed mechanism and which has 
the same number of degrees of freedom. It may be seen that the two methods have comparable 
accuracy. 

MODELLING TURBULENT MIXING 

In PDF methods for turbulent combustion, the modeling of molecular diffusion is both crucial 
and difficult. In Klimenko & Pope (2002) a new methodology is developed-multiple mapping 
conditioning (MMC)-which combines ideas from the mapping closure (Chen et al. 1989), and 
from the conditional moment closure (Klimenko & Bilger 1999). In part, this approach extends 
the particle implementation of the mapping closure to multiple scalars. 

Remarkably, the MMC model admits an analytic solution for the case of two passive scalars 
evolving from a triple-delta-function initial condition. This case was studied using DNS by 
Juneja & Pope (1996), with the three delta functions located at the vertices of an equilateral 
triangle in the two-dimensional composition space. The evolution predicted by MMC (Fig. 6) is 
in excellent agreement with the DNS. No other mixing model has been shown to be even 
qualitatively correct for this case. 



STOCHASTIC MODELLING OF VELOCITY AlSfD ACCELERATION 

In PDF methods, the turbulence modeling is embodied in a stochastic model for the velocity 
following a fluid particle (see e.g., Pope 2000). The standard model-the generalized Langevin 
model-involves tensor coefficients. In Pope (2002a) a methodology is developed to determine 
these coefficients from DNS data. In Pope (2002b) this methodology is extended to a stochastic 
model for acceleration, which is a natural way to incorporate Reynolds-number effects. 

Figure 7 shows the velocity-acceleration autocovariances predicted by the model compared to 
the DNS data of Sawford & Yeung (2000). As may be seen, the model is able to provide an 
accurate representation of these fundamental statistics. 

LARGE EDDY SIMULATION 

The PDF calculations reported above (e.g., Xu & Pope 2000) are based on a completely 
statistical approach. For some turbulent reacting flow, especially those with large-scale unsteady 
motions, there is good reason to use large eddy simulation (LES). In this approach, the large 
scales are treated deterministically, and the small scales statistically. It is important to appreciate 
that for turbulent combustion, the subgrid scale modeling pertaining to reaction required in LES 
is similar to, and just as crucial as, the modeling of turbulence-combustion interactions in 
statistical approaches. It is natural, therefore, to combine the ability of LES to represent large- 
scale unsteady motions, with the benefits of PDF methods for modeling the turbulent-chemistry 
interactions. The PI has a long-term collaboration with the group of Prof. Peyman Givi to 
develop this combined LES/PDF methodology. 

Following the earlier work of Colucci et al. (1998) and Jaberi et al. (1999), recently Gicquel et 
al. (2002) have extended the methodology to consider the velocity filtered density function 
(VFDF). In this methodology, the effects of the unresolved subgrid scales (SGS) are taken into 
account by considering the joint probability density function of all of the components of the 
velocity vector. An exact transport equation is derived for the VFDF in which the effects of the 
SGS convection appear in closed form. The unclosed terms in this transport equation are 
modeled. A system of stochastic differential equations (SDEs) which yields statistically 
equivalent results to the modeled VFDF transport equation is constructed. These SDEs are 
solved numerically by a Lagrangian Monte Carlo procedure in which the Ito character of the 
SDEs is preserved. The consistency of the proposed SDEs and the convergence of the Monte 
Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in 
which the corresponding transport equations for the first two SGS moments are solved. The 
VFDF results are compared with those obtained via several existing SGS closures. These results 
are also analyzed via a priori and a posteriori comparisons with results obtained by direct 
numerical simulation of an incompressible, three-dimensional, temporally developing mixing 
layer. 



REFERENCES 

R. S. Barlow and J.H. Frank (1998).  Proc. Combust. Inst. Vol. 27, pp. 1087-1095. 

H. Chen, S. Chen & R.H. Kraichnan (1989). Phys. Rev. Lett. 63:2657. 

P.J. Colucci, F.A. Jaberi, P. Givi and S.B. Pope (1998). Phys. Fluids 10,499-515. 

L.Y.M. Gicquel, P. Givi, F.A. Jaberi & S.B. Pope (2002). Phys. Fluids 14:1196. 

F.A. Jaberi, P.J. Colucci, S. James, P. Givi and S.B. Pope (1999). J. FluidMech. 401, 85- 
121. 

A. Juneja and S.B. Pope (1996). Phys. Fluids 8:2161. 

J.C. Keck (1990). Prog. Energy Combust. Sci. 16:125. 

A. Klimenko and R.W. Bilger (1999). Prog. Energy Combust. Sci. 25:595. 

A. Klimenko and S. B. Pope (2002). "A model for turbulent reactive flow based on 
multiple mapping conditioning." Phys. Fluid (submitted). 

R.P. Lindstedt, S.A. Louloudi, and E.M. Vaos (2000). Proc. Combust. Inst., 28, 
149-156. 

S.B.Pope (1997). Combust. Theor. Modelling, 1:41-63. 

S.B. Pope (2000). Turbulent Flows, Cambridge University Press. 

S.B. Pope (2000). Phys. Fluids 14:1696-1702. 

S.B. Pope (2002b). Phys. Fluids 14:2360-2375. 

B.L. Sawford and P.K. Yeung (2000). Phys. Fluids 12:2033. 

S. Subramaniam and S.B. Pope (1998). Combust. Flame, 115:487-514. 

C.J. Sung, C.K. Law and J.-Y. Chen (1998). Proc. Combust. Inst., Vol. 27, pp. 295-304. 

Q. Tang, J. Xu and S.B. Pope (2000). Proc. Combust. Inst., Vol. 28, pp. 133-139. 

Q. Tang and S.B. Pope (2002). Proc. Combust. Inst. 29 (to be published). 

J. Xu and S.B. Pope (2000). ComZ^M^f. F/awe,  123:281-307. 



FIGURES 

Fig 1 Radial profiles of mean temperature and mass fractions in flame F: sensitivity to pilot temperature, 
r„ Symbols, experimental data; solid line Tp = 1880K; dashed line Tp = 1870K; dot-dashed line Tp = 

1860K, 



Fig. 2. Burning index (based on T and species) vs. axial distance in flame F. Symbols and lines as in Fig. 



x/R =30 

Fig. 3. Effect of radiative heat loss on means conditional on mixture fraction in flame F. Symbols, 
experimental data; solid line, adiabatic calculation; dashed line, radiant calculation. 
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Fig. 6: Tenporal evolution (a-f) of the joint PDF of two passive scalars from a triple-delta-function initial 
condition according to the MMC closure of Klimenko & Pope (2002). 

Fig. 7: Velocity-acceleration Lagrangian covariances: symbols, from the DNS data of Sawford & Yeung 
(2001); lines, from the stochastic model of Pope (2002b). 
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Stochastic Lagrangian models of velocity in homogeneous 
turbulent shear flow 

Stephen B. Pope 
Department of Mechanical & Aerospace Engineering, Cornell University, Ithaca, New York 14853 

(Received 5 November 2001; accepted 31 January 2002; published 1 April 2002) 

Stochastic Lagrangian models for the velocity following a fluid particle are used both in studies of 
turbulent dispersion and in probability density function (PDF) modeling of turbulent flows. A 
general linear model is examined for the important case of homogeneous mrbulent shear flow, for 
which there are recent direct numerical simulation (DNS) data on Lagrangian statistics. The model 
is defined by a drift coefficient tensor and a diffusion tensor, and it is shown that these are uniquely 
determined by the normaUzed Reynolds-stress and timescale tensors determined from DNS. With 
the coefficients thus determined, the model yields autocorrelation functions in good agreement with 
the DNS data. It is found that the diffusion tensor is significantly anisotropic—contrary to the 
Kohnogorov hypotheses and conventional modeUng—which may be a low-Reynolds-number effect. 
The performance of two PDF models is also compared to the DNS data. These are the simpUfied 
Lagrangian model and the Lagrangian isotropization of production model. There are significant 
differences between the autocorrelation functions generated by these models and the DNS data. 
© 2002 American Institute of Physics.   [DOl: 10.1063/1.1465421] 

I. INTRODUCTION 

Homogeneous turbulent shear flow is of fundamental 
importance in the development of models for inhomoge- 
neous turbulent flows. Both experiments' and direct numeri- 
cal simulations (DNS)^ of homogeneous shear flow have 
been performed in which Eulerian statistics of the turbulence 
have been measured. More recently, a series of DNS studies 
has been performed^"^ in which Lagrangian statistics have 
been obtained by tracking a large number of fluid particles. 
These studies clearly have direct relevance to stochastic La- 
grangian models* of turbulence, which model the motion of 
fluid particles as diffusion processes (i.e., continuous Markov 
processes).' The purpose of this paper is to show the connec- 
tion between the Lagrangian velocity autocovariance tensor 
obtained from DNS and stochastic Lagrangian models for 
fluid particle velocity. 

Stochastic Lagrangian models for the velocity of a fluid 
particle arise in two different contexts: turbulent 
dispersion;^"'" and probability density function (PDF) 
models."'^'' In both cases the general form of the models 
considered (when applied to homogeneous turbulence) can 
be written as the linear stochastic differential equation (SDE) 

</M,= -AijUjdt+BijdWj (1) 

where duit) = u{t+dt)-u(t) is the infinitesimal increment 
of the fluctuating component of velocity u(f) following the 
fluid particle; we refer to A(t) as the drift tensor; B(t) is the 
diffusion coefficient; and dW(t) is the infinitesimal incre- 
ment of a vector-valued Wiener process which has the prop- 
erties {dW) = 0, {dWidWj) = dtSij. Different models corre- 
spond to different specifications of the drift tensor A(?) and 
diffusion coefficient B(/). 

For statistically stationary, homogeneous isotropic turbu- 
lence (with no mean velocity gradients) the only sensible 
choice of coefficients is 

A,,=: 

and 

Bir 
2M' 

i2\ 1/2 

(2) 

(3) 

where T^ is the Lagrangian integral timescale and u' is the 
turbulence intensity (i.e., the rms velocity fluctuation). Then, 
Eq. (1) reduces to an independent Langevin equation for 
each component of velocity 

dt iiu'^y^ 
(4) 

This model dates back to Taylor's 1921 original paper on 
turbulent dispersion.* The autocorrelation function given by 
Eq. (4) is 

pis)^{uiit)ui{t+s))/u'^ = cxpi-\s\/TL), (5) 

which agrees well with DNS data'^ (except at small values of 

The central issue addressed here is the appropriate speci- 
fication of A and B in homogeneous turbulent shear flow. 
This has been considered in the context of turbulent disper- 
sion by Sawford and Yeung.'*"' These authors compared La- 
grangian autocorrelations predicted by two dispersion mod- 
els to DNS data. Both of these models take B to be isotropic. 

We show here that appropriate values of A and B can be 
deduced from the measured Lagrangian velocity autocovari- 
ance, and that the resulting model is in good agreement with 

1070-6631/2002/14(5)/1696/7/$19.00 1696 © 2002 American Institute of Physics 
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the DNS data. This agreement supports the nontrivial con- 
clusion that the Lagrangian velocity is well represented by a 
linear diffusion process (except over small time intervals). 
The deduced value of B is significantly anisotropic. 

The performance of two models used in PDF methods is 
compared to the DNS data. These are the simpUfied Lange- 
vin model (SLM) and the Lagrangian isotropization of pro- 
duction (LIPM) model.'" 

II. HOMOGENEOUS TURBULENT SHEAR FLOW 

In homogeneous turbulent shear flow, the imposed mean 
velocity gradient is 

dXi 
-SSiiSj2, (6) 

where S is the (constant) imposed mean shear rate. The tur- 
bulence is characterized by the Reynolds stress tensor 
(ujUj), the turbulent kinetic energy k=^UiUi), and the 
mean dissipation rate s. All of these quantities are uniform in 
space and evolve in time. 

An essential observation from experiments and DNS is 
that, after an initial transient, the turbulence tends to an ap- 
proximately self-similar state. The normaUzed Reynolds- 
stress tensor 

Cu 
_ (UjUj) 

(7) 

becomes constant, as does the ratio of turbulence-to-shear 
timescales, Sk/s, and hence also the ratio of production V to 
dissipation e. The turbulent kinetic energy equation then dic- 
tates that k and £ increase exponentially with time—as is 
observed. Thus when normalized by k and e, quantities per- 
taining to the energy-containing scales of the turbulence are 
self-similar. Since the Reynolds number k^/(sv) increases 
with time, small-scale quantities are not self-similar under 
this scaUng. 

The DNS of Sawford and Yeung'*-^ are performed from 
the nondimensional time St=0 until .5/= 20. The fluid par- 
ticles are introduced at St = 4 when the self-similar state has 
been attained. The values Sk/s = 4.S3 and V/s = 1.54 are de- 
duced from the values of k and (uiUi) from St = 4 until <S/ 
= 20; and the average value of the normahzed Reynolds 
stress tensor over this time interval is 

C= 

0.96     -0.32     0 

-0.32     0.43       0 

0 0       0.61. 

We introduce the normalized time 

'^'k' 

(8) 

(9) 

and the scaled fluctuating velocity following a fluid particle 

u(0 
u(0-- (10) 

k{tj^- 

Consistent with the self-similar state of the turbulence, we 
assume that u(f) is a statistically stationary process. 

1 

\ 

0.5 
22\33^x.11 

\              'v. 

0 

•       ^-^""^ 

 •"-■- 

0.5 

12^' ^^21 
/  ^^ 

 1  

■ 

0.5 1.5 

FIG. 1. Autocorrelation functions Pij{s), Eq. (14), from the DNS data of 
Sawford and Yeung (Ref. 5). 

The autocovariance of u(0 is 

Rijis)^{ui{i)ujii+s)), (II) 

which (in view of the assumed stationarity) is independent of 
i; and the scaled Reynolds stress is 

(UiUj) 
{u,it}uj{t)) = C,j=R,j(0)-- (12) 

which is constant. Note that (unlike Cij) Rij(s) is not sym- 
metric, although it has the property 

R,jis) = Rji(-s). (13) 

It is conventional to define autocorrelation functions by 

Pij(.^)-\ 
Rijis) 

(14) 
[C(0(i)<^0-)(y)3 

(where bracketed suffixes are excluded from the summation 
convention) so that the diagonal components of Py(0) are 
unity. These autocorrelation functions obtained firom the 
DNS are shown in Fig. 1. (Note that, by symmetry, pij 
= P32=0.) 

The analysis below shows that a preferable definition of 
the autocorrelations is 

R,jis)^Cr,'R,j{s), (15) 

where C,^' denotes the i-k component of the inverse of C. 
Unlike pij, Rij is a tensor, and at the origin it is 

Rij(0) = S,j. (16) 

These autocorrelation functions obtained from the DNS are 
shown in Fig. 2. [There is a small inconsistency in the ex- 
traction of numerical values from the DNS: Cjj is obtained 
as an average from St=4 to 5r=20, whereas i?,y(0) is ob- 
tained at St = 4. As a consequence, as may be seen in Fig. 2, 
the numerical values do not satisfy Eq. (16) exactly.] 

Based on /?,/i), we define the (normaUzed) integral 
timescales by 
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FIG. 2. Autocorrelation functions /f,y(j), Eq. (15), from the DNS data of 
Sawford and Yeung (Ref 5). 

^^J-jy, is)ds. 

The values deduced from the DNS data are 

0.44     -0.06      0 

-0.11     0.22       0 

0 0        0.24J 

III. STOCHASTIC MODEL 

(17) 

(18) 

The stochastic model considered is Eq. (1) written for 
u(t). It is convenient to use matrix notation, and so the equa- 
tion is written 

du=-Audi+BdW, (19) 

where {dWdW'^} = Idt, with I being the identity, and T 
denoting the transpose. 

The drift matrix A is constant and it is required that its 
eigenvalues have positive real parts. The value of A deduced 
from the DNS (below) has the simplest structure—^real posi- 
tive eigenvalues and independent eigenvectors. In this case A 
can be decomposed as 

A=VAV-', (20) 

where the columns of V are the eigenvectors of A, and A is 
the diagonal matrix of eigenvalues. 

The diffusion coefficient matrix B is also constant and, 
widiout loss of generality,'' we take it to be symmetric (B 
= B^). 

A. Autocorrelation function 

It is readily deduced from Eq. (19) that the autocovari- 
ance matrix R(s) [Eq. (11)] satisfies the ordinary differential 
equation 

dR^ 
-^=-AR^,    for s^O. (21) 

By post-multiplying both sides of this equation by C~', we 
find that R(s) [defined by Eq. (15)] satisfies the same equa- 
tion 

-j—= -AR\    for s^O, 
ds (22) 

with the simple initial condition R^(0) = I. The solution to 
this equation (satisfying the initial condition) is'' 

°°    (~1)" 
R^(5)=exp(-A5)=2  ^AV,    for s^O, 

(23) 

as may be verified by differentiating with respect to s. It has 
been assumed that the eigenvalues of A have positive real 
parts, which is a sufficient condition for exp(-Aj) to con- 
verge to zero as s tends to infinity. 

In the case that A has Unearly independent eigenvectors 
the solution can be written 

R\s) = Vexp{-As)Y-\    for s^O, (24) 

and similarly for R 

R{sf=Vcxpi-As)V-^C,    for s^O. (25) 

Thus each component of the autocovariance is a linear com- 
bination of three decaying exponentials—decaying because 
the eigenvalues are required to be positive. 

For the autocorrelation timescales, T [Eq. (17)] we ob- 
tain 

T^-J^ R'{s)ds = j°'exp(-As)ds=A-' (26) 

The conclusion from this development is that the matrix 
of autocorrelation timescales T of the process u(F) generated 
by the stochastic model Eq. (19) is uniquely determined by 
the drift matrix A as 

T=(A-i) -ur 
(27) 

This conclusion depends on the eigenvalues of A having 
positive real parts. 

