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Abstract- We propose a new ectopic beat correction algorithm
for Heart Rate Variability (HRV) that is based on the Integral
Pulse Frequency Modulation (IPFM) model.  The model is used
to infer the modulation signal that has generated the beats
surrounding the ectopic beat.  The ectopic beat is then removed
and replaced with a normal beat at the time which least disturbs
the rhythm identified with the IPFM model.  We test the
performance of the technique by removing simulated ectopy
from real heart rate data from human subjects using a number
of previously published correction techniques as well as our
own. We show that our new technique performs significantly
better than existing techniques for low and high levels of ectopy.

Keywords: HRV, ectopic beat removal, IPFM model.

I. INTRODUCTION

Heart rate variability (HRV) centers on the study of the
autonomic nervous system via the information contained in
the intervals between heartbeats.  Ectopic focii are regions in
the heart that produce spontaneous heartbeats, known as
ectopic beats, which serve to contaminate the information
contained in the heartbeats. A number of studies have shown
that analyzing data containing even single ectopic beats can
lead to significant over-estimation of time- and frequency-
domain HRV indices [1-4].  Unfortunately, elevated levels of
ectopic activity often accompany many of the conditions for
which HRV analysis is potentially most useful [3, 5, 6].
Researchers often deal with ectopic beats by avoiding them.
However, this is not always possible due to data length
considerations and the experimental nature of many studies
[2].  Also, the occurrence of ectopic beats might well be
related to the nervous system [7] and therefore the exclusion
of ectopic segments may bias measurements [3].

Alternative techniques attempt to mathematically remove
the artifact left by the ectopic beat.  Reference [3] presents a
detailed comparison of the effectiveness of several popular
correction algorithms.  The techniques were: null (no
correction), linear and cubic spline interpolation, nonlinear
interpolation and simple deletion.   Of these techniques,
nonlinear interpolation and simple deletion had the best
overall performance.    Ironically, the most common
correction techniques in the literature are linear and cubic
splines, which reduce the distortion, but are not as effective
as simply deleting the ectopic beats.  None of these
techniques gave reliable frequency-domain measurements
during ectopic episodes.

In this paper we develop a new model based technique for
the replacement of ectopic beats.  It is based on the Integral
Pulse Frequency Modulation (IPFM) model, which is a
model of sino-atrial modulation by the nervous system [8].
We employ the IPFM model to characterize the modulation
of heart rate around the time of the ectopic.  The ectopic beat

is then deleted and a replacement beat inserted at the time
that least disturbs the rhythm identified by the IPFM model.
Our technique employs a cost function minimization
approach.  We compare the performance of our technique to
other correction techniques on real HRV data with simulated
ectopy.

II. THE NEW METHOD

Our correction method is based on the IPFM model, which
we describe before continuing.

A. The IPFM model

The Integral Pulse Frequency Modulation (IPFM) model
was first suggested as a model for pacemaker activity by
Hyndman and Mohn [8].  The IPFM model generates
heartbeats by integrating an input signal until it reaches a
preset threshold.  At this point a pulse is produced and the
integrator is reset to zero.  The time of occurrence of the
heartbeats are denoted by the sequence { }kt  and for IPFM

generated data satisfy the relationship
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where ( )m t  is the zero-mean modulation signal and I  is

the mean interval between heartbeats and also the threshold
for the integrate-to-threshold process.  The time course of the
events is represented by a series of delta functions erected at
the times of the heartbeats and is denoted by ( )x t :
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The spectrum of this function has been analytically
determined by [9].  Their results show that under limited
conditions the modulation signal can be recovered by low-
pass filtering ( )x t .  The conditions are:

C1: ( ) 1m t << , i.e., small amplitude modulation.

C2: the highest frequency in ( )m t is less than 1/ 2I  Hz.

If an ideal low-pass filter is employed with cut-off
frequency of cf  Hz, then the recovered modulation signal is

the low-pass filtered event series [10], denoted by ( )lpfes t :
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We take the value 1/ 2cf I= .  If conditions C1 and C2 are

satisfied, ( ) 1 ( )lpfes t m t+ .  The low-pass filtered event
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series given by (3) is used to characterize the modulation of
the heartbeats around the ectopic.

