
Abstract- A transfer function from baroreceptor pressure
input to sympathetic nerve activity (SNA) shows high-pass
characteristics in the frequency range from 0.01 to 1 Hz in
anesthetized rabbits. The high-pass characteristics of the
neural arc contribute to a quick and stable arterial pressure
(AP) regulation. However, if the high-pass characteristics
hold up to the frequency of heart rate (3-5 Hz), a pulsatile
pressure component in AP would yield an extremely large
amplitude of pulsatility in SNA. Such a large amplitude in
SNA would hit the nonlinearities in baroreflex pathways,
thereby disable the baroreflex regulation of AP. We
hypothesized therefore that the transfer gain at the
frequency of heart rate would be much smaller than that
predicted from the high-pass characteristics of the neural
arc. In anesthetized rabbits (n=6), we perturbed carotid
sinus pressure (CSP) according to a binary white noise with
a switching interval of 50 ms. The transfer function from
CSP to cardiac SNA was then estimated in the range from
0.012 to 10 Hz. The neural arc transfer function showed
high-pass characteristics in the frequencies below 0.7 Hz,
while losing the transfer gain above the frequency at −20
dB/decade. A simulation study indicated that the
attenuation of the pulsatile pressure component in the
neural arc was effective to retain the reflex regulation of AP.
Keywords- transfer function, simulation

I. INTRODUCTION

Estimation of transfer functions among cardiovascular
variables is useful in providing insight into the mechanisms
of cardiovascular regulation [1-6]. In a previous study, we
decomposed the carotid sinus baroreflex system into the
neural arc from carotid sinus pressure (CSP) to sympathetic
nerve activity (SNA) and the peripheral arc from SNA to
arterial pressure (AP) [1]. A transfer function analysis

revealed that the neural arc approximates the first-order
high-pass filter in the frequency range between 0.01 and 1
Hz. In contrast, the peripheral arc approximates the second-
order low-pass filter in this frequency range. A numerical
simulation indicated that the fast neural arc compensated for
the slow peripheral arc to achieve a quick and stable AP
regulation. This simulation result was obtained based on
nonpulsatile AP [1]. However, if we made AP pulsatile (4-
Hz sinusoid with peak-to-peak amplitude of 20 mmHg), the
pulsatile pressure yield an extremely large amplitude of
pusatility in SNA due to the high-pass characteristics of the
neural arc. This phenomenon does not affect the resulting
AP regulation as long as the baroreflex system linearly
operates. However, there exist nonlinearities such as
threshold and saturation in the native baroreflex system.
Thus, if the pulsatile signal is in fact amplified by the high-
pass characteristics of the neural arc, the large amplitude of
SNA would hit the nonlinearities in the baroreflex pathways,
thereby disable the baroreflex regulation of AP. We
hypothesized therefore that the transfer gain of the neural arc
would wane somewhere below the frequency of heart rate.
To test the hypothesis, we estimated the neural arc transfer
function from CSP to SNA in anesthetized rabbits extending
the upper frequency limit of the analysis to 10 Hz.

II. METHODS

Six Japanese white rabbits weighing 2.6 to 3.4 kg were
anesthetized by intravenous injection (2 ml/kg) of a mixture
of urethane (250 mg/ml) and α-chloralose (40 mg/ml), and
mechanically ventilated with oxygen enriched room air. To
eliminate the effects of baroreflexes from the
cardiopulmonary region and aortic arch, the vagal nerves
and aortic depressor nerves were sectioned bilaterally
through a midline cervical incision. The carotid sinuses were
isolated bilaterally from the rest of the systemic circulation.
The right cardiac sympathetic nerve originating from the
stellate ganglia was sectioned through a midline
thoracotomy, and a pair of stainless steel wire electorodes
(Bioflex wire AS633, Cooner Wire) were attached to the
nerve to record efferent SNA. The preamplified nerve signal
was band-pass filtered at 150-1000 Hz, and was then full-
wave rectified and low-pass filtered with a cutoff frequency
of 30 Hz. To estimate the transfer function from CSP to
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SNA, we perturbed CSP according to a binary white noise
signal with a switching interval of 50 ms for 10 min, using a
servo-controlled piston pump (model ET-126A, Labworks).
The mean CSP was adjusted to the equilibrium pressure
between CSP and AP. The peak-to-peak amplitude of CSP
perturbation was set at 40 mmHg. CSP, SNA, and AP data
were recorded at a sampling rate of 200 Hz and stored on a
hard disk of a dedicated laboratory computer system.

In order to estimate the neural arc transfer function, we
treated CSP as the input and SNA as the output of the
system. We segmented the input-output data pairs into ten
sets of 50% overlapping bins of 214 data points each. For
each segment, a linear trend was subtracted, and a Hanning
window was applied. We then obtained frequency spectra of
the input and output by a fast Fourier transform. We
ensemble averaged the input power, SCSP·CSP(ƒ), output
power, SSNA·SNA(ƒ), and crosspower between the input and
output, SSNA·CSP(ƒ) over the ten segments. ƒ represents
frequency. Finally, we calculated the neural arc transfer
function using the following equation [7].
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To quantify the linear dependence between the input and
output, we calculated a magnitude-squared coherence
function using the following equation [7].
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IV. RESULTS

Figure 1 shows a transfer function from CSP to SNA
averaged from all animals. The gain plot (top), phase plot
(middle), and coherence function (bottom) are shown. The
gain value increased as the frequency increased from 0.012
to 0.7 Hz. Above 0.8 Hz, however, the gain value decreased
as the frequency increased. The gain value at 5 Hz was
similar to that at 0.012 Hz, indicating that the pulsatile
pressure component would not be enhanced in the neural arc
of the arterial baroreflex. The phase value approximated −π
radians in the lowest frequencies, reflecting the negative
feedback nature of the neural arc. The coherence values
showed moderate linearity between CSP and SNA in the
frequency range between 0.1 and 1 Hz. The coherence
values were smaller in the frequencies below 0.1 Hz and
above 1 Hz. The coherence values approached zero in the
frequencies above 5 Hz.

V. DISCUSSION

Although the high-pass characteristics of the neural arc
have been identified in our previous study [1], the transfer
function of the neural arc around the frequency of heart rate
(3-5H in rabbits) remained unknown. To our best knowledge,
this is the first to reveal the neural arc transfer function
beyond 1 Hz (Figure 1). The neural arc lost its transfer gain
above 0.8 Hz in agreement with our hypothesis.

In order to elucidate the physiological meaning of the
decreasing gain above 0.8 Hz seen in Figure 1, we
constructed two types of simulators for the arterial
baroreflex. One simulator (SIM1) has a neural arc with high-
pass characteristics alone (Fig. 2A). The mathematical
description of the neural arc for SIM1 is as follows.
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where ƒC and L indicate the corner frequency (in Hz