B. Covariance 

It follows from Eq. (19) that the covariance C=(uii') 
evolves by 

dC 

It' -AC-CA^+BB\ (28) 

Given that B is symmetric and that the process is stationary, 
this leads to the relation 

B2=AC+CA^. (29) 

C. Specification of stochastic model coefficients 

Can the model coefficients A and B be chosen so that the 
autocovariance R.{s) from the model matches that obtained 
from DNS of homogeneous turbulent shear flow? Clearly the 
answer is "no," since the empirical autocovariances will not 
be of the simple form implied by the model—^i.e., sums of 
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FIG. 3. Comparison of autocorrelation functions py(s), Eq. (14), from the 
DNS data (symbols) and from the stochastic model (lines) with coefficients 
determined from the data [Eq. (32) and Eq. (33)]. (p22 circles and solid Ime; 
P33 squares and dashed line.) 

three exponentials. Nevertheless, the preceding analysis 
shows that A and B can be chosen to match the covariance C 
and the timescales T. Specifically, given T, A is determined 
by 

A=(T" (30) 

[see Eq. (27)]; then B is determined as the symmetric square 
root of 

B^ = AC+CA^ (31) 

[see Eq. (29)]. Evidently this specification requires that T be 
nonsingular. An additional requirement is that T and C be 
such that B^ given by Eq. (31) is positive semi-definite. 

For the values of C and T obtained from the DNS of 
homogeneous turbulent shear flow, the values of A and B 
obtained from Eq. (30) and Eq. (31) are 

A= 

and 

B^ = 

2.45    1.24      0 

0.65    4.90      0 

0        0      4.22 

3.90     -1.18      0 

-1.18     3.84       0 

0 0        5.14, 

(32) 

D. Comparison of autocorrelation functions 

Figure 3 shows the comparison between the autocorrela- 
tion functions Pij(s) obtained from DNS compared to those 
from the model [with coefficients given by Eq. (32) and Eq. 
(33)]. Inevitably there are qualitative differences at the ori- 
gin. For pn, for example, the DNS value departs fi-om unity 
at the origin as I -p,,(s)~5^, whereas the model departs as 
l-Pii(-s)~|.s|. This leads to the model values of pnis) 
being below the DNS values at small times; and then, from 
the matching of the integral timescales, it is not surprising 

that at some later times the model value exceeds the DNS 
value. Given these inevitable differences, the agreement be- 
tween the model and the DNS is as good as could be ex- 
pected. In particular the model captures the difference be- 
tween pii and the other two diagonal components (which are 
nearly equal); and the differences between pi2 and pji- 

IV. GENERALIZED LANGEVIN MODEL 

In PDF methods, the stochastic Lagrangian model for 
velocity that is employed is the generalized Langevin model 
(GLM)."''^^ AppUed to homogeneous turbulence, the model 
for u(/) is 

dUj — 
dx. 

uj dt+GijUj dt+iCosy^ dWi, (34) 

where the constant Q is generally ascribed the value 2.1. 
The coefficient G,-, can depend on (M,MJ), S and d{U>)ldXj: 
two particular specifications of G,-y are considered below. 

The transformation of Eq. (34) to an SDE for u(F) re- 
sults in the general stochastic model, Eq. (19), with coeffi- 
cients 

A,..=.(-lU,+ -—---G, 

and 

Bij-Co Sij. 

(35) 

(36) 

k 
-G= 
e 

Equation (35) can be rearranged to yield the value of 
(,k/e)Gij impUed by the DNS: 

-2.18     3.59 0 

-0.65    -4.63       0       . (37) 

0 0        -3.95. 

Since B is found to be anisotropic—^as discussed further in 
the next subsection—no choice of CQ in Eq. (36) yields the 
correct diffusion coefficient. Nevertheless, the magnitude of 
the diffusion is characterized by 

Co=jtrace(B2), (38) 

the value of which deduced from the DNS is Co = 4.3. By 
comparison, the standard model Eq. (36) yields Co = Co 
= 2.1. 

^^^^       A. Anisotropy of the diffusion coefficient 

The GLM, and also dispersion models, take the diffusion 
coefficient B to be isotropic, Eq. (36). The reason generally 
advanced for this specification is consistency with the Kol- 
mogorov hypotheses. For (dimensional) time intervals s in 
the inertial subrange, r^<S'^k/s (where r, is the Kolmog- 
orov timescale), the Kolmogorov hypotheses predict that the 
second-order Lagrangian structure function is isotropic and 
linear in s, i.e., 

{[uiit+s)-Uiit)][uj(t+s)-uj{t)-i} = CossSij,      (39) 

where Co is a Kolmogorov constant. The GLM yields pre- 
cisely this results if CQ is taken to be CQ. 
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FIG. 4. The scaled tensors B^ and C shows as ellipses in the A:, -JTJ plane. 
The dot-dashed line is jr,A:yC,:}^=(C„)~^, and the soUd line is the corre- 
sponding ellipse for B^. Shown for reference are dashed lines at 0°, 45°, 
90°, and 135°. 

However, the value of B^ deduced from the DNS is de- 
cidedly anisotroplc: the eigenvalues of B^ (which are all 
equal to Co = 2.1 in the GLM) are found to be 2.69, 5.06, and 
5.14. It is possible that this anisotropy is a Reynolds-number 
effect, which vanishes at sufficiently high Reynolds number. 
This possibiUty could be investigated through DNS at differ- 
ent Reynolds numbers. 

It is also possible that the anisotropy in the deduced 
value of B^ persists at high Reynolds numbers, not because 
the Kolmogorov hypothesis [Eq. (39)] is incorrect, but be- 
cause the stochastic Lagrangian model, Eq. (19), is too 
simple to represent the multi-timescale aspects of anisotropic 
turbulence. 

Given the observation that B^ is anisotropic, it is natural 
to consider modifications to the GLM to incorporate such 
anisotropy. The natural way to introduce anisotropy in the 
model is to make the diffusion coefficient dependent on the 
normalized Reynolds stresses C. But any such model impUes 
that the principal axes of B" and C are aligned, which is not 
supported by the data. Figure 4 shows the ellipses in the JCj 
-X2 plane corresponding to the tensors B^ and C. The mis- 
alignment of the principal axes is evident. In fact, to within 
1°, the minor axis of B^ is aligned with the major axis of the 
mean rate-of-stain tensor S (i.e., the 45° line X2=Xx). Hence 
an anisotropic model for B^ could be constructed based on S 
that is consistent with the DNS data. More data—from dif- 
ferent flows and at different Reynolds numbers—are needed 
before an anisotropic model for B^ of any generality can be 
constructed. 

B. Simplified Langevin model 

In this and the next subsection we examine two specific 
forms of the generalized Langevin model, corresponding to 
particular specifications of G,-;. 

For the simplified Langevin model (SLM) considered 
here, the specification is 

TABLE I. Values of the mean timescale r= \ trace(T), the normalized 
Reynolds stress Cjy, and the tuibulence-to-shear timescale ratio Skle from 
the DNS of Sawford and Yeung (Ref. 5) and from SLM and LEPM for 
different values of Co and a^. 

DNS SLM SLM LIPM LIPM 

Co - 2.1 3.4 2.1 4.4 
«2 - - - 3.5 11.9 
T 0.30 0.43 0.30 0.63 0.30 

Cn 0.96 1.10 0.98 1.02 1.02 
Cn 0.43 0.45 0.51 0.49 0.49 
C33 0.61 0.51 0.51 0.49 0.49 
C,2 -0.32 -0.39 -0.34 -0.36 -0.36 

SklE 4.83 4.02 4.47 4.28 4.28 

G,,= 
2 + 4*^<'ll'^'V' 

so that the matrix A [Eq. (35)] is 

"X    o-   0" 

A=   0    \    0 

0    0    \ 

with 

and 

1 V    3 
27+4^0, 

(40) 

(41) 

(42) 

a=Sklz. 

Evidently all three eigenvalues of A are equal to \, and the 
eigenvectors are not independent—two are equal to [ 1 0 0]^. 
Consequently, the autocovariance R(s) is not given by Eq. 
(25), but instead the solution to Eq. (21) is 

R(^) = -\s 

Cii-(TsCi2     C12       0 

C2i-crsC22   C22     0 

0 0     C33. 
(43) 

Given a specified value of CQ and the DNS value of 
P/s, Eq. (31) can be solved to determine the normalized 
Reynolds stresses C given by SLM in homogeneous turbu- 
lent shear flow, and then the autocovariances can be evalu- 
ated from Eq. (43). We consider two values of Q: the stan- 
dard value Co = 2.1; and the value Co=3.4 for which the 
SLM timescaie \~* matches the average DNS timescale T 
= j trace (T). The values of C obtained are shown in Table I. 

The autocorrelations pijis) obtained with Co = 3.4 are 
compared to the DNS data in Fig. 5. As expected, die agree- 
ment is much better with the timescales matched (Co = 3.4) 
than otherwise (Co = 2.I, not shown). The model correctly 
predicts the equality of P22 and P33 and their distinction from 
Pii, but the quantitative agreement is noticeably poorer than 
in Fig. 3. 

The model predicts a more substantial difference be- 
tween puis) and p2i(s) than is evident in the DNS—a be- 
havior which is easily understood. The only off-diagonal 
term [a in Eq. (41)] enters the SDE for velocity as 
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FIG. 5. Comparison of autocorrelation functions p,/i), Eq. (14), from DNS 
(symbols) and from SLM with Co=3.4. (For SLM, P22=P33-) 

FIG. 6. Comparison of autocorrelation functions py(i), Eq. (14), from DNS 
(symbols) and from LIPM with Co = 4.4 and a2= 11-9 (lines). Dashed lines, 
p,2 and P33; soUd lines, P2t and P22. 

Sk 
dui = itidt... (44) 

Thus large positive (or negative) values ofuj tend to lead to 
large negative (or positive) values of M, after a time lag. 
Thus the peak correlation \{u2{t)ui0+s))\—or equiva- 
lently the minimum of p2i{s)—occurs for a positive value of 
s. The model overestimates this effect, because it takes no 
account of rapid pressure fluctuations which tend to counter- 
act the effects of mean shear. 

C. Lagrangian isotropization of production model 
(LIPM) 

The LIPM''*'' corresponds closely to the Launder, Reece, 
and Rodi'^ Reynolds-stress model. Using standard values for 
the model constants ySi_3 and yi-e, the LIPM equation for 
Gis 

-G=a,I+a2(b-3b^) e 

Sk 

3 

1    3 

0 

where b is the anisotropy tensor 

1        1 
b=-C-3l, 

4 3 
5 + 5^H 

'12' 
(45) 

(46) 

the standard value of the constant 0:2 is 02 = 3.5, and the 
coefficient ai is given by 

3 r 1     3      , 
0+7C0  + 10 e 

+ 3a2trace(b''). (47) 

With the standard value Co = 2.1, the model yields rea- 
sonable values of the normaUzed Reynolds stresses, but the 
average time scale T= j trace(T) is more than twice the 

DNS value; see Table L As a consequence, the model (with 
Co = 2.1) produces autocorrelations p,y(s) (not shown) in 
very poor agreement with the DNS data. 

To provide a more meaningful comparison, the constants 
Co and 02 are adjusted to match the average timescale, while 
leaving the normalized Reynolds stresses the same. The au- 
tocorrelations given by LIPM with these values (Co = 4.4, 
a2=ll-9) are compared to the DNS data in Fig. 6. The 
agreement is quite poor. Except at small times, p22(s) is 
incorrectly predicted to be larger than Ps^is); and evidently 
the effect of the rapid pressure is overpredicted as there is 
little difference between pi2(s) and P2i(s). 

This last point can be seen directly in the matrix A, 
which for LIPM is 

A= 

2.86    1.99     0 

2.21    6.11      0 

0        0      4.48 

(48) 

The direct effect of shear appears in the 1-2 component, and 
in SLM the 2-1 component is zero. In A deduced from the 
DNS data [Eq. (32)], A 21 as about half of A ^; but for LIPM 
A21 exceeds A12. 

V. CONCLUSIONS 

As previously observed by Sawford and Yeung"*'^ in the 
context of turbulent dispersion, Lagrangian data from DNS 
of homogeneous turbulence is valuable in the development 
and testing of stochastic Lagrangian models. After an initial 
transient, homogeneous turbulent shear becomes (approxi- 
mately) self-similar, so that the appropriately scaled La- 
grangian velocity fluctuation u(F) becomes a statistically sta- 
tionary random process. 

The stochastic Lagrangian model considered for u(r) is 
the diffusion process Eq. (19) in which the drift coefficient 
depends Unearly on u(F) through the drift matrix A, and the 
(anisotropic) diffusion coefficient B is constant. An analysis 
of this model shows that there is a unique specification of A 
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and B [Eq. (30) and Eq. (31)] such that the covariance matrix 
C and the timescale matrix T match those obtained from 
DNS. The autocorrelation functions predicted by the model 
are in good agreement with the DNS data (except at small 
times). The model for u(f) is a continuous, Gaussian, Mar- 
kov process; and it is a significant conclusion that such a 
simple process provides a good model for the Lagrangian 
velocity in homogeneous turbulent shear flow. (It is known 
that the one-point one-time joint PDF of velocity is jointly 
normal' in this flow.) 

Contrary to conventional modelling assumptions, if is 
found that the diffusion coefficient B is significantly aniso- 
tropic. Whether or not this is a low Reynolds-number effect 
is an important question which can be addressed in future 
DNS studies. 

The magnitude of the diffusion coefficient can be char- 
acterized by Co=jtrace(B^) and the value deduced from 

the DNS data is €0 = 4.3. This is substantially larger than the 
corresponding value Co = 2.1 normally used in PDF models. 

There is evidence that the appropriate value of CQ de- 
pends on Reynolds number.'^'" In the DNS, the Taylor-scale 
Reynolds number based on J:,-direction statistics increases 
from /?^«40to/fx'=^110 during the course of the simulation. 
Sawford and Yeung^ provide an empirical expression for CQ 

as a function of R^, which increase from Co = 3.7 at R^ 
= 40 to Co = 5.4 at Ry=llO. The value Co=4.3 deduced 
from the DNS lies within this range, but Reynolds-number 
effects are not addressed here. 

The autocorrelation functions predicted by two general- 
ized Langevin models are compared to the DNS data in Figs. 
5 and 6. In the simplified Langevin model (SLM), no ac- 
count is taken of the rapid pressure fluctuations, and as a 
consequence the difference between pi2(s) and Piiis) is 
overpredicted. The Lagrangian IP model (LIPM)—which in- 
cludes a model for the rapid pressure—yields autocorrela- 
tions in poor agreement with the DNS data. 

In the specification of both the drift and diffusion coef- 
ficients, there is clearly scope for considerable improvement 
in generalized Langevin models. 
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A methodology termed the "velocity filtered density function" (VFDF) is developed and 
implemented for large eddy simulation (LES) of turbulent flows. In this methodology, the effects of 
the unresolved subgrid scales (SGS) are taken into account by considering the joint probability 
density function of all of the components of the velocity vector. An exact transport equation is 
derived for the VPDF in which the effects of the SGS convection appear in closed form. The 
unclosed terms in this transport equation are modeled. A system of stochastic differential equations 
(SDEs) which yields statistically equivalent results to the modeled VFDF transport equation is 
constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure in which 
the Ito-Gikhman character of the SDEs is preserved. The consistency of the proposed SDEs and the 
convergence of the Monte Carlo solution are assessed by comparison with results obtained by an 
Eulerian LES procedure in which the corresponding transport equations for the first two SGS 
moments are solved. The VFDF results are compared with those obtained via several existing SGS 
closures. These results are also analyzed via a priori and a posteriori comparisons with results 
obtained by direct numerical simulation of an incompressible, three-dimensional, temporally 
developing mixing layer.   © 2002 American Institute of Physics.   [DOI: 10.1063/1.1436496] 

I. INTRODUCTION 

The probability density function (PDF) approach has 
proven useful for large eddy simulation (LES) of turbulent 
reacting flows.'"'^ The formal means of conducting such 
LES is by consideration of the "filtered density function" 
(PDF) which is essentially the filtered fine-grained PDF of 
the transport quantities. In all previous contributions, the 
FDF of the "scalar" quantities is considered: Gao and 
O'Brien,^ Colucci et al.^ Reveillon and Vervisch,^ and Zhou 
and Pereira^^ developed a transport equation for the FDF in 
constant density turbulent reacting flows. Jaberi et al} ex- 
tended the methodology for LES of variable density flows by 
consideration of the "filtered mass density function" 
(FMDF), which is essentially the mass weighted FDF. The 
fundamental property of the PDF methods is exhibited by the 
closed form nature of the chemical source term appearing in 
the transport equation governing the FDF (FMDF). This 
property is very important as evidenced in several applica- 
tions of FDF for LES of a variety of turbulent reacting 
flows.*""''^^ However, since the FDF of only the scalar quan- 
tities are considered, all of the "hydrodynamic" effects are 

''Author to whom correspondence should be addressed. Telephone: 
(716) 645-2593 (ext. 2320); Fax: (716) 645-3875. Electronic mail: 
givi@eng.buffalo.edu 

modeled. In all previous LES/FDF simulations, these effects 
have been modeled via "non-FDF" methods. 