B. Ectopic beat replacement

Let the beat times be the sequence { }ktτ =  and beat

number e  is due to an ectopic contraction.  Therefore, et

represents the time of the ectopic contraction and is not the
time that the e ’th beat would have occurred had normal
sinus impulse conduction occurred.  We denote the perfectly
corrected beat times by an asterisk superscript.  Accordingly,

*
et  denotes the time of the e ’th beat had the ectopic not

occurred, and the sequence * *{ }ktτ =  represents the sequence

of beat times without ectopy.
The beat times before the ectopic contraction are identical

for τ  and *τ .  If the ectopic beat is assumed to be
compensatory then the beat times after the ectopic are
identical to those that would have occured had the ectopic
beat not occurred.  Then, τ  is equivalent to *τ  except for
their e ’th elements.  Fig. 1 depicts this scenario.  Thus, the

problem at hand is given τ  find *τ  by   replacing et  with *
et .

We now describe our method of accomplishing this.  Given a
sequence τ , we characterize the modulation with the low-
pass filtered event series.
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We then define the sequence { }kSΨ =  where
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This process is depicted in Fig. 2.  In addition to Ψ , the
sequence * *{ }kSΨ =  is defined similarly except the sequence

*τ  is used instead of τ .  The next result states a special

property of *Ψ :
Lemma 1: If *τ  is the output of an IPFM process with

zero-mean modulation signal ( )m t  and threshold I  that

satisfy C1 and C2, then *Ψ  is a constant with value I .
Proof.  If C1 and C2 are satisfied then * ( ) 1 ( )lpfes t m t

τ
= +

and by (1) the elements of *Ψ  are equal to the constant I .
This result provides the means of identifying the corrected

value of et  as Ψ  is constant only when *
e et t= .  As et  must

lie between 1et −  and 1et + , we can find *
et  by varying et  across

this range until Ψ  is constant as shown in Fig. 3.

However, real heartbeats are not the result of a perfect
IPFM process and Ψ  may never become constant.  We
propose that the best estimate to *

et  is when Ψ  is “most

constant”.  If the concept of “most constant” is defined by the
sum of the squared deviations from the mean of Ψ  the
solution is a cost-function minimization problem with the
following cost-function:
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The parameter et  that gives the minimum of the cost-

function is the best approximation to the true value of *
et  and

we denote it as *
êt :
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Fig. 3 shows an example scenario.  It is possible to prove
that for an IPFM process with modulation signal satisfying
C1 and C2, (7) provides perfect recovery, i.e. * *

ê et t= .

C. Efficient cost function evaluation.

The time taken by numeric minimization algorithms is
fundamentally limited by the time taken to evaluate the cost
function.  The kS  values amount to integrating a number of

sinc( )⋅ functions from kt  to 1kt + .  Only the sinc( )⋅  functions

with main lobe located close to the integration interval need
to be accounted for, therefore, kS  can be approximated

accurately by
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The number of sinc( )⋅  functions either side of the interval

is a variable parameter M  which can be chosen by the
operator.  Smaller values correspond to less accuracy but
faster execution speed.  We use a value of 6M = .

The integration of the sinc( )⋅  functions can be avoided

with the use of the special function

( )
0

( ) sin( ) /
x

Si x t t dt= ∫ (9)

The ( )Si ⋅ function cannot be reduced to simpler analytic

functions, but it can be computed efficiently by numerical
means.  Using (9), we can rewrite (8) as:
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Fig. 1: The ectopic beat replacement scenario.
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Fig. 2: The process that generates { }
k

SΨ =  from ( )x t .
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Equation (8) shows that kS  is a function of et  for

[ ]1,k e M e M∈ − − + .  Accordingly, the set of kS  needed to

be evaluated can be restricted to this set.  Also, [ ]E Ψ  can be
approximated by:
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Ectopic Replacement Algorithm
Given the events times { }ktτ = and an element et τ∈ :

1. Discard the value of 
e

t .

2. From the subset { | [ 2 1, 2 1]}kt k e M e M∈ − − + +  with

0M > , determine 
*

ê
t , the minimum of (6), using (10)

for kS  and (11) for [ ]E Ψ .