The objective of the present work is to extend the FDF 
methodology to also include the subgrid scale (SGS) velocity 
vector. This is facilitated by consideration of the joint "ve- 
locity filtered density function" (VFDF). With the definition 
of the VFDF, the mathematical framework for its implemen- 
tation in LES is established. A transport equation is devel- 
oped for the VFDF in which the effects of SGS convection 
are shown to appear in closed form. The unclosed terms in 
this equation are modeled in a fashion similar to that in the 
Reynolds-averaged simulation (RAS) procedures. A La- 
grangian Monte Carlo procedure is developed and imple- 
mented for numerical simulation of the modeled VFDF 
transport equation. The consistency of this procedure is as- 
sessed by comparing the first two moments of the VFDF 
with those obtained by the Eulerian finite difference solu- 
tions of the same moments transport equations. The results of 
the VFDF simulations are compared with those predicted by 
the Smagorinsky'^ closure, and the "dynamic" Smagorinsky 
model.""'' The VFDF results are also assessed via compari- 
sons with direct numerical simulation (DNS) data of a three- 
dimensional (3D) temporally developing mixing layer in a 
context similar to that of Vreman et al}'^ 

This work deals with LES of the velocity field in a con- 
stant density, nonreacting flow. Consideration of the joint 

1070-6631/2002/14(3)/1196/18/$ 19.00 1196 © 2002 American Institute of Physics 
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Note that these models (i.e., the first two terms on the right- 
hand sides of Eqs. (18) and (19) are the same, but that they 
model slightly different quantities. With this closure, the two 
terms in G,^- and e jointly represent the SGS pressure-strain 
and SGS dissipation. These are modeled as"'^^ 

-l-jCo)^,;,    8 = C,r'7At,    o) = elk, 

(20) 

where oy is the SGS mixing frequency, A ^ is the filter width, 
k=\Ti{Ui,Ui) is the SGS kinetic energy, and e = je„ is the 
SGS dissipation rate. 

With the GLM, the two forms of the VFDF transport 
equation are 

d .    .   .      _     1  .      d^Pi 

for VFDFl, and 

[G,(.,-<«,),)Pj+2^oe,^_,,^_. 

HP)L dPi 

, (21) 

DPl 8 

d{crik)L9PL      ^ r^  ,       /    \ xp n 

1 d^Pt (22) 

for VFDF2. Hereinafter, Eqs. (21) and (22) are referred to as 
"VFDFl" and "VFDF2," respectively. The difference be- 
tween these two equations is in the different treatment of the 
closed viscous terms. 

D. Transport equations for moments 

The zeroth, first, and second moment equations corre- 
sponding to these two formulations are 

for VFDFl: 

dXi 
= 0, 

dt dXi 

■ + V ——:;  
dXj dXj 

(23) 

<? d 
— [n(Ui,Uj)]+ —[{Ui,)LTdUi,Uj)] 
dt 

dXi 
UiUi,Uj,Uk)-V-T-[TdUi,Uj)] 

3{UJ)L 

dXi 
(24) 

for VFDF2: 

dX: 
= 0, 

(25) 

d{Uj)L   ^   d{u,)L{Uj)L 

dt dXi 

d{p)L d^{Uj)i      dTi{Ui,Uj) 
= (- V . 

dXj dXidXi dXi 

S B 
— [Ti,(M,,M;)]+—[<Mji)jrTt(M;,«y)] 

■■ - T—[Ti(«, ,«; ,Mi)] + GaTiiUj ,Uk) + Gj^TiiUi ,M;t) 

TdUi,Uk) 
d{uj) i/L 

dXh 
'"L( «;.«*) 

(26) 

It may be seen that the zeroth and first moment equations are 
identical (and exact); whereas the second central moment 
equations differ by the additional viscous term in VFDFl 
[Eq. (24)]. A comparison of these modeled equations with 
Eq. (5) shows that the GLM model implies 

-n,y-(8y—|e^,^)=-CiW[T£.(M,-,My)-|^5,y], 

Ci=l + |Co. (27) 

This is the same as the Rotta^^ model as shown by Pope.^"* 
There are two model constants in the VFDF equation. In 
RAS, typically^'*'^^ C^-l, and Co=«2.1 (Ci=4.15). As 
shown in Refs. 27, 34 boundedness of the GLM coefficients 
Co>0 guarantees that the SGS stress is realizable. 

IV. EQUIVALENT STOCHASTIC SYSTEMS 

The solution of the VFDF transport equation provides all 
the statistical information pertaining to the velocity vector. 
The most convenient means of solving this equation is via 
the Lagrangian Monte Carlo scheme. The basis of this 
scheme relies upon the principle of equivalent systems.^^'^^ 
Two systems with different instantaneous behaviors may 
have identical statistics and satisfy the same PDF transport 
equation. In this context, the general diffusion process is 
considered via the following system of stochastic differential 
equations (SDEs):^^'^i'^*'" 

dX{t) = Di{X{t)M{tYt)dt^B{X{,i)M{.t)\t)dW\{t), 

dUi{t) = Mi(Xit)Mt);t)dt+EiX{t),l(it);t)dw"i(t) 

+ Fij{X{t)M{t);t)dW){t), (28) 

where Xi and W, are probabilistic representations of x and «, 
respectively. The coefficients D, and M, are the "drift" in 
the phase space of position and velocity, respectively. The 
terms B and E are the "diffusion" coefficients for physical 
and velocity spaces, respectively; and W] and W" denote 
independent Wiener-Levy processes.^^ The tensor f ,y repre- 
sents the dependency between the velocity and physical 
spaces. This term is needed to satisfy the Ito condition for 



1200        Phys. Fluids, Vol. 14. No. 3, March 2002 Gicquel et at. 

B¥=0. A comparison of the Fokker-Planck equation of Eq. 
(28) with the modeled VFDFl transport equation, Eq. (21) 
yields 

M.. + 2v 
d\u,) ilL 

dXf^dx^ 
+ Gij{Uj-{u>fi),    Di^U,, 

B = V2i7,    E= VQ^,    Fij= ^/2^^ 
<?(«,) 

(29) 
iH 

dX: 

Therefore, the proper SDEs which represent VFDFl in the 
Lagrangian sense are 

dXi{t)=Ui{t)dt+ yfz^dWlit), 

dUi{t) = 
dX; oXi^dx/^ 

dt 

d{Ui)i 
+ ^dWlit) + ^-^dWUt).        (30) 

aXj ■' 

This stochastic system is the same as that developed by 
Dreeben and Pope^'"^' for RAS. 

For VFDF2, due to the absence of diffusion in physical 
space we must have JS = 0. Therefore, the corresponding 
SDEs are 

dXi{t) = Ui{t)dt, 

dm)-- 
dX; 

■ + 
dxi, 

+ Gij(Uj{t)-{uj)^) 

+ 4c^dW\{t). 

dt 

(31) 

This system is the same as that suggested by Pope^^ and 
Haworth and Pope" for RAS. 

The primary difference between the two formulations 
VFDFl and VFDF2 is due to molecular effects in the spatial 
diffusion of the VFDF. This is explicitly included in the 
VFDFl formulation and is also present in the corresponding 
second moment equation. This difference is expected to be 
important in flows where viscous effects are important; e.g., 
flow near solid boundaries.^'"^' Both of these formulation 
are considered in our numerical simulations as discussed be- 
low. 

V. NUMERICAL SOLUTION PROCEDURE 

Numerical solution of the modeled VFDF transport 
equation is obtained by a Lagrangian Monte Carlo proce- 
dure. The basis of this procedure is the same as that in 
RAS^^~'*' and in previous LES/FDF.^'^ But there are some 
subde differences which are explained here. In the Lagrang- 
ian description, the VFDF is represented by an ensemble of 
N statistically identical Monte Carlo particles. Each of these 
particles carries information pertaining to its velocity 
U^"\0 and position X(")(f), n= 1,2,...A^. This information is 
updated via temporal integration of Eq. (28). The simplest 
means of performing this integration is via the Euler- 
Maruyamma approximation''^ 

X1{t,^,)=x1{t,)+D1{t,)^t+B\t,){^t)"^cnh), 

f/"('*+i) = i/"('i) + A/?(fi)Af + £"(i,)(Ar)"2^,'-(r,) 

+ F;"/f,)(Af)i%"(f,), (32) 

where £)?(ft) = D,(X('"'(fi),U(«>(fi);0, B^"\tt) 
= B(X(">(/i),U(">(rt);f),... and ^i^tk), Cpk) are indepen- 
dent standardized Gaussian random variables. This formula- 
tion preserves the Markovian character of the diffusion 
processes'*^''*'' and facilitates affordable computations. 
Higher-order numerical schemes for solving Eq. (28) are 
available,''^ but one must be cautious in using them for LES.* 
Since the diffusion term in Eq. (28) strongly depends on the 
stochastic processes, the numerical scheme must be consis- 
tent with Ito-Gikhman''^'''^ calculus. Equation (32) exhibits 
this property. 

The statistics are evaluated by consideration of the en- 
semble of particles in a "finite volume" centered at a spatial 
location. This ensemble provides "one-time" statistics. This 
finite volume is characterized by a cubic box of length Af. 
This is necessary as, with probability one, no particle will 
coincide with the point as considered.^^ Here, a cubic box of 
size Af is used to construct the ensemble mean, variances 
and covariances of the velocity vector. These values are used 
in the finite difference LES solver of Eq. (4) as described 
below. 

The SOS dissipation rate and the SOS mixing frequency 
as required in the solution of the VFDF are evaluated on die 
finite difference grid points and interpolated to the particle's 
location. Ideally, for reliable Eulerian statistics and minimum 
numerical dispersion, it is desired to have the size of the 
sample domain infinitesimally small (i.e., A^-^O) and the 
number of particles within this domain infinitely large. That 
IS 

PL{v;ii.,t) 

AE-O 

■'PN^iv;x,t)-' if2 <5(i;-«("'), 

(33) 

where V/^^ is the Eulerian PDF constructed from the particle 

ensemble, n e Ag denotes the particles contained in an en- 
semble box of length Ag centered at x; and A^^ is the total 
number of particles within the box. With a finite number of 
particles, obviously a larger Ag is needed. This compromise 
between the statistical accuracy and dispersive accuracy im- 
plies that the optimum magnitude of Ag cannot, in general, 
be specified a priori}^-^^ This does not diminish the capabil- 
ity of the procedure, but exemplifies the importance of the 
parameters governing the statistics. 

To provide an estimate of the proper A£ size, a "point 
estimator" procedure is considered. With this procedure, the 
mean values (the first moments of the VFDF) are evaluated 
by ensemble averaging, and spatial variations of these mean 
values within the box are ignored. With the discrete repre- 
sentation [Eq. (32)], the first two moments in this procedure 
are evaluated via 
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TABLE I. Recapitulation of the VFDF solution procedures. 

Finite Particle Particle statistics Finite difference 
difference solver used by the finite variables used by Redundant 
variables variables difference solver particle solver quantities 

VFDF 1 («.). *, T-/,(«, ,Uj) {U,)L 

{P)L Ui 

VFDF 2 ML Xi Ti(u,,Uy) 
1 V   ^>^ 

<«,). 

{P)L Ui 

dx^dx^ 

LES-FD (",)LAP)L Xt TiC",,«/,«t) 

<"">-  3x, 

<«.>. 

Ti.(M,,«j) 'Ui 

dxtdx^ 

Ti,(M,,M;) 

<«<)z N E f/i">-<t/,> 
EneAj 

£' 

Ag-»0 
(34) 

The point estimator is obviously subject to both statistical 
errors and dispersive errors for A^s^O. 

To determine the pressure field, the "mean-field solver" 
is based on the "compact parameter" finite difference 
scheme of Carpenter.''^ This is a variant of the McCormack'*^ 
scheme in which fourth-order compact differences are used 
to approximate the spatial derivatives, and a second-order 
symmetric predictor-corrector sequence is employed for time 
discretization. The numerical algorithm is a hyperbolic 
solver which considers a fully compressible flow. Here, the 
simulations are conducted with a low Mach number (M 
^0.3) to minimize compressibility effects. All the finite dif- 
ference operations are conducted on fixed and equally sized 
grid points. The transfer of information from these points to 
the location of the Lagrangian particles is conducted via in- 
terpolation. A second-order (bilinear) interpolation scheme is 
used for this purpose. The results of previous work indicate 
no significant improvements with the use of higher order 
interpolation schemes.* 

The mean-field solver also determines the filtered veloc- 
ity field. That is, there is a "redundancy" in the determina- 
tion of the first filtered moments as both the finite difference 
and the Monte Carlo procedures provides the solution of this 
field. This redundancy is actually very useful in monitoring 
the accuracy of the simulated results. Detailed discussions 
pertaining to this issue are provided in Refs. 8, 39-41. 

To establish the consistency of the VFDF solver, another 
LES is also conducted in which the modeled transport equa- 
tions for the filtered velocity and the generalized SGS 
stresses are solved strictly via the finite difference scheme. 
These simulations are referred to as LES-FD and are only 

applied for the case corresponding to VFDF2. That is, Eqs. 
(25) and (26) are considered. Since the SGS transport terms 
Ti(Ui,Uj,uif) are unclosed in Eq. (26), the values corre- 
sponding to these terms are taken from the Monte Carlo 
solver and substituted in the SGS stress transport equations. 
The attributes of all of the scheme are summarized in Table I, 
with further discussions in Refs. 6, 39-41. 

VI. RESULTS 

A. Flows simulated 

Simulations are conducted of a two-dimensional (2D) 
planar jet, and a 3D temporally developing mixing layer. The 
jet flow simulations are conducted primarily for establishing 
the consistency of the Lagrangian Monte Carlo solver. For 
this purpose, 2D simulations are sufficient. To analyze the 
overall performance of the VFDF and to demonstrate its fiiU 
capabilities and drawbacks, 3D simulations are required. 

In the planar jet, a fluid issues from a jet of width D into 
a co-flowing stream with a lower velocity. The size of the 
domain in the streamwise (x) and cross-stream (y) directions 
are 0«A:=S14D and -3.5D=Sy«3.5Z). The ratio of the co- 
flowing stream velocity to that of the jet at the inlet is kept 
fixed at 0.5. A double-hyperbolic tangent profile is utilized to 
assign the velocity distribution at the inlet plane. The forma- 
tion of the large scale coherent structures are expedited by 
imposing low amplitude perturbations at the inlet. In the fi- 
nite difference simulations, the characteristic boundary con- 
dition procedure of Ref. 49 is used at the inlet, free-shear 
boundary conditions are used at the free-streams and the 
pressure boundary condition of Ref. 50 is used at the outflow. 

The temporal mixing layer consists of two parallel 
streams traveling in opposite directions with the same 
speed.^^"^^ A hyperbolic tangent profile is utilized to assign 
the velocity distribution at the initial time. The simulations 
are conducted for a cubic box, O^x^L, —LIl^y^Lll, 0 
=Sz«L, where x, y, and z denote the streamwise, the cross- 
stream and the spanwise directions, respectively; and the 
length, L is specified such that L = 2'^''X.„, where Np is the 
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desired number of successive vortex pairings and X„ is the 
wavelength of the most unstable mode corresponding to the 
mean streamwise velocity profile imposed at the initial 
time. The flowfield is parameterized in a procedure some- 
what similar to that by Vreman et al}° The formation of the 
large-scale structures are expedited through eigenfunction 
based initial perturbations.^'*'^^ This includes two- 
dimensionaP"'^^'^* and three-dimensional^^'^^ perturbations 
with a random phase shift between the 3D modes. This re- 
sults in the formation of two successive vortex pairings and 
strong three-dimensionality. 

The flow variables are normalized with respect to se- 
lected reference quantities. In the jet flow, the jet exit veloc- 
ity, and the jet width are the reference scales. In the temporal 
mixing layer, the reference length is the half initial vorticity 
thickness, L,= S^(t = 0)/2 {S^ = LUl\d{ui)Jdy\,^, where 
(MI)I, is the Reynolds averaged value of the filtered stream- 
wise velocity and AC/ is the velocity difference across flie 
layer). The reference velocity is 1/^-^11/2. 

B. Numerical specifications 

All finite difference simulations are conducted on 
equally spaced grid points with grid spacings Ax = Ay 
= Az (for 3D) = A. The resolution for LES of the planar jet 
consists of 201X101 grid points. This allows simulations 
with a Reynolds number Re = U^D/v = 14,000. The simula- 
tions of the temporal mixing layer are conducted on 193^ and 
33^ points for DNS and LES, respectively. This allows simu- 
lations with Re= UrL^/v = 50. 

To filter the DNS data, a top-hat function^' of the form 
below is used 

G(x'-x) = n Gixl-Xi), 
1=1 

r 1 

G{xl-xd=' 
A7 I^.-^'I^2 

0     |;c;-;c,.|> 

2 

Ai' 

(35) 

in which N^ denotes the number of dimensions, and A^ 
= 2A.^^ No attempt is made to investigate the sensitivity of 
the results to the filter function^'' or the size of the filter.^' 

For VFDF simulations of the temporal mixing layer, the 
Monte Carlo particles are initially distributed throughout the 
computational region. For the jet flow, the particles are sup- 
plied in the inlet region - 1.75£)^j^l.75D. As the par- 
ticles convect downstream, this zone distorts as it conforms 
to the flow as determined by the hydrodynamic field. The 
simulation results are monitored to ensure the particles fully 
encompass and extend well beyond regions of nonzero vor- 
ticity with an approximately uniform particle nimiber den- 
sity. All simulations are performed with a uniform 
"weight"'^* of the Monte Carlo particles. In the temporal 
mixing layer, due to flow periodicity in the streamwise and 
spanwise directions, if the particle leaves the domain at one 
of these boundaries new particles are introduced at the other 
boundary with the same compositional values. In the cross- 

stream directions, the free-slip boundary condition is satis- 
fied by the mirror-reflection of the particles leaving through 
these boundaries. In the planar jet, new particles are intro- 
duced through the inlet boundary at a rate proportional to the 
local flow velocity and with a velocity makeup dependent on 
the cross-stream direction only. When the particles leave the 
computational domain at the outflow, they are no longer 
tracked. The density of the Monte Carlo particles is deter- 
mined by the average number of particles Ng within the 
ensemble domain of size A£XA£(XA£). The effects of 
both of these parameters are assessed to ensure the consis- 
tency and the statistical accuracy of the VFDF simulations. 

All results are analyzed both "instantaneously" and 
"statistically." In the former, flie instantaneous contours 
(snap-shots) and scatter plots of the variables of interest are 
analyzed. In the latter, the "Reynolds-averaged" statistics 
constructed from the instantaneous data are considered. In 
the spatially developing flows this averaging procedure is 
conducted via sampUng in time. In the temporal mixing 
layer, the statistics are constructed by spatial averaging over 
the x-z plane of statistical homogeneity. All Reynolds aver- 
aged results are denoted by an overbar. 

C. Consistency and convergence assessments 

The objective of this section is to demonstrate the con- 
sistency of the VFDF formulation and the convergence of its 
Monte Carlo simulation procedure. For this purpose, the re- 
sults via VFDF and LES-FD are compared against each 
other. Since the accuracy of the finite difference procedure is 
well-established (at least for the first-order filtered quanti- 
ties), such a comparative assessment provides a good means 
of assessing the performance of the Monte Carlo solution of 
the VFDF. To do so, flie statistical results obtained from the 
Monte Carlo simulations of Eq. (31) are compared with the 
finite difference solution of Eqs. (25) and (26). Also, no at- 
tempt is made to determine the appropriate values of the 
model constants; the values suggested in the literature are 
adopted^'* Co=2.1(Ci = 4.15) and C^=l. 

In Fig. 1, the instantaneous contour plots of the vorticity 
are shown as determined by (a) VFDF2 and (b) LES-FD. 
This figure provides a simple visual demonstration of the 
consistency of the VFDF2. Scatter plots of (M)^ VS {V)^ are 
presented in Fig. 2. The correlation and regression coeffi- 
cients (denoted, respectively, by p and r on these figures) are 
insensitive to Ag. Figures 3 and 4 show the Reynolds aver- 
aged values of the streamwise velocity and several compo- 
nents of the SGS stress tensor for several values of Ag, with 
A^£=40 kept fixed. It is observed that the first filtered mo- 
ments as obtained by VFDF agree very well with those via 
LES-FD even for large Af values. However, smaller Ag val- 
ues are required for convergence of the VFDF predicted SGS 
stresses to those by LES-FD. The relative difference between 
the L2 norms of all of the components of the SGS tensor as 
a function of (Ag/A)^ is presented in Fig. 5. Extrapolation 
to A£;=0 shows that the "error" goes to zero as Ag—>0. 

The influence of A^£ on the first two moments is shown 
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,c FIG. 1. Plot of the vorticity field con- 
tours, (a) VFDF2, (b) LES-FD. A^ 
= A, iV£=40. 

in Figs. 6 and 7. It is observed that A^£ does not have a 
significant influence on the first moments, but does slightly 
influence the second moments. In all the cases considered, 
yV£>40 yields reliable predictions, consistent with previous 
consistency and convergence assessments of the scalar 
FDF.*'^ All the subsequent simulations are conducted vi'ith 
A£ = A/2andAf£=40. 

D. Comparative assessments of the VFDF 

The objective of this section is to analyze some of the 
characteristics of the VFDF via comparative assessments 
against DNS data. This assessment is done via both a priori 
and a posteriori analyses. In the former, the DNS results are 
used to determine the range of the empirical constants ap- 
pearing in the VFDF sub-closures. In the latter, the final re- 
sults as predicted by the VFDF are directly compared with 
those obtained by DNS. The procedure is similar to that in 
Ref. 20 and considers the 3D temporal mixing layer. 

In addition to VFDF, three other LES are conducted with 
(1) no SGS model, (2) the Smagorinsky'*'^ SGS closure, 
and (3) the dynamic Smagorinsky""" model. In the case 
with no model, the contribution of the SGS is completely 
ignored, i.e., rt(M,,My) = 0. In this case, the numerical errors 
amount to an implied model. But as indicated in Ref. 20 this 

case is included to provide a point of reference for the other 
closures. The Smagorinsky model is 16,61 

7-i.(M,,My)- 3*Sij=-2 v,Sij, 

'j    2      dXi SXi 
(36) 

v,= C,Als. 

C^=v2 0.17^«=0.04, 5= yJSijSij and Ai, is the characteristic 
length of the filter. This model considers the anisotropic part 
of the SGS stress tensor aij= Ti{Ui,Uj)-\kSij. The isotro- 
pic components are absorbed in the pressure field. The dy- 
namic version of the Smagorinsky model provides a means 
of approximating C^ as suggested in Refs. 17-19. The pro- 
cedure for the implementation of this model in the 3D tem- 
poral mixing layer LES is described by Vreman;^° thus it is 
not repeated here. (See Refs. 11, 23, 62, and 63 for recent 
reviews on SGS closure strategy.) 

In addition to the resolved velocity field, the primary 
integral statistical quantities considered for comparative as- 
sessments are 
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FIG. 2. Scatter plots of the filtered velocity field as obtained via VFDF2 vs 
LES-FD. (a), (u)^; (b), (u)^,. A£ = A, Af£=40. 

Bk=\ niin(0,/7t)dx. 

PkAx,   with   Pk=-TL{Ui,Uj)—^^, 

With e„=v—   — +—  

(38) 

Ef is the kinetic energy of the resolved field, e„ represents 
the viscous molecular dissipation rate directly from the fil- 
tered field, P^^ is the production rate of the SGS kinetic en- 
ergy (or the rate of energy transfer from the resolved filtered 
motion to the SGS motion), and B^ is the total 
backscatter.^"*^ The resolved molecular dissipation rate is 
always positive (by definition), but the production rate of the 
SGS kinetic energy can be locally negative. This backscatter 
is not represented in the Smagorinsky model. The dynamic 
model is potentially capable of accounting for it, but at the 
expense of causing numerical instabilities. In the implemen- 
tation of the dynamic model used here, backscatter is 
avoided by averaging the numerator and denominator of the 
expression determining C„ (Refs. 19 and 20) over the homo- 
geneous directions. If negative values are still present, they 
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FIG. 3. Reynolds averaged values of the filtered streamwise velocity, (a) 
Cross-stream variations at ;c = 7, (b) streamwise variation at )' = 0 (center- 
line). yV£=40. 

are set equal to zero.^°'*^ The "resolved" components of die 
Reynolds-averaged stress tensor are denoted by /?,y where 

J?.7=«",)L-<«,>L)««y)L-<«;)L)- The "totaT Reynolds 
(37) stresses are denoted by r^ where ry = (M,—M,)(M^-M^). 

These are approximated by 'F~j'^R~j+Ti(Ui,Uj).^°'^^'^^ in 
DNS, the total stresses are evaluated directly and the results 
indicate that Rij+Ti(Ui,Uj) does indeed approximate rj] 
with a maximum error of less than 10%. 

Figure 8 shows the distribution of the particle number 
density within the whole computational domain. Assuring an 
approximately uniform distribution, the values of the mo- 
ments within local ensembles are compared with those of 
filtered DNS data. These DNS data are transposed from the 
original high resolution 193^ points to the low resolution of 
33^ points, and then are compared with LES results on these 
coarse points. 

The DNS data are also used to make a priori estimates 
of the model constants. The primary terms which require 
closure are the SGS dissipation and the velocity-pressure 
scrambling tensors. The model equation [Eq. (20)] involving 
Cg is in a scalar form. For an estimate of Cj (thus CQ), we 
consider the following norm of the corresponding closure 
[Eq. (27)] 

n, ..j -{Bij-h3ij)\hCMrL(ui,Uj)-lkSijl    (39) 

where || W;y|| = yWy^M^. To estimate the coefficients, a linear 
regression is performed on all the data points at each com- 
putational time step. The optimized constants as obtained in 
this way are denoted by C^ and Cj. This procedure is also 
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FIG. 4. Cross-Stream variations of the Reynolds averaged values of some of 
the components of the SGS stress tensor at j; = 7 with yV£=40. The LES-FD 
results are obtained with A£=0.5A, N^^AO. 

followed for the Reynolds averaged data, with the optimized 
models obtained in this way denoted by Cg and Cj. The 
temporal variations of these estimated values are shown in 
Fig. 9. The nonuniformity of the coefficients indicates the 
"nonuniversality" of the models. This is expected as the flow 
evolves from an initially smooth laminar state to a strong 
three-dimensional state (at f^AO) before the action of the 
small scales becomes significant. The closures as adopted are 
not fully suitable for appUcation in all of these flow regions. 
Nevertheless, Fig. 9 indicates that the values for these coef- 
ficients as suggested in RAS, i.e., Ci'==4.15, C^'^l are rea- 
sonable, at least within the turbulent regime. The influences 
of these parameters are further investigated via a posteriori 
analysis of the results as discussed below. 

Figures 10 and 11 show the contours of the spanwise and 
the streamwise components of the vorticity field, respec- 
tively, at time t = 80. By this time, the flow has gone through 
several pairings and exhibits strong 3D effects. This is evi- 
dent by the formation of large scale spanwise rollers widi 
presence of counter-rotating streamwise vortex pairs in all 
the simulations. The results via the no-model indicate too 
many small-scale structures which clearly are not captured 
accurately on the coarse grid. The amount of SGS diffusion 
with the Smagorinsky model is very significant at initial 
times. Due to this dissipative characteristics of the model, the 

(AE/A)' 

FIG. 5. Percentage of the relative difference between the L2 norms of the 
stresses as a function of A^/A. (a) x=2.8, (b) x = 7, (c) x= 11.2. 

predicted results are too smooth and only contain the large 
scale structures. The vortical structures as depicted by the 
dynamic Smagorinsky and the VFDF are very similar and 
predict the DNS results better than the other two models. The 
results obtained by VFDFl and VFDF2 are virtually indis- 
tinguishable from each other. This is expected, due to the 
lack of importance of molecular effects in this free shear 
flow. 

The Reynolds averaged values of the streamwise veloc- 
ity and the temporal variations of the momentum thickness 

1       fL L/2 

La 
{\-{u)i){\+{u)L)dy, (40) 

are shown in Figs. 12 and 13, respectively. In Fig. 12 the 
Reynolds averaged values of both filtered and unfiltered 
DNS data are considered and are shown to be essentially 
equivalent. Therefore, the latter are not shown in subsequent 
figures. The dissipative nature of the Smagorinsky model at 
initial times resulting in a slow growth of the layer is shown. 
Several values of the model parameters (CQ, CJ.) are consid- 
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FIG. 7. Cross-stream variations of the Reynolds averaged values of some of 
the components of the SGS stress tensor at x=7. The LES-FD results are 
obtained with A£=0.5A, ^£=40. 

FIG. 8. Particle number density in VFDF2 simulation at » = 60. The isosur- 
face corresponds to Af£=40 set as initial conditions. Co=2.1, C^= 1. 

ered in the VFDF simulations. It is observed that as the mag- 
nitude of Cj. decreases, the initial rate of the layer's spread is 
higher. With the exception of the case with Cg = 0.5 and the 
Smagorinsky model, all the other VFDF cases, the dynamic 
Smagorinsky and the no-model yield a similar rate of layer's 
growth at late times. 

The temporal variations of the resolved kinetic energy 
and all of the terms defined in Eq. (38) are shown in Fig. 14. 
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FIG. 10. Contour plots of the spanwise component of the vorticity at z 
= 0.751,//,,, / = 80. (a) Filtered DNS, (b) no model, (c), Smagorinsky 
model, (d) dynamic Smagorinsky model, (e) VFDF2, Co = 2.1, C^=\, (f) 
VFDFl, Co = 2.1, C,= l. 
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FIG. 11. Contour plots of the streamwise component of the vorticity vector 
at x=0.25UL,, / = 80. (a) Filtered DNS, (b) no model, (c) Smagorinsky 
model, (d) dynamic Smagorinsky model, (e) VFDF2, Co = 2.1, C^=l, (f) 
VFDFl, Co = 2.I, C^=l. 

The overall features displayed in this figure are similar to 
those reported by Vreman et al.^° for the no model, the Sma- 
gorinsky model and the dynamic Smagorinsky model. The 
initial rate of decay of the resolved kinetic energy for the 
Smagorinsky model is the highest. This is due to the exces- 
sive production of the SGS kinetic energy by this model in 
the transitional region, and explains the reason for the lack of 
small scales in the vortical structures as discussed before. For 
all the other models the initial rate of decrease of the re- 
solved kinetic energy is small and increases as the flow de- 
velops. The trend portrayed by DNS results is best captured 
by the VFDF simulations. For the no model case the only 
means of dissipation of the resolved kinetic energy is 
through molecular action and numerical dissipation which 
become significant at later stages due to presence of a large 
amount of small scales. In this case, the amount of numerical 
dissipation is the highest. For all the other closures, the pro- 
ductions rate of the SGS kinetic energy is larger than the 
molecular dissipation as the flow develops. The dynamic 
Smagorinsky and the no-model simulations predict the same 
initial rate of decay for the resolved kinetic energy. This is 
due to low initial values of P^^ predicted by the dynamic 
Smagorinsky model. After t=40 the amount of P^ as pre- 
dicted by the dynamic model is more than that of molecular 
dissipation by the no-model. Thus the rate of decay of the 
resolved kinetic energy becomes higher for the dynamic 

model and is closer to that obtained by DNS. 
With the exception of the no-model case, all the simula- 

tions predict similar trends for the molecular dissipation. The 
magnitude of this dissipation as predicted by VFDF changes 
slightly with the variation of the model parameter. The pro- 
duction rate of the SGS kinetic energy depends more 
strongly on the model coefficients; as C^ decreases, the peak 

-1.0 ^—» 

FIG. 12. Cross-stream variations of the Reynolds averaged values of the 
streamwise velocity at r = 70. 
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FIG. 13. Temporal variations of the momentum thickness. 

magnitude of P^ is larger. The Smagorinsky model does not 
adequately predict Pj^, and the dynamic model yields better 
predictions at long times. The overall trends are best pre- 
dicted by VFDF. The same is true in capturing the backscat- 
ter phenomenon. By design, the backscatter is identically 
zero in the Smagorinsky and the dynamic Smagorinsky 
model. But VFDF is capable of capturing it, and its extent is 
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FIG. 15. Cross-stream variations of some of the components of a;,- at t 
= 60. 

controlled by the model parameters. In this regard it is im- 
portant to note that there are no numerical instabihty prob- 
lems in the VFDF solver for negative B^ values. However, 
the amount of predicted backscatter is less than that of 

-20 t 

(rf) 
300 

FIG. 14. Temporal variations of (a) total resolved ki- 
netic energy, (b) SGS kinetic energy production rate, (c) 
total backscatter, (d) total resolved dissipation. 
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DNS and its relative magnitude is less than those of P^ ^iid 

Several components of the planar averaged values of the 
SGS anisotropy tensor, aij=Ti{ui,Uj) — jkSij are presented 
in Figs. 15 and 16. Both the Smagorinsky and the dynamic 
model under-predict the components of this stress. The 
VFDF predictions are more satisfactory. In this regard, the 
VFDF is expected to be more effective than the other clo- 
sures for LES of reacting flows since the extent of SGS mix- 
ing is influenced by SGS convection.*^™ "Optimum" values 
for Cj, and CQ cannot be suggested to predict all of the com- 
ponents of this tensor at all times, but it is obvious that there 
is too much SGS energy with C^ = 0.5.   

Several components of the resolved stress tensor 7?,^ are 
shown in Figs. 17 and 18. As expected, the performance of 
the Smagorinsky model is not very good as it does not pre- 
dict the spread and the peak value of the resolved Reynolds 
stresses. None of the other models show a distinct superiority 
in predicting the DNS results. The no-model and the dy- 
namic Smagorinsky model predict large peak values at the 
middle of the layer. The VFDF predicts both the spread and 
the peak values reasonably well. The results for small C^ 
values are not shown since the amount of energy in the re- 

solved scale decreases too much in favor of the increase of 
the SGS stress (as shown in Figs. 15 and 16). The cross- 
stream variations of the total Reynolds stress ri2 are pre- 
sented in Fig. 19. The peak values by the no-model simula- 
tions are again the highest. The dynamic model and VFDF 
perform similarly and capture the DNS trends equally well. 

E. Comparison with previous investigations 

All of the results obtained here by DNS, and LES via the 
Smagorinsky and the dynamic Smagorinsky models agree 
very well with those of Vreman et al.^ The slight differences 
are due to the nonidentical flow initializations, and the dif- 
ferent computational methodologies employed in the two 
simulations. To compare with results of other investigations, 
simulations are conducted of another temporally developing 
mixing layer with Re = 500 in a larger computational do- 

-(y/2)" is main, Lr= 120. An initial forcing of the form Ae 
used, where ^ is a uniformly distributed random number 
with an amplitude of 0.05. Rogers and Moser*° perform DNS 
of a high Re number flow on512X210Xl92 spectral points. 
The results of these simulations are in excellent agreements 
with laboratory data of Bell and Mehta.^' Here, LES is con 
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FIG. 18. Cross-stream variations of some of the components of /?;, at t 
= 80. 

ducted of this flow via the dynamic Smagorinsky model. 
The profiles of the mean stream wise velocity and several 

components of the resolved stresses at t=250 are presented 
in Figs. 20 and 21, respectively. In these figures, ^ 
=ylSJt) and the symbols denote the experimental data^' at 
several streamwise locations. The good agreement with these 
data also indicates good agreement with DNS results of Rog- 
ers and Moser.^^ 

F. Computational requirements 

The total computational times associated with simula- 
tions of the 3D temporal mixing layer are shown in Table n. 
Expectedly, the overhead associated with the VFDF simula- 
tion is extensive as compared to the other models; neverthe- 
less this requirement is significantly less that of DNS. This 
overhead was tolerated in present simulations, but can be 
reduced with utilization of an optimum parallel simulation 
procedure. This has been discussed for use in PDp'^ and is 
recommended for future VFDF simulations. 