3. Replace 
e

t  with the value *

ê
t

For a sequence of heartbeats with multiple ectopics, the
above algorithm can be applied iteratively if the ectopics are
sufficiently separated.  If adjacent ectopics need to be
corrected for, a higher dimensional cost function
minimization may be formulated in which the times of both
ectopic beats are variables of the cost function.  Our present
analysis assumes that consecutive ectopic beats do not occur.

III. PERFORMANCE ON REAL HRV DATA

A. Data acquisition and ectopy simulation

Records from six healthy subjects aged between 20 and 40
years who were in sinus rhythm were manually checked and
6 five minute ectopy free segments were selected, one from
each subject.  For each of the 6 records, 10 separate test
records were created at 2 different levels of ectopy in the
same manner as described in [3].  The two levels of ectopy
correspond to 12 and 120 ectopic beats per hour.

B. Ectopic correction algorithms

In addition to our new algorithm, we evaluate the
performance of three existing correction techniques: linear
spline interpolation, cublic spline interpolation and simple
deletion.  We implemented these algorithms as per [3].

C.  HRV Indices

We assess each technique’s ability to correct both time and
frequency domain HRV indices.  The time-domain indices
investigated are the mean RR interval, the standard deviation
of the RR intervals (SDRR), and the standard deviation of the
successive differences between adjacent intervals (RMSSD).
The frequency-domain indices are low-frequency power (PL),
high-frequency power (PH) and total power (PTOT).  The
interval spectrum is calculated by the spectrum-of-counts
technique [11].  Power ranges were PL: 0.04-0.15 Hz, PH:
0.15-0.40 Hz and PTOT: 0.01-0.40 Hz as per the

recommendations in [12].

D. Results

In Fig. 5 and 6, the error is assessed by the root-mean-
square (RMS) error, where the error is defined to be the
differences between the control and the corrected values of
the HRV index of interest and normalized as percentages of
the mean control variable.  An RMS error above 5% is
deemed a clinically important departure from the control
value.

The results for 12 ectopic beats per hour are summarized in
Fig. 5.  Our new technique is the first bar in each grouping.
All techniques have an RMS error of less than 5% so there
are no clinically significant errors at this level of ectopy.  Our
technique outperforms all the correction techniques for all
HRV indices. In particular, our technique performs
exceptionally well for the frequency domain measures with
RMS errors of less than 0.5%.  In contrast, all the other
correction techniques have RMS errors of above 2% for
frequency domain measures.

Fig. 6 displays the results for 120 ectopic beats per hour,
which is a high level of ectopy.  Even at this level, the
maximum RMS error using our technique is clinically
insignificant (<4% RMS error).  The time domain HRV
indices perform well, with clinically significant errors only
occurring for the linear and cubic spline correction
techniques applied to the RMSSD measure.  Deletion
performs almost as well as our technique.  On the other hand,
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Fig. 3: The output of the process generating kS  for several values of et .
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for the frequency domain measures only our technique and
the total power (PTOT) corrected with the deletion technique
have RMS errors less than the clinically significant threshold
of 5%.

IV. CONCLUSION

In this paper, we developed and carefully analyzed the
performance of a new technique for ectopy correction.  The
technique is based on the premise that heartbeats are
generated by the IPFM model and ectopic beats are
compensatory.  It can be shown that if an ideal IPFM model
generates heartbeats, our technique can correct isolated
ectopic beats with zero error.  The fact that our technique is
optimal for IPFM generated intervals is reassuring, as many
correction techniques are ad-hoc solutions at best, designed
for simplicity rather than precision, e.g. linear and cubic
splines.  We have formulated the technique with robustness
in mind so that even though real HRV data is not an ideal
IPFM process, our technique should still perform well.

To validate the technique and obtain a comparative
measure of performance we tested our technique on real data
obtained from healthy subjects and compared the results with
linear interpolation, cublic spline interpolation and the
deletion of the ectopic intervals.  The results showed that our
new technique corrected the ectopic intervals with the least
error for both time-domain and frequency-domain HRV
indices and for low and high levels of ectopy.  In particular,
our technique significantly outperforms other techniques for
the frequency domain measures PH and PL. This is a
significant result, as all other techniques considered had large
errors for frequency domain indices with high ectopy.
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