VII. SUMMARY AND CONCLUDING REMARKS 

The filtered density function (FDF) methodology^ has 
proven very effective for large eddy simulation (LES) of 
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FIG. 19. Cross-stream variations of ri2, (a) r=60, (b) r=80. 

turbulent reacting flows.^'^"" In all previous contributions, 
the LES/FDF of only the scalar quantities are considered. 
The objective of the present work is to develop the FDF 
methodology for LES of the velocity field. For this purpose, 
a methodology termed the velocity filtered density function 

FIG. 20. Cross-Stream variation of the Reynolds averaged values of the 
streamwise velocity at < = 250. Solid line denotes model predictions via the 
dynamic Smagorinsky model. Symbols denote experimental data of Bell and 
Mehta (Ref. 71). 
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(a) 

(c) 

FIG. 21. Cross-stream variations of the Reynolds aver- 
aged values of the streamwise velocity at»= 250. Solid 
lines denote model predictions via the dynamic Smago- 
linsky model. Symbols denote experimental data of 
Bell and Mehta (Ref. 71). 

3        5 

(VFDF) is developed. The VFDF is basically the probability 
function (PDF) of the subgrid scale (SGS) velocity vector. 
The exact transport equation governing the evolution of the 
VFDF is derived. It is shown that the effects of SGS convec- 
tion in this equation appears in a closed form. The unclosed 
terms in this transport equation are modeled via two formu- 
lations: VFDFl and VFDF2. The primary difference between 
the two models is the inclusion of the molecular diffusion in 
the spatial transport of the VFDF in the first formulation. The 
closure strategy in the formulation similar to that in PDF 
methods in Reynolds averaged simulation (RAS) 
procedures.^^ In this way, the VFDF formulation is at least 
equivalent to a second-order moment SGS closure. 

The modeled VFDF transport equations are solved nu- 
merically via a Lagrangian Monte Carlo scheme in which the 
solutions of the equivalent stochastic differential equations 
(SDEs) are obtained. Two Monte Carlo procedures are con- 
sidered. The schemes preserve the Ito-Gikhman nature of 
the SDEs and provide a reliable solution for the VFDF. The 
consistency of the VFDF formulation and the convergence of 
its Monte Carlo solutions are assessed. This is done via com- 
parisons between the results obtained by the Monte Carlo 
procedure and the finite difference solution of the transport 
equations of the first two filtered moments of VFDF (LES- 
FD). With inclusion of the third moments from the VFDF 
into the LES-FD, the consistency and convergence of the 

TABLE II. Computer requirements for the 3D temporal mixing layer. One 
unit corresponds to 1657.2 seconds of CPU time on the SGI origin 2000. 

16 

Resolution NB Normalized CPU time 

DNS 193X193X193 178 
VFDFl 33X33X33 40 33.6 
VFDF2 33X33X33 40 30 

Dynamic Smagorinsky 33X33X33 2.19 
Smagorinsky 33X33X33 1.05 

No model 33X33X33 1 

Monte Carlo solution is demonstrated by good agreements of 
the first two SGS moments with those obtained by LES-FD. 

The VFDF predictions are compared with those with 
LES results with no SGS model, with the Smagorinsky 
SGS closure, and with the dynamic Smagorinsky""'' model. 
All of these results are also compared with direct numerical 
simulation (DNS) results of a three-dimensional, temporally 
developing mixing layer in a context similar to that con- 
ducted by Vreman et al}'^ This comparison provides a means 
of examining some of the trends and overall characteristics 
as predicted by LES. It is shown that the VFDF performs 
well in predicting some of the phenomena pertaining to the 
SGS transport. The magnitude of the SGS Reynolds stresses 
as predicted by VFDF is larger than those predicted by the 
other SGS models and much closer to the filtered DNS re- 
sults. The temporal evolution of the production rate of the 
SGS kinetic energy is predicted well by VFDF as compared 
with those via the other closures. The VFDF is also capable 
of accounting the SGS backscatter without any numerical 
instability problems, although the level predicted is substan- 
tially less than that observed in DNS. 

The results of a priori assessment against DNS data in- 
dicates that the values of the model coefficients as employed 
in VFDF (CQ and C^) are of the range suggested in the 
equivalent models previously used in RAS. The results of a 
posteriori assessments via comparison with DNS data does 
not give any compelling reasons to use values other than 
those suggested in RAS, CQ = 2.\, €^=1. However, small 
values of Cj. are not acceptable as they would yield too much 
of SGS energy relative to that within the resolved scales. 

Most of the overall flow features, including the mean 
velocity field and the resolved and total Reynolds stresses as 
predicted by VFDF are similar to those obtained via the dy- 
namic Smagorinsky model. This is interesting in view of the 
fact that the model coefficients in VFDF are kept fixed. It 
may be possible to improve the predictive capabilities of the 
VFDF by two ways: (1) Development of a dynamic proce- 
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dure to determine the model coefficients, and/or (2) imple- 
mentation of higher order closures for the generalized Lange- 
vin model parameter G,y (see Ref. 34). 

Work is in progress towards developments of a joint 
velocity-scalar FDF for LES of reacting flows. Compared to 
standard LES, this approach has the advantage of treating 
reaction in a closed form; and, compared to scalar FDF*'^ has 
the advantage of treating convective transport (of momentum 
and species) in closed form. These modeling advantages 
have an associated computational penalty. For the cases con- 
sidered here, VFDF is more expensive computationally than 
the dynamic Smagorinsky model by a factor of 15. It is ex- 
pected that VFDF will not be more expensive than scalar 
FDF, at least for reacting flows with many species. 
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A stochastic model is developed for the acceleration of a fluid particle in anisotropic and 
inhomogeneous turbulent flows. The model consists of an ordinary differential equation for velocity 
(which contains directly the acceleration due to the mean and rapid pressure gradients), and a 
stochastic model for the remainder of the acceleration, which is due to the slow pressure gradient 
and to viscosity. In addition to a rapid-pressure model, the stochastic model involves three tensor 
coefficients. For isotropic turbulence, the model reverts to that previously proposed by Sawford. At 
high Reynolds number the model is consistent with local isotropy and the Kolmogorov hypotheses, 
and tends to the generaUzed Langevin model for fluid-particle velocity. In this case two of the tensor 
coefficients are known in terms of the Kohnogorov constant CQ , while the third is related to the 
coefficient in the generalized Langevin model. A complete analysis of the model is performed for 
homogeneous turbulent shear flow, for which there are Lagrangian data from direct numerical 
simulations. The main result is to establish the one-to-one correspondence between the model 
coefficients and the primary statistics, namely, the velocity and acceleration covariances and the 
tensor of velocity integral time scales. The autocovariances of velocity and acceleration obtained 
from the model are in excellent agreement with the direct numerical simulation (DNS) data. Future 
DNS studies of homogeneous turbulence can be used to investigate the dependence of the model 
coefficients on Reynolds number and on the imposed mean velocity gradients. The acceleration 
model can be used to generate a range of turbulence models which, in a natural way, incorporate 
Reynolds-number effects.   © 2002 American Institute of Physics.   [DOI: 10.1063/1.1483876] 

I. INTRODUCTION 

In order to investigate dispersion in turbulent flows, in 
1921 Taylor' introduced a stochastic model for the position 
X^(f) of a fluid particle. An analysis of Taylor's model 
shows that it is equivalent to the Langevin equation as a 
model for the fluid-particle velocity \J'^(t)=dX'^(t)/dt. 
(Langevin^ had proposed this stochastic equation in 1908 to 
model the velocity of particles undergoing Brownian mo- 
tion.) The Langevin equation remains the basis for stochastic 
models of turbulent dispersion (see, e.g., Refs. 3-5). Further- 
more the Langevin equation and its generalization*'^ provide 
a closure to the transport equation for the (one-point, one- 
time) probability density function (PDF) of velocity.^'^ And 
from the modeled velocity PDF equation can be deduced the 
corresponding partially modeled Reynolds-stress equation.'" 
Thus, an accurate stochastic model for the fluid-particle 
velocity U^(0 is a potent tool in turbulence modeling as 
well as in the study of turbulent dispersion. 

Important conclusions about the performance of the 
Langevin model can be drawn from the simplest case of 
statistically stationary homogeneous isotropic turbulence. In 
general, the fluctuating component of fluid-particle velocity 
is defined by 

u+(/) = U+(/)-(U(Xlr],r)), (1) 

where U(x,0 is the Eulerian velocity; and for the case con- 

"'Electronic mail: pope@mae.coraell.edu 

sidered u^(r) is a statistically stationary process with mean 
zero. The Lagrangian velocity autocorrelation function is de- 
fined by 

p(^)^(«+j(r)«+)(/+5))/(«(^)(f)«+)(r)). (2) 

which is independent of t and / because of stationarity and 
isotropy, respectively. (Here and below, bracketed suffixes 
are excluded from the summation convention.) The Langevin 
model predicts this autocorrelation function to be^ 

pis) = cxp\ 
Tr (3) 

where T[^ is the Lagrangian integral time scale. For not-too- 
small time intervals \s\/Ti^, this prediction is in excellent 
agreement with experimental and direct numerical simula- 
tion (DNS) data." 

But the form of Eq. (3) reveals three related shortcom- 
ings of the Langevin model. First, it contains the single time 
scale Ti (which is characteristic of the large-scale, energy- 
containing motions); second, there is no dependence on Rey- 
nolds number; and, third, the slope of p(s) given by Eq. (3) 
is discontinuous at the origin [reflecting the fact that the 
Langevin model for u^(f) is continuous but not differen- 
tiable]. The same observations can be made'" regarding the 
Lagrangian velocity frequency spectrum E^io))—which is 
the Fourier transform of {u^i^u^j.^)p(s). According to the 
Langevin model, at high frequency Ei(w) varies at co~-: 
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there is no representation of the more rapid decrease in 
Eiico) beyond the frequency corresponding to the Kolmog- 
orov time scale r,. 

In 1991, Sawford'" introduced (for isotropic turbulence) 
a stochastic model for the fluid-particle acceleration A^(/) 
= dM*{t)ldt = (fX'^it)ldt'^. Such a model remedies the 
above-mentioned deficiencies of the Langevin model: a sec- 
ond time scale (which scales with T,) is introduced; there is 
an intrinsic Reynolds-number dependence (since T^IT^ in- 
creases with Reynolds number); and, at the origin, the pre- 
dicted velocity autocorrelation function is once continuously 
differentiable. Correspondingly, around the Kolmogorov fre- 
quency   T -1 the   Lagrangian   velocity  spectrum  Eiio)) 
smoothly changes its power-law behavior from w"^ to w""'*. 
For isotropic turbulence, Sawford's model is in excellent 
agreement with DNS data, including accounting for the 
Reynolds-number dependence of the acceleration autocorre- 
lation function and the second-order Lagrangian velocity 
structure function.'^'^ 

In this paper we consider a more general stochastic 
model for the fluid-particle acceleration, which is applicable 
to anisotropic turbulence and to inhomogeneous turbulent 
flows. The general form of the model is developed in Sec. II, 
where particular attention is paid to the contribution to ac- 
celeration from the rapid pressure gradient. When applied to 
homogeneous turbulence (with constant and uniform mean 
velocity gradients) the stochastic model is of the form 

daf(t)=-[Cijaf(t) + D,juf{t)]dt+B,jdWj, (4) 

where u*(/) is the model for u'''(t), a*(f) is its rate of 
change (i.e., a* = du*/dt), and W(f) is an isotropic Wiener 
process.^ The coefficients B, C, and D are tensors which can 
depend on the local state of the flow and the turbulence, but 
are independent of a* and u*. (The conventional notation is 
that "-I-" denotes a fluid-particle property, and "*" denotes a 
model for that property.) 

In the simplest case of isotropic turbulence, all the coef- 
ficients in Eq. (4) are isotropic (e.g., Bij = BSij), and the 
model reverts to Sawford's.'" In this case, which is reviewed 
in Sec. Ill C, there is a one-to-one correspondence between 
the three scalar coefficients {B, C, and D) and the three pri- 
mary statistics: the acceleration variance a'^; the velocity 
variance u'~\ and the velocity integral time scale Ti. 

Beyond isotropic turbulence, the simplest type of flow to 
study is statistically stationary homogeneous turbulence with 
imposed mean velocity gradients—as exemplified by a re- 
cent DNS of forced homogeneous turbulent shear flow,''' and 
described in Sec. IV. For this case the coefficients B, C, and 
D are constant, and a complete analysis of the model [Eq. 
(4)] can be performed. This is done in Sec. IV B, where it is 
shown that there is a one-to-one correspondence between the 
tensor coefficients in die model and the primary statistics, 
namely the velocity-acceleration covariances and the veloc- 
ity integral time scale tensor. (This analysis parallels the au- 
thors's recent analysis of a stochastic model for velocity.'^) 

With some approximation (and with an appropriate scal- 
ing of the variables), the same analysis can be applied to 
nonstationary homogeneous turbulence, in particular to (un- 
forced) homogeneous turbulent shear flow for which there 

are Lagrangian data from the recent DNS studies of Sawford 
and Yeung.'*'^ It is shown (in Sec. IVC) that the velocity- 
acceleration autocorrelation functions predicted by the model 
are in excellent agreement with these DNS data. 

As well as being useful in its own right, we also regard 
the acceleration model as an intermediate step in the devel- 
opment of improved stochastic models for velocity for use in 
dispersion studies, in PDF methods, and in other turbulence 
models. Compared to the velocity model, the acceleration 
model can be more closely related to Lagrangian data from 
DNS, which are known to contain strong Reynolds-number 
dependencies."'^ Given an acceleration model (i.e., a pre- 
scription for the coefficients B, C, and D), a corresponding 
velocity model can be deduced'^ which yields the same ve- 
locity covariances and integral time scales, and which inher- 
its Reynolds-number dependencies. Such an improved model 
has direct application in PDF methods, and from it can be 
deduced a pressure-rate-of-strain model for use in Reynolds- 
stress models. These and other uses of the acceleration model 
are discussed in Sec. V. 

II. STOCHASTIC MODEL FOR ACCELERATION 

We consider the inhomogeneous turbulent flow of a 
constant-property Newtonian fluid (of density p and kine- 
matic viscosity i^). This is governed by the continuity equa- 
tion dUi/dXj=0, and the Navier-Stokes equation 

A,(x,0 = 
DUi ^""^^P 

I   dp d^U: 

p dXi dXjdXj 
(5) 

where A(x,/), U(x,f), and p{\,t) are the acceleration, ve- 
locity, and pressure. The general fluid particle has position 
X+(r), velocity. 

V^it} = dt 
= U(X+[f],r), 

and acceleration 

A+(r) = -^=A(X+[f],r). 

(6) 

(7) 

A. Decomposition of acceleration 

The acceleration can be decomposed into mean and fluc- 
tuating contributions based on the mean ((U) and {p)) and 
fluctuating (u and p') components of velocity and pressure. 
Furthermore, as originally shown by Chou," the fluctuating 
pressure can be decomposed into rapid, p^''\ slow, p'^', and 
harmonic, /?*''', contributions.^ Thus, the fluid acceleration is 

^i=-Z 
1 d{p)     1 <?/?('''     1 ^p<'>     1 dp CO 

p   dXj      p   dXj      p   dXj      p   dXj 

+ p—— 1 V 
dXjdXj dXjdXj 

(8) 

The harmonic pressure and the mean viscous term are neg- 
ligible except in the immediate vicinity of walls (or other 
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surfaces). Here we neglect these terms, and hence leave to 
future work the development of the special treatments re- 
quired for the viscous near-wall region. 

B. Structure of the model 

The proposed model consists of an ordinary differential 
equation (ODE) for U*(f)—a model for the fluid particle 
velocity U^(r)—and a stochastic differential equation (SDE) 
for an acceleration variable denoted by A''(f). The model 
also involves the fluctuating components of these quantities, 
which are defined by 

^(/)-U*(r)-(U*(0|X*(0) (9) 

and 

a«(r)-AO(/)-(AO(f)|X*(0), (10) 

where X*(/) denotes the position of the model particle. 
The ODE for velocity is 

dUf 
"dF 

P   ^^ilxHO 

1 dp (r) 

P   dXi 
+ a%t),     (11) 

x*(0 

where the first two contributions on the right-hand side rep- 
resent acceleration by the mean pressure gradient (which is 
assumed to be known), and acceleration by the rapid pressure 
gradient (which has to be modeled). A comparison of Eq. (8) 
and Eq. (11) then reveals that a''(0 is a model for the accel- 
eration due to the slow pressure gradient and the viscous 
term. 

The acceleration variable P^{t) is modeled by the gen- 
eral SDE, 

dA%t)=-[CijA%t) + Dijuf{t)]dt+B,jdWj,        (12) 

where W(f) is an isotropic Wiener process. The tensor func- 
tions B(x,0, C(x,0, and D(x,0 [which in Eq. (12) are 
evaluated at [X*(r),f]] depend on the local state of the tur- 
bulence, but are independent of U* and A°. 

C. Homogeneous turbulence 

Before presenting the rationale for the structure of the 
model, we first note the form that it takes in homogeneous 
turbulence. 

In homogeneous turbulence (with uniform mean velocity 
gradients), the coefficients B, C, and D depend only on time, 
and it follows that the mean {AP{t)\K.*{t)) = {X°(t)) is zero. 
Consequently sP{t) is identical to A°(/). And the velocity 
equation can readily be transformed to an equation for 
u*(r). Thus, for homogeneous turbulence the model be- 
comes 

duf d{U)   ^     11 ^;,(^)\ 

dt dxj    J    \p  <?J:,/X*(,)      ''' 

da^{t}=-[C^ja°it) + Dijufit}]dt + BijdWj. (14) 

D. Rationale 

The structure of the model is such that some contribu- 
tions to acceleration—namely, from the mean and rapid pres- 

sure gradients—appear directly in the ODE for velocity, Eq. 
(II); whereas the other contributions—from the slow pres- 
sure gradient and viscosity—are modeled through the SDE 
for A°(t), Eq. (12). The rationale for this division is based 
on the response of the system to a rapid distortion, and it can 
be most easily understood for the case of homogeneous tur- 
bulence. 

Consider the sudden imposition of a very large strain 
rate on homogeneous turbulence. Both the mean and rapid 
pressure fields change suddenly and this leads to a sudden 
change in the fluid acceleration. On the other hand, the fluc- 
tuating velocity field and the slow pressure change continu- 
ously in response to the suddenly imposed distortion. 

The model is qualitatively in accord with this behavior. 
It may be seen from Eq. (11) and Eq. (13) that the accelera- 
tion changes suddenly if there is a sudden change in 
d{U)ldxj, with accompanying sudden changes in d{p)ldxi 
and dp^'''ldxi. In the acceleration equation [Eq. (12) and Eq. 
(14)], these sudden changes can result in sudden changes in 
the coefficients, B, C, and D, but nevertheless, a°(f) changes 
continuously. 

E. Rapid-pressure models 

As is usual, and in keeping with the physics, we consider 
deterministic models for the rapid pressure gradient. The 
quantity then to be modeled is the conditional mean rapid 
pressure gradient—conditional on the modeled state of the 
fluid particle. 

For homogeneous turbulence, the rapid pressure varies 
linearly with the imposed mean velocity gradient, and hence 
the general model can be written^" 

1 dp (r) 

p  dx. 
aO,u* (15) 

The third-order tensor function N(,,i is given in terms of 
two-point conditional velocity statistics in Refs. 20 and 8 
(where it is denoted by Bf^,), and it satisfies the relations 

N,!,=u e ' N, nr =0,    N(,,=N. Hik- (16) 

Rapid distortions of homogeneous turbulence can be 
treated exactly using the wave-vector model of Van Slooten 
and Pope.^-^' This requires that the modeled state of the fluid 
particle be supplemented by the wave vector e*(?)—which, 
among other conditions, satisfied the relations 

efef^l,    efuf=0. 

Then the tensor N(i,i in Eq. (15) is given by 

(17) 

(18) 

For rapid distortions, the wave-vector model consists of 
ODE'S for e*(0 and u*(0, the latter being Eq. (13) with the 
neglect of a", and with the rapid-pressure model given by 
Eqs. (15) and (18). This model is exact for arbitrary rapid 
distortions of homogeneous turbulence, in the sense that it 
yields the correct evolution of the Reynolds stresses. 

As is conventional in Reynolds-stress and velocity-PDF 
modeling, we are primarily concemed here with models 
based on velocity and its one-point statistics, i.e., u*(r) and 
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the Reynolds stress (M,My). The unfortunate fact of the matter 
is that these quantities are inadequate to describe rapid dis- 
tortions (see, e.g., Reynolds and Kassinos^^): additional di- 
rectional information is needed, as is provided by the wave 
vector. However, the hope is that rapid-pressure models 
based on velocity alone may be adequate for the moderate 
and slowly varying mean strain rates encountered in many 
turbulent shear flows. 

Following Ref. 20, it is natural to consider a rapid- 
pressure model that is linear in velocity, and which therefore 
can be written 

I dp (r) 

p  dXj 
a^u* = Gl;>« A(-) f = H)jk"j 

^^{Uk) 

dXe 

or, equivalently. 

= i//l^' A^, a-i" 

(19) 

(20) 

where the tensors G|J' and //-j/.f correspond to the analogous 
tensors in the Haworth-Pope model.^'^ The nondimensional 
fourth-order tensor H^''* is modeled as a linear function of the 
Reynolds-stress anisotropy tensor 

_<M^_1 
(21) 

and indeed a nontrivial dependence on 6,y is required to sat- 
isfy the condition that the rapid pressure neither produces nor 
removes turbulent kinetic energy. 

In subsequent sections we confine attention to this linear 
model, not least because it is amenable to analysis. In DNS, 
the rapid pressure gradient can extracted, its linearity in u 
can be examined, and specific models for //^J^f <^^" ^^ ^^' 
sessed. With this model, Eq. (13) can be rewritten 

~dt 
■=-K,u* + « 

where the tensor AT,^ is defined by 

K: 
dX: 

-G; 
dXf 

-i8;^s^t-m;'H\ 

(22) 

(23) 

Finally, we caution that in future studies of rapid- 
pressure modeling (e.g., based on DNS) nonlinear models 
should not be discounted. For example, the simple model 

^m-^^\S,,-  ^^^ (24) 

satisfies all known constraints (without requiring a depen- 
dence on fc,j). 

F. Summary 

The model consists of an ODE for velocity, Eq. (11), 
which contains the mean pressure gradient and a model for 
the rapid pressure gradient [e.g., Eq. (19)]. The remainder of 
the acceleration—owing to the slow pressure gradient and 
the viscous term—is modeled by an SDE, Eq. (12), which 
contains three tensor coefficients, B, C, and D. Various 
properties of these coefficients are revealed in subsequent 
sections. 

III. PROPERTIES OF THE MODEL 

In this section we examine some of the mathematical 
properties of the model, and their connections to the physics 
of turbulent motions. 

A. Equivalent first-order and second-order systems 

For homogeneous turbulence, the model [Eq. (14) and 
Eq. (22)] can be written as a first-order system of SDE's, 

^M,* = [-/i:yH; + a°]rff, (25) 

^af = -lCifl]^DijU*Mt^B,jdW^, (26) 

or, in an inferior notation, as a first-order system of ODE's 

da 

It 
i-=-C,ja^-D,juf + B^jWj, 

(27) 

(28) 

where W denotes white noise, which has the property 
f'oW(t')dt' = W{t). 

Alternatively, by differentiating Eq. (27) with respect to 
t, the model can be re-expressed as the second-order system 

d^uf duf    I dKij\   ^ . ^   ^ 

It may be seen that the system is governed fundamentally by 
just three coefficient tensors, not four as suggested by the 
appearance of B, C, D, and K in Eqs. (25)-(28). In particu- 
lar, if K is constant—as is the case in the analysis below 
(Sec. rVB)—the behavior of u*(0 is determined by B, D 
and the sum 

C=C+K, (30) 

but not by C and K individually. Thus, for constant K, Eqs. 
(25) and (26) are equivalent to the system 

duf = afdt, (31) 

da* = -[Cija* + D,juf]dt + Bij dWj, (32) 

in which Eq. (31) defines a*=dii*/dt, and a° can be recov- 
ered as 

2° = af + Kijuf. (33) 

The model is analyzed below via Eqs. (31) and (32). 

B. Scaled model equations and coefficients 

It is informative to scale the variables and coefficients in 
the model equations for homogeneous turbulence so that 
they become nondimensional quantities of order unity. A pre- 
liminary is to define the quantities used to perform these 
scaUngs. 

The velocity and acceleration variables are scaled by 
their standard deviations u' and a', which are given by 

u"^\{ufuf}=lk,     a'^^^iafaf) (34) 
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TABLE I. Summary of different time scales. 

T^^\;\ Eq. (55) 
To=\2-', Eq. (57) 
T, Eq. (102) 

f"", Eq. (109) 

r) 

Turbulence time scale 
Kolmogorov time scale 

Shear time scale 
Lagrangian velocity integral time scale 

Acceleration time scale 
Velocity eigen-time scale 

Acceleration eigen-time scale 
Integral time scale (6X6) matrix 

Velocity integral time scale tensor 

where k is the turbulent kinetic energy. There are four rel- 
evant time scales. The turbulence time scale is defined by 

The ODE for velocity, Eq. (13) and Eq. (15), can be 
written 

1 duf 
V~dT 

T   duf T [     d{U,)\ '2Na, 

u'   dt V'' dx,  J «' 

A A'' \^\ 

'I rj a' 

T^i/ 

(43) 

Each term is nondimensional; expressions in square brackets 
are of order unity; and time is scaled by the turbulence time 
scale, i.e., /=//T. If the linear rapid-pressure model, Eq. 
(19), is; used, then the ODE for u*(f) can alternatively be 
written 

e' (35) 

where e is the rate of dissipation of k. The shear time scale, 
characteristic of the imposed mean velocity gradients, is de- 
fined by 

rs^S-^, (36) 

where 

d{U^} S{U,} 

dXi dx, 

The Kolmogorov time scale is 
1/2 

-.-II 
and the acceleration time scale is defined by 

a'^T- 

The ratio TJ^IT decreases with Reynolds number as 

^ = Re- 
T 

1/2 _ 
1/2 

^    R 
20 -I 

(37) 

(38) 

(39) 

(40) 

where the turbulence Reynolds number is Kc=l^l{€v\ and 

the Taylor-scale Reynolds number is /?x = (TRe)"^. The 
various time scales used throughout the paper are summa- 
rized in Table I. 

With QQ being the Kolmogorov-scaled acceleration vari- 
ance 

a'^r. 
an=- (41) 

the acceleration and Kolmogorov time scales are related by 

r„       2 

3«o' 
(42) 

It may be seen then that (at least approximately at high Rey- 
nolds number) r^ scales with T,, since according to the 
Kolmogorov hypotheses OQ is a universal constant."^ In fact, 
it is known"-^''--*^ that, at moderate Reynolds numbers, OQ 

increases weakly with R^—in accord with the refined Kol- 
mogorov hypotheses. In discussing scaUngs we ignore this 
weak dependence and write Ta/r~Re~"-. 

1  duf T _ 
7^ = Kn u'   dt TS 

+ 
1/2 

where the nondimensional, order-one coefficient K is 

(44) 

(45) 

It is clear from Eqs. (43) and (44) that uf/u' responds to 
the mean velocity gradients at the normalized rate T/TS 

= Sk/€. Under usual circumstances this is of order one, but 
for rapid distortions it is arbitrarily large. Evidently, the term 
in a° is of order X/TTT^—RC''''. But since a° is a zero-mean 
random function with normalized time scale 7^/7, the cumu- 
lative effect of the term on the covariances of u*/w' over a 
time interval Ai>Ta/T is of order \[r/T^\AiTa/T)~Ai. 
Thus, although the term in a" is relatively large instanta- 
neously (of order Re"''), its cumulative effect is of order one. 

For the SDE for a°(0, Eq. (14), we define the scaled 
coefficients by 

B^ ^,2B, C=r^C,    D=TT„D. (46) 

The subsequent analysis confirms that these scalings are ap- 
propriate, in that each of these scaled coefficients is of order 
unity. With these definitions, Eq. (14) can be written 

da'! 

a 

0 _   a- * n \ —       ** I dt    _   dW, 
■ + B: (47) 

Clearly r^ is the characteristic time scale of the process: the 
mean of the term in C, and the variance of the term in B is 
each of order dt/T^. However, the term in D is smaller by 
the factor of (T^/r)"^~Re""''. 

If the mean velocity gradients are constant, then the 
equations for u*(r) and a°(t) [Eqs. (25) and (26)] can be 
re-expressed as equations for u*(r) and a*(/) [Eqs. (31) and 
(32)]. The scaled forms of these equations are 

T duf 
(48) 

and 
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daf 

1/2 

+1-1  b 
dt    _  dW, 
— +B::-^. (49) 

For the case considered T/T^ is of order unity^so that (com- 
pared to the leading-order terms) the terms in K and D are of 
order T^/r-Re""^ and (TJT)^^~RC''^'\ respectively. 

C. Isotropic turbulence 

We consider in this section the simplest case of homo- 
geneous isotropic turbulence made statistically stationary by 
artificial forcing. We do so to relate the general model pro- 
posed here to Sawford's,'^ and to provide a characterization 
of the model's behavior in this simple setting. This provides 
a useful reference for the results obtained below for the gen- 
eral case. 

For isotropic turbulence without mean velocity gradi- 
ents, there is no rapid pressure, and a*(t) = du*/dt is the 
model for the fluid-particle acceleration. The coefficients in 
the model, Eq. (32), are inevitably isotropic (S,-, = B<5y, 
Bij = BSij, etc.), and so the three components of a*(?) are 
statistically identical and independent. Writing a*(t) for one 
component of acceleration [e.g., a*(t)=a*(t)], and with 
u'*(t) being the corresponding component of velocity, the 
model for isotropic turbulence is 

da*=-\_Ca* + Du*]dt + BdW. (50) 

This is identical to Sawford's model,'^ but with the coeffi- 
cients expresses differently. 

An analysis of Eq. (50) (see Refs. 12 and 13 and Sec. 
IV B) shows that the acceleration variance is 

g2 gl 

^      '    2C 2C 

the velocity variance is 

<«*^) 
B' B' 

2CD 2CD 

and that the Lagrangian velocity integral time scale is 

C r^ c 
r/=      p{s)ds= — = T—, 
^    Jo D      D 

(51) 

(52) 

(53) 

where p{s) is the Lagrangian velocity autocorrelation func- 
tion defined by Eq. (2). 

There is a one-to-one correspondence between the three 
model coefficients B, C, and D, and the three primary statis- 
tics a'^, u'^, and r^,. Equations (5l)-(53) are readily in- 
verted to yield for the scaled coefficients 

C=—,    5' = —^,    D=l. 
T T 

(54) 

The velocity autocorrelation function pis) obtained 
from the model is most conveniently and naturally written in 
terms of two different (but related) time scales, r„ and 

TQ (T^> To). These are the inverses of the two eigenvalues 
of the system, which are given by the solution to the 
quadratic equation 

X^-CK + D = 0. 

The solutions are given in terms of Ti^ and r^ by 

i_' 

and 

^2  ."■^0 = 

1 

1 

4T„T 
1+   l- 

T[ 

1/21 

1 .-^"" 

Conversely we have 

and 

7*00 To 

(55) 

(56) 

(57) 

(58) 

(59) 

It may be observed that as TQ/F^ tends to zero, T^, and TQ 

tend to Ti and r^Cr/r^), respectively. The coefficients B, C, 
and D given by Eq. (54) can be re-expressed in terms of T^ 
and To, which is the form originally given by Sawford.'^ 

The velocity autocorrelation function given by the model 
IS 

p{s)- ,-\AiT^ 1 
To. 

(60) 

which is a Unear combination of two decaying exponentials, 
with time scales To and T^. 

To conclude, based on this examination of the model in 
isotropic mrbulence, we summarize some important observa- 
tions which are mirrored in the analysis of the general model 
presented below. 

(1) The three model coefficients B, C, and D are uniquely 
related to the three primary statistics, a'^, u'^, and T^^. 

(2) The autocorrelation function p(s) is a linear combina- 
tion of decaying exponentials, the time scales of which 
are the inverses of the eigenvalues of the system. 

(3) The predictions of the model are in excellent agreement 
with Lagrangian statistics obtained from DNS (see Refs. 
12 and 13). 

(4) Given the primary statistics, a separate acceleration time 
scale cannot be imposed on the model: instead the accel- 
eration time scale T^ is given by Eq. (39). 

(5) The simplest scaling arguments show that T^ scales with 
T, and that T^ scales with T^, SO that the scaled coeffi- 
cients B, C, and D are of order unity. 

D. Gaussianity 

For homogeneous turbulence, the model takes the form 
of a set of SDEs, Eqs. (31) and (32), in which the drift 
coefficients (-Cijuf and -Dijuf) are linear in the depen- 
dent variables, while the diffusion coefficient B^ is indepen- 
dent of a* and u*. Such linear stochastic differential equa- 
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tions are known^^ to yield Gaussian processes. Thus, 
according to the model, the processes a*(t) and u*(r) are 
jointly Gaussian. 

For homogeneous turbulent shear flow, the experiments 
of Tavoularis and Corrsin^^ clearly show that the one-point 
one-time joint PDF of velocity is joint normal. Hence the 
model is correct in predicting that the one-time PDF u*(r) is 
joint normal. However, it is known from DNS" and 
experiments^*'^^ that both acceleration and two-time velocity 
statistics depart from Gaussianity, an effect which is not rep- 
resented by the model. It is possible to represent these effects 
in stochastic models by making the model coefficients them- 
selves stochastic processes.'"'"" In particular, Beck"^' shows 
that the experimental acceleration distribution can be accu- 
rately represented by a stochastic model with gamma- 
distributed coefficients. Here, however, we retain constant 
coefficients and do not attempt to represent these higher- 
order effects. 

It is emphasized that the Gaussianity of the model is 
confined to homogeneous turbulence. For inhomogeneous 
flows, non-Gaussian statistics such as the velocity triple cor- 
relation can be accurately calculated by linear stochastic 
models. 

We now examine the model equation for velocity in the 
high Reynolds number limit. For a general inhomogeneous 
flow, the model for u*(0 [Eqs. (13) and (19)] is 

duf 
IT 

As Talr tends to zero, a''(f) tends to white noise; or, more 
precisely, for a time interval St such that both T^ISt and 
St IT tend to zero, the increment in velocity 

n+st 
At')dt', (65) 

tends to a Gaussian random vector with mean /i(u*(t))St, 
Eq. (63), and covariance 

2a'^(iCoT^)SijSt = Co€S,jSt. (66) 

Thus, in the Umit, Eq. (64) tends to a diffusion process given 
by the SDE, 

dur = l-^ + GJufdt + (Coey^dW,, (67) 

E. High Reynolds number and local isotropy 

We now consider the Umit of very high Reynolds num- 
ber, which is equivalent to the limit of r^/r tending to zero. 
In this limit, according to the Kolmogorov hypotheses, the 
turbulence is locally isotropic. As is now shown, the stochas- 
tic model for acceleration is consistent with local isotropy 
provided that the scaled coefficients B and C tend to the 
following isotropic constant tensors: 

Bl = 2ilCo)-'S,j   and Q.-dCo)-'^^, (61) 

where CQ is the Kolmogorov constant associated with the 
second-order Lagrangian structure function [see Eq. (69)]. 

In general, variations in u*(r) and aP(t) occur on the 
time scales T and r^, respectively. For the case considered, 
Ta<^T, u*(f) changes very slowly compared to aP{t); and so 
a°{t) is in a statistically quasistationary state, the statistics of 
which change slowly in response to the changes in u*(r). 
This state is governed by Eq. (47), with the coefficients 
given by Eq. (61), which can be rewritten 

with 

rfa? = 
dt        a'dW: 

-(af-;^,[u*(0]) + 
^ACoTa       x/l^ 

with 

fiiiu*) *\ = - -CQO' 
"2_    uf 

-Co 
£>,,M 

ij"-j 

(62) 

(63) 

With /i, being considered as a frozen coefficient, Eq. (62) is 
simply the Langevin equation; and hence each component of 
aP(t) is an independent Omstein-Uhlenbeck (OU) process 
with conditional mean /i,(u*(r)), variance a'^, and time 
scale iCoTa- The normalized mean /J-j/a' tends to zero as 
(Ta/r) tends to zero [see Eq. (63)], and hence a*'(/) tends to 
a locally isotropic process. 

(68) 

It may be recognized that Eq. (67) is the generaUzed 
Langevin model (GLM^'^); and from this observation we 
draw two important conclusions. First, it is well known that 
the GLM is consistent with local isotropy and the Kolmog- 
orov hypotheses in yielding (for the second-order Lagrangian 
structure function) 

{[ur(t+s)-unt)][ufit+s)-uf(t)]) 
= CQ€SSIJ,    for s<T. (69) 

Second, in the high Reynolds number limit being considered, 
Eq. (68) gives the GLM coefficient G,y which corresponds to 
the acceleration model coefficients GJJ' and D,y. 

For forced, statistically stationary homogeneous isotro- 
pic turbulence, the GLM coefficient G,y is constrained to be 
-jCoSij/r.^ Correspondingly, Eq. (68) yields Dij=Sij, 
consistent with Sawford's model, Eq. (54). In general, if the 
GLM coefficient G,^ is decomposed into slow and rapid con- 
tributions, i.e., 

'j      ij        I] ' 

then Eq. (68) yields 

(70) 

(71) 

The simplest specification of G;j' (for unforced turbulence) 
is 

-l(s). 
1     3 

(72) 
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for which the corresponding value of D,y is 

^'Vil + 3C^J^- 
(73) 

In summary, with the coefficients B and C specified by 
Eq. (61), the model is consistent with the Kolmogorov hy- 
potheses. At very high Reynolds number (corresponding to 
Tair tending to zero), the acceleration statistics are locally 
isotropic, and the model tends to the generalized Langevin 
model (GLM) for velocity, Eq. (67). There is then a one-to- 
one correspondence between the remaining acceleration 
model coefficient D and the GLM coefficient G,y, Eq. (68) 
and Eq. (71). 

IV. HOMOGENEOUS TURBULENT SHEAR FLOW 

In this section we examine the stochastic model for ac- 
celeration applied to homogeneous turbulent shear flow for 
which there are Lagrangian data from DNS.'*'^ The analysis 
(performed in Sec. IV B) depends on the processes consid- 
ered being statistically stationary. We therefore define (in 
Sec. IV A) a scaled time i, a scaled velocity u(f), and the 
acceleration a(t)=du(i)/dt such that u(F) and a(f) are sta- 
tistically stationary processes—at least to a reasonable ap- 
proximation. Results from the analysis are compared to the 
DNS data in Sec. IV C. 

A. Scaling for statistical stationarity 

1. Forced homogeneous turbulent shear flow 

We consider first the case of forced homogeneous turbu- 
lent shear flow corresponding to the DNS of Schumacher.''' 
This case is relatively simple because the flow is statistically 
stationary. The imposed shear rate S is constant, as are the 
turbulent kinetic energy k and its dissipation rate e. The non- 
dimensional time i is defined by 

k     r' 
(74) 

and u(f) is defined as the model for the fluctuating compo- 
nent of velocity following the fluid particle, u*(r), normal- 
ized by M': 

G(r)- 
u*(0 

(75) 

With these definitions, the velocity covariance {ujUj} is of 
order unity, and so also are the integral time scales of u(f) 
(in scaled time). In fact, because of the equality of one-point, 
one-time Eulerian and Lagrangian statistics in homogeneous 
turbulence, we have the normalization condition following 
from Eq. (75): 

(«,(')«/(?)) = 3. (76) 

Since the velocity gradients are constant, the general stochas- 
tic model for u*(r) and a*(/) is given by Eqs. (31) and (32). 
With the transformations 

u*it) ,     du    Ta*{t) 

^   dt .  .     dW{t) 
dt=—,   JW(f)=^i7r-, (77) 

these stochastic model equations transform to 

duiii) = di{i)di, (78) 

d^iO) = - [Q^(F) + DijUjO)]dt + Bij dWjii),       (79) 

where the transformed (nondimensional) coefficients are 

r 

'a 

(80) 

and 

,       T3'2      _ T - 
(81) 

For a given orientation of the shear, i.e., d{U^ldXj 
= 58;, Sn, the coefficients B, C, and D are constant and 
depend only on the Reynolds number. 

2. Unforced homogeneous turbulent shear flow 

The DNS of Sawford and Yeung"' are consistent with 
the supposition that (after an initial transient) the energy- 
containing motions in (unforced) homogeneous turbulent 
shear flow become (approximately) self-similar. The normal- 
ized Reynolds-stress tensor {uiUj)/k becomes constant, as 
does the ratio of the turbulence-to-shear time scales, T/TS 

= Sk/e, and hence also the ratio of production V to dissipa- 
tion e. (The values deduced from the DNS are Sk/e=4.83 
and P/e=l.54.) The turbulent kinetic energy equation then 
dictates that k and € increase exponentially with time—as is 
observed. 

As previously argued,'^ this picture suggests that the 
definitions of t and u(F) by Eq. (74) and Eq. (75) remain 
appropriate, although now the velocity scale u'(t) used in 
Eq. (75) depends on time. This time dependence is quantified 
by the parameter 

n= r du' 
't^'dT 2(7-^ (82) 

the value of which is n'»0.27 in the present case. (The value 
is n=0 for the forced case, and n=-5 for decaying turbu- 
lence.) Given the (approximately) self-similar state of the 
energy-containing motions, it is reasonable to suppose that 
u(f) is (approximately) statistically stationary. But these 
states can only be realized approximately since the Reynolds 
number increases with time. Hence, while we again define 
a(f) as the derivative of u(r), this process cannot be com- 
pletely stationary: according to Kolmogorov scaling, the am- 
plitude of a increases as /?{'" and its time scale decreases as 

A quantification of the variation of /?x in homogeneous 
turbulent shear flow shows that the departure from stationar- 
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ity is not large. Based on the exponential increase of k with 
time it can be shown that R)^ increases as R)^~cxp{Ui), and 
the DNS data are consistent with this behavior (except at the 
beginning and end of the simulation). The normalized La- 
grangian velocity integral time scale is found to be TI/T 

= 0.3.'^ Hence, over a time interval oflTi, R^ increases by 
a factor of exp(0.27X0.6)^1.18. Thus, over the relevant 
time interval, the amplitude of a(f) increases by approxi- 
mately 10%, while its time scale decreases by about 20%. 

As in the forced case, the model equations [Eqs. (31) and 
(32)] for u*(r) and a*(/) can be transformed into equations 
for u(?) and a(F). The transformations are those given by Eq. 
(77), except that a(?) is given by 

a(?)- 
dn{i) d(u*(t)\       TB*(t)     ^^. 

(83) 

The transformed model equations are again Eqs. (78) and 
(79), with B given by Eq. (81), but with C and D given by 

Cij=TCij+2USij, 

D,j=7^D,j+Tnc,j+n^s,j. 
(84) 

It may be noted that Eq. (84) for C,y and D,^ also applies to 
the forced case, since in that case IT is zero. 

To conclude, the stochastic model Eq. (78) and Eq. (79) 
is analyzed in the next section, with the assumptions that 
u(?) and a(F) are statistically stationary. For homogeneous 
turbulent shear flow, the departures from stationarity are suf- 
ficiently small that the results of the analysis can usefully be 
compared to the DNS data of Sawford and Yeung." This is 
done in Sec. IV C. 

B. Analysis of the stochastic model 

In this section we analyze the model in appUcation to 
homogeneous turbulent shear flow. The analysis is somewhat 
involved: for the reader wishing to avoid the details, the 
principal results are summarized in Sec. IV B 6. 

1. Model equations 

When written for the scaled variables u(F) and a(f) in 
homogeneous turbulent shear flow, the model equations are 
Eqs. (78) and (79), and the coefficients are given by Eqs. 
(81) and (84). 

It is convenient to use vector-matrix notation, and hence 
we write the model equations as 

da{t)=-[Ca{i) + Du{i)]dt+BdW{i), 

du{i)-a{t)dt, 

(85) 

(86) 

where the coefficients B, C, and D are 3X3 matrices. Fur- 
thermore, it is convenient to combine a(f) and u(/) into a 
six-vector 

2(0 = 
5(f) 
fi(f) (87) 

so that the model can be written as the single SDE 

dz{i) = - Fz{i)di+ E dWCt). (88) 

Here W(0 is a six-vector-valued Wiener process, and the 
6x6 matrix coefficients E and F are 

E= 

and 

F= 

B   0 

0    0 

C    D 

-I    0 

(89) 

(90) 

where I is the 3X3 identity matrix. 
It   is   known   from   the   theory   of   diffusion   pro- 

n ^^ IT II '* 
that the diffusion coefficient (e.g., B) affects cesses ,9,27,32,33 

the process only through the symmetric positive-semi- 
definite from BB'", where 'T" denotes the transpose. Hence, 
without loss of generality, B and therefore E can themselves 
be taken to be symmetric positive semidefinite. 

It is assumed that the eigenvalues of the drift matrix F 
have positive real parts, which is a sufficient condition for 
Eq. (88) to yield a statistically stationary solution.^' 

2. Autocovariance 

Since z(/) is a Gaussian process, its statistics are com- 
pletely described by its autocovariance, which we define by 

R{s}^{zii+s)z(tf}. (91) 

It should be noted that this is the transpose of the conven- 
tional definition in that the time increment s appears in the 
first variable. The present definition yields simpler equations 
in the subsequent analysis. 

The autocovariance of z(t) can be decomposed into the 
autocovariances of a(f) and u(f): 

"R'"'(5)    R''"(sy 
Ris) = (92) R'"'(s)    R""{s)y 

where 

R'"'is)^{u{i+s)aCtf}, (93) 

and R'"'(s), R'"'(s), and R""(s) are similarly defined. 
In view of statistical stationarity, the autocovariances are 

independent of time i (as impUed by the notation), and they 
possess the following symmetries: 

R(s) = R{-sV,    R'"'{s)==R'"'(-sf, 

R""(j) = R""(-i)^ (^'^^ 

R"''(s) = R'"'i-sf=-R""{s). (95) 

Stemming from the definition a=du/di, properties of 
derivatives of the autocovariances are 

— R'"'(s) = R'"'is),    —R""(s) = R'"'(s}, 

-rR'-"(s) = -R'"'{s), 
as 

and hence 

d^R""is) 

ds'- 

(96) 

-R"\s}. (97) 
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Thus, all autocovariances [including R(i)] can be deter- 
mined from R""(s). 

The covariances are denoted by 

Q=R(0) = 
Q" 

QUU (98) 

The covariance matrices Q, Q"", and Q"" are symmetric 
positive definite; while the off-diagonal matrices are [in view 
of Eq. (95)] antisymmetric and the transposes of each other, 

Q«°=_(Q"'')7-=(Qa")7- (99) 

It may be observed from Eqs. (96) and (97) that all of the 
covariances can be obtained from R""(5) and its derivatives 
at the origin {s = 0). 

An important quantity in the subsequent analysis is the 
autocorrelation matrix which is defined by 

P(5)-R(^)Q-', 

and which has the property 

P(0) = I. 

3. Integral time scales 

(100) 

(101) 

The matrix T of integral time scales, which also plays a 
central role in the analysis, is defined by 

r= f"?( 
Jo 

s)ds. (102) 

This matrix has a special structure, now revealed, which 
stems from the fact that a(F) is the derivative of u(/). We 
define the 6X6 matrix M by 

M= 
Jo 

Ris)ds, 

which is related to T by 

T=MQ-'    or M=TQ, 

and which is partitioned as 

'^"[M""    M""J' 

For M"" we obtain 

(103) 

(104) 

(105) 

/*co Too 

jyja«=      R'"'(s)ds=      {aii+s)a{if}ds 
JO Jo 

Jo 
a{i+s)dsa{t)' 

= ([a(=o)-G(f)]5(F)0 

= -{n{i)a{tf}=-Q"' (106) 

A similar treatment can be applied to M"" and M"" to show 
that M is given by 

M= 
-Q""    -Q"" 
QUU jy|<m 

It then follows that T is of the form 

(107) 

-I 
rruu (108) 

since the first row of the product TQ yields the first row of 
M [given by Eq. (107)] in accordance with Eq. (104). 

By analogy to Eq. (104), we define the velocity integral 
time scale tensor by 

f""=M""(Q"")"', (109) 

which is just (the transpose of) the time scale tensor that 
arises in the analysis of the stochastic model for velocity.'^ 
And we define the (scalar) Lagrangian velocity integral time 
scale by , 

TL^ (110) 

We see below that the autocovariance R(s)—and there- 
fore all other statistics—are determined by the covariance 
matrix Q and the time scale matrix T (as previously 
shown'^). Because of the special structure of the model, the 
information content in Q and T is less than it appears at first 
sight. Specifically, the symmetric and nonsymmetric 6X6 
matrices Q and T can be constructed from the 3X3 matrices 
Qaa QUU Qua ^^^ juu—^^ich havc an information con- 
tent equivalent to three symmetric and two antisymmetric 
3X3 matrices. It is marvelous—although most likely 
inevitable—that this isjjrecisely the information content in 
the model coefficients B, C, and D. 

4. Solution for the autocorrelation matrix 

It is readily deduced from the model equation, Eq. (88), 
that the autocovariance satisfies the ODE, 

— R{s) = -FR{s)    tor s^O. 
ds 

(111) 

By post-multiplying both sides of this equation by Q~', we 
find that P(s) [defined by Eq. (100)] satisfies the same equa- 
tion, 

ds 
P(5) = -FP(5)    for 5^0, (112) 

with the simple initial condition P(0)=I. The solution to this 
equation (satisfying the initial condition) is^^ 

P(5) = exp(-Fs)=2 
(-1)" 

n=o     nl 
F"s"    for s^O,     (113) 

as may be verified by differentiating with respect to s. It has 
been assumed that the eigenvalues of F have positive real 
part, which is a sufficient condition for exp(-F5) to con- 
verge to zero as s tends to infinity. 

The matrix F deduced from the DNS (in Sec. IV C) has 
the simplest structure—real positive eigenvalues, and lin- 
early independent eigenvectors. In that case F can be decom- 
posed as 

F=VAV"', (114) 

where the columns of the 6X6 matrix V are the eigenvectors 
of F, and A is the 6X6 diagonal matrix of eigenvalues. The 
solution for P(s), Eq. (113), can then be re-expressed as 



2370        Phys. Fluids, Vol. 14, No. 7, July 2002 Stephen B. Pope 

P(.j) = Vexp(-Aj)V-'    for 5^0, (115) 

showing that P(s) is a linear combination of six decaying 
exponentials, the time scales of which are the inverses of the 
eigenvalues. 

For the general case, the time scale matrix T [Eq. (102)] 
is obtained as the definite integral of the solution, Eq. (113). 
The indefinite integral is 

/ 
P{s)ds = -F-U\pi-Fs), 

from which we obtain 

r- f °°p( 
Jo 

s)ds=F -1 

(116) 

(117) 

The 6X6 drift matrix F is defined in terms of the 3X3 drift 
matrices C and D in the stochastic model for acceleration by 
Eq. (90). Given this structure of F, it is readily deduced 
(from the equation FF"' = I) that its inverse is 

F-' = 
0 

D  ' 

-I 
(118) 

which, according to Eq. (117), equals T. The first row of F~' 
indeed matches that of T [Eq. (108)], while equating the 
elements of the second rows yields 

T""=D-',    T""=D-'C, (119) 

or conversely 

D=(T'"')-',    c=(T"'')-'T"". (120) 

(The assumptions made about F are sufficient to ensure 
that D is nonsingular.) 

The important conclusions are that there is a one-to-one 
correspondence between the drift coefficients C and D and 
the time scale matrices T"" and T"° and that the autocorre- 
lation matrix P(s) is explicitly determined by the drift coef- 
ficients C and D [through Eq. (90), Eq. (114), and Eq. (115)]. 
The autocovariances are given by 

R(i) = P(s)Q=exp(-F5)Q   for 5^0, (121) 

where F is given in terms of C and D by Eq. (90). 

5. Solution for the covariance matrix 

The solution is completed by determining the covariance 
matrix Q. An evolution equation for the covariance is readily 
derived from the model equation [Eq. (88)], and then the 
condition that Q is independent of time yields 

EE^=E- = FQ+(FQ)^. (122) 

Thus E" is twice the symmetric part of FQ. 
From the definition of E in terms of B [Eq. (89)] we 

have 

E' = (E-r 
(E-)"" 

(E-)"" 

B^ 

0 

and from the definitions of F [Eq. (90)] and Q [Eq. (92)] we 
have 

FQ= 
00""+DQ" 

(124) 

Equation (122) can be used to relate the blocks of E^ to FQ, 
and evidently [from Eq. (123)] only the upper left-hand 
block is nonzero. 

For the lower right-hand block we have, correctly, 

(E^)" \auT^ 0, (125) 

in view of the antisymmetry of Q"" [Eq. (99)]; and in the 
Appendix it is shown that the off-diagonal blocks are also 
zero. Thus, the only nonzero block of E^ given by Eq. (122) 
is 

{E-)'"'=B^=-{CQ"' + bQ"'') + {CQ"'+i)Q'"'f.   (126) 

6. Conclusions 

The major conclusion now drawn from the analysis is 
that there is a one-to-one correspondence between the model 
coefficients (B, C, and D) and the primary statistics (Q and 
T). These primary statistics are known in terms of the veloc- 
ity and acceleration covariances Q"", Q"", and Q"" and the 
velocity integral time scale tensor T"", Eq. (109). 

Given Q and T, the coefficients C and D are given by 
Eq. (120), and then B^ is determined by Eq. (126). 

Conversely, given the coefficients (B, C, and D), T is 
determined by Eq. (119); and the covariances are determined 
by Eq. (126) together with the equation 

Qa<' = CQ°" + DQ"". (127) 

This equation is derived in the Appendix, where the solution 
of Eq. (126) and Eq. (127) for Q is also discussed. Together 
these equations yield a linear system which determines Q, 
but unfortunately an explicit solution is not evident. 

Once both the model coefficients and primary statistics 
are known, then the autocovariance given by the model 
R(j) = P(5')Q can be determined from Eq. (115). These au- 
tocovariances are linear combinations of the six decaying 
exponentials, exp(-\,i), where {X.i,X.2,...,X6} are the ei- 
genvalues of the coefficient matrix F, Eq. (90). 

The analysis is complete, since the autocovariances Q{s) 
fully characterize the Gaussian model processes a(f) and 
u{i). 

For Sawford's model for isotropic turbulence, the 
eigenvalues of F are r/r^ and T/TQ (each with multiplicity 
3), corresponding to time scales To, and TQ [Eq. (56) and 
Eq. (57)] which scale with the integral time scale and 
Kolmogorov time scale, respectively. And the time scale 
matrices are 

T       / T 

(123)       and 

Too To '^a 

(128) 

(129) 
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FIG. 1. Velocity autocovariances 
R,""(j) against normalized time. Sym- 
bols, DNS of Sawford and Yeung 
(Ref. 16); lines, from the acceleration 
model. 

C. Comparison to DNS data 

In this section, for the DNS of homogeneous Uirbulent 
shear flow,'^ the stochastic model coefficients B, C, and D 
are deduced from the data; and then the velocity and accel- 
eration autocovariances predicted by the model are compared 
to those from the DNS. 

All the DNS information is extracted from the time se- 
ries of the normalized velocity autocovariance R""(s). The 
remaining autocovariances [R"''(5), R''"(5), and R°°(5)] are 
obtained from Eq. (96) and Eq. (97) by numerical differen- 
tiation of R""{s), and then the covariances are obtained as 
Q=R(0). Clearly this differentiation amplifies the statistical 
noise in the data, as is particularly evident in R'"'(5) (see 
Fig. 3 below). [In future DNS designed for this purpose, it 
would be preferable to form all covariances directly from 
a(0 and u(0.] 

The velocity covariance integrals M"" [Eqs. (103) and 
(105)] are formed from the time series of R""(i) by numeri- 
cal quadrature, and then the matrix of integral time scales T 
is obtained from Eq. (104). 

Based on the DNS values of the covariances and the 
velocity integral time scales, the values of the model co- 

efficient B, C, and D are deduced which lead to the model's 
matching these statistics. The values of C and D are obtained 
from Eq. (120), and then B^ from Eq. (126). (The values thus 
obtained are reported below.) The autocovariances predicted 
by the model are then deduced from Eqs. (114), (115), and 
(100). 

Figures 1 -3 show a comparison of the autocovariances 
from the DNS (symbols) and from the model (solid lines). 
Clearly the agreement is excellent, especially for the velocity 
autocovariances (Fig. 1). It should be noted that an accelera- 
tion time scale is not an input to the model, and so the 

matching of the location and magnitudes of the peaks of 
R'"'(s) and R^^C*) in Figs. 2 and 3 is not inevitable. 

Figure 4 compares the velocity autocovariances from the 
DNS, from the present acceleration model, and from the sto- 
chastic model for velocity'^ (dashed Unes). Only the early 
times are shown where the differences between the two mod- 
els are most evident. As may be seen, the acceleration model 
provides a much more accurate representation of the curva- 
ture of the autocovariances at small times. As the Reynolds 
number increases, the differences between the two models 
decreases, and is confined to smaller times. 

The values of the coefficients B, C, and D deduced from 
the DNS are reported in scaled form as B and D [defined 
by Eq. (46)] and C= T^C. Their values are 

B 2_ 

c= 

D= 

0.70      -0.15      0 

-0.15      0.48        0 

0 0        0.64 

0.33 ' -0.03      0 

0.07     0.29       0 

0 0        0.27 

0.70   0.15      0 

0.33    1.41      0 

0        0      l.li 

(130) 

(131) 

(132) 

Given that d{Ui)ldx2 is the only nonzero velocity gradient, 
the symmetries in the problem dictate that the off-diagonal 
components in the third rows and columns of these matrices 
are zero—as is observed. The magnitudes of all three coef- 
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FIG. 2. Velocity-acceleration auto- 
covariances R"f(s) against normalized 
time. Symbols, DNS of Sawford and 
Yeung (Ref. 16); lines, from the ac- 
celeration model. [Note that R°"(s) 

= -R-°W.] 

ficients are as expected from Eq. (54) given that the velocity 
integral time scale is T^/T'^O.S. 

As discussed in Sec. Ill E, if local isotropy prevailed at 
high Reynolds number, then the acceleration statistics would 
be isotropic (to leading order in i?^'). A sufficient condition 
for the model to yield such local isotropy is that B and C (but 
not C) become isotropic as the Reynolds number increases. 

It is evident from Eq. (130) that, at the moderate Reynolds 
number of the DNS, B^ exhibits significant anisotropy. 

V. APPUCATION TO TURBULENCE MODELLING 

The general model proposed here consists of an ODE 
Eq. (11) for the fluid-particle velocity U*(/), which includes 

10 

5 
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O          O     ° 
O CO  OO    p  CXjjL^ 

f^° 

0.5 
s 

FIG. 3. Acceleration autocovariances 
Rlfis) against normalized time. Sym- 
bols, DNS of Sawford and Yeung 
(Ref. 16); lines, from the acceleration 
model. 
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FIG. 4. Velocity autocovariances 
R"j(s) at early times. Symbols, DNS 
data of Sawford and Yeung (Ref. 17); 
solid line, from the acceleration 
model; dashed line, from the velocity 
model (Ref. 15). 

a rapid-pressure model [Eq. (15)]; and an SDE [Eq. (12)] for 
the acceleration variable \'^(t). A specific model consists of 
a specification of the coefficients appearing in these equa- 
tions, namely, Nij/^, Bij, C,y, and D^. 

Beyond proposing the general model, the objective here 
is not to suggest a specific model, but rather to show that all 
of the coefficients can be deduced from DNS data on homo- 
geneous turbulence. Hence, future DNS studies—at different 
Reynolds numbers and with different imposed mean velocity 
gradients—can be used to guide the construction of a specific 
model. 

As outlined in the following subsections, the accelera- 
tion model can be used at different levels of turbulence mod- 
eling. In each case, the turbulent time scale T is needed, 
which can be obtained from the standard model equation for 
€ or w = r~', or from particle models for such quantities.   ' 

A. Velocity-acceleration-wave-vector model 

In addition to the model equations for U*(r) and A''(/), 

an additional SDE can be solved for the unit wave vector 
e*{t) (Refs. 9 and 21), so that Eq. (18) can be used as the 
rapid-pressure model. Such a model has the virtue of repre- 
senting exactly the evolution of the Reynolds stresses for 
arbitrary rapid distortions of homogeneous turbulence. Al- 
though it has not been convincingly demonstrated, the model 
should also be capable of providing a more accurate repre- 
sentation of the rapid pressure away from the rapid-distortion 
limit. 

B. Velocity-acceleration model 

Without the wave-vector model, the rapid pressure has to 
be modeled in terms of the particle velocity and Reynolds 
stresses (among other quantities). The standard model [Eq. 

(19)] is linear in the velocity, but nonlinear models [e.g., Eq. 
(24)] can also be considered. It has to be acknowledged that, 
at this level of closure, there is insufficient directional infor- 
mation to model accurately rapid distortions. But such mod- 
els may be adequately accurate for the moderate distortions 
that typically occur in turbulent shear flows. 

Compared to a velocity model (discussed in the next 
section), a velocity-acceleration model has two advantages. 
First, in essence it models the velocity as a second-order 
system, Eq. (29), rather than as a first-order system. Conse- 
quently, the rapid and slow responses of the turbulence to a 
sudden change in the mean velocity gradients can be mod- 
eled in a natural way. The second advantage is that accelera- 
tion is modeled realistically rather than as white noise, and 
thereby Reynolds number effects can be incorporated in a 
natural way. 

An apparent disadvantage is that, in a numerical imple- 
mentation, time steps At of order r^ (or equivalently T^) are 
needed to resolve the acceleration time series; whereas with 
a velocity model the time steps can be of order T^ (or 
equivalently rj. With time steps of order r^, the computa- 
tional cost increases as Re"^. However, in most appUcations 
the details of the short-time behavior are not required, and 
temporal resolution on a time scale of order r is sufficient. It 
is fortunate, therefore, that the model equations can be 
solved accurately by numerical methods that take time steps 
At that are large compared to r^ (but small compared to T). 

This is because the model coefficients vary on the time scale 
T, and the model equations [e.g., Eq. (25) and Eq. (26)] with 
frozen coefficients admit analytic solutions. Consequently, if 
resolution on the Kolmogorov time scale is not required, the 
velocity-acceleration model can be implemented with a com- 
putational cost that is independent of Reynolds number. 



2374        Phys. Fluids, Vol. 14, No. 7, July 2002 Stephen B. Pope 

C. Velocity model 

Given a specific velocity-acceleration model, a corre- 
sponding velocity model can be defined—as now outlined. 

When applied to (approximately) self-similar homoge- 
neous turbulence (at a given Reynolds number and with 
given imposed mean velocity gradients), the velocity- 
acceleration model yields a value of the normalized Rey- 
nolds stress tensor (Q"") and of the velocity integral time 
scale tensor (T""). The corresponding velocity model is de- 
fined to be the linear SDE for velocity that yields these same 
statistics. The drift and diffusion coefficients in the velocity 
model are uniquely determined by Q"" and T"".'^ 

[This procedure for determining the velocity-model co- 
efficients is straightforward to implement numerically; but an 
analytical treatment is hampered by the lack of an expUcit 
solution to Eq. (122) for Q.] 

The form of the velocity model thus obtained is the same 
as the generalized Langevin model (GLM^'^) but with an 
anisotropic diffusion coefficient. The advantage of obtaining 
a velocity model by this route is that it inherits the Reynolds- 
number dependence (and other attributes) of the velocity- 
acceleration model. At very high Reynolds number the ac- 
celeration model tends to the GLM with isotropic diffusion, 
Eq. (67), and with the coefficient G,^ given by Eq. (71). 

D. Reynolds-stress model 

Given a particle model for velocity, it is straightforward 
to derive a corresponding Reynolds-stress equation.'''•^"•^^ 
Again, such a model inherits from its antecedents a 
Reynolds-number dependence and other attributes. 

Vi. CONCLUSIONS 

We have considered a stochastic model for fluid-particle 
velocity and acceleration in inhomogeneous turbulent flows. 
The model consists of an ODE for velocity, Eq. (11), and an 
SDE for an acceleration variable, Eq. (12). This structure 
produces the correct qualitative response to rapid distortions. 
If the model is supplemented by the wavevector equation, 
then the resulting model [Eq. (15) and Eq. (18)] is exact for 
arbitrary rapid distortions of homogeneous turbulence. Oth- 
erwise, a standard linear model, Eq. (19), for the rapid pres- 
sure can be used. 

For isotropic turbulence, the SDE for acceleration re- 
duces to Sawford's model.'^ For very high Reynolds 
number the model is consistent with local isotropy and 
the Kolmogorov hypotheses, and tends to the generaUzed 
Langevin model for velocity. For homogeneous turbulence 
(with constant and uniform imposed mean velocity gradi- 
ents) a full analysis of the model is performed. This estab- 
lishes the one-to-one correspondence between the model co- 
efficient tensors B, C, and D and the primary statistics of the 
model, namely, the velocity-acceleration covariances and the 
velocity integral time scale tensor. Details are given in Sec. 
IV B 6. For homogeneous turbulence, the modeled processes 
(i.e., the velocity and acceleration time series) are Gaussian, 
and hence are completely characterized by their autocovari- 
ance, which is given explicitly by Eq. (121). The Gaussianity 

of acceleration and of multitime velocity statistics is physi- 
cally incorrect, and reflects the fact that the model does not 
account for internal intermittency. 

For homogeneous turbulent shear flow, the model coef- 
ficients are evaluated from the DNS data of Sawford and 
Yeung.'^ The model autocovariances thus obtained (Figs. 
1-4) are in excellent agreement with those from the DNS, 
including the short-time (Kolmogorov scale) behavior (see 
Fig. 4). 

Compared to a linear stochastic model for velocity, the 
velocity-acceleration model has the advantage of providing a 
reaUstic representation of the behavior on the Kolmogorov 
time scale; and, as a consequence, of naturally incorporating 
Reynolds-number effects. The purpose here has not been to 
propose a specific model (i.e., a specification of the model 
coefficients), but rather to show that these coefficients can be 
deduced from DNS of homogeneous turbulence, as functions 
of the Reynolds number and of the imposed mean velocity 
gradients. 

As discussed in Sec. V, the velocity-acceleration model 
can be used as a basis for generating a range of (Reynolds- 
number dependent) PDF and Reynolds-stress turbulence 
models. 
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APPENDIX: SOLUTION FOR THE COVARIANCE 
MATRIX 

The purposes of this appendix are to derive Eq. (127); to 
show that the off-diagonal blocks of E^ given by Eq. (122) 
and Eq. (124) are zero; and to discuss the solution of Eq. 
(126) and Eq. (127) for the covariances. 

The covariances are related to the derivatives of the au- 
tocovariances at the origin, Eq. (96). From the ODE for the 
model autocovariance [Eq. (Ill)] we obtain 

Ts^^^^ = -FQ= 
Jj = 0 

C     D 

-I    0 

Qaa     Qau 

Q""     Q"" 

-CQ° 

Q° 

DQ""    -CQ""-DQ 
Qau 

(Al) 

The bottom row of this last matrix is consistent with the first 
two relations in Eq. (96); while the consistency of the upper 
right block with the third relation in Eq. (96) yields 

which is Eq. (127). 
The second derivative at the origin is 

ds ::2R(^) F-Q. (A3) 
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By expanding the right-hand side and invoking Eq. (97) we 
obtain 

ds 
■R""is) :Q<"' = CQ''"+DQ"", (A4) 

j = 0 

which provides no new information, but is consistent with 
Eq. (A2). 

From Eq. (122) and Eq. (124), we obtain for the upper 
right block of E^, 

(E^)''"=CQ''" + DQ''"-Q'"''^ (A5) 

,Qaa_Qaa   ^Q^ (A6) 

where the second line follows from Eq. (A2) and the sym- 
metry of Q"". 

We turn now to the solution of Eq. (126) and Eq. (127) 
for Q"", Q"", and Q"" given B, C, and D. Recall that Q"" 
and Q'"' are symmetric, while Q"" is antisymmetric. Both 
sides of Eq. (126) are identically symmetric, whereas the 
right hand side of Eq. (127) is not identically symmetric. 
Hence, together, these equations represent a linear system for 
the components of Q"", Q"", Q""—with the same number of 
independent equations as the number of independent un- 
knowns, i.e., 15. 

It is very unfortunate that there appears not to be a 
simple explicit solution for the covariances. It should be pos- 
sible, however, to obtain an explicit solution using tensor 
representation theorems.^^'^^ That is, the covariance can be 

"written 

N, 

Q""=S '-^"Js'"^   Q'"'=2 ri">"'. 
«=1 

No 

n= 1 

(A7) 

where {S^"*} is a complete set of A^^ linearly independent 
symmetric tensor functions that can be formed for B, C, and 
D; and similarly {A*"*} is a complete set of A^^ antisymmet- 
ric tensors. The coefficients {/"I'J,^}, {ri"'}, and {rj,"^'} can then 
be deduced from Eq. (126) and Eq. (127): they are invariants 
of B, C, and D. However such a solution is unlikely to be 
simple (or easy to obtain). 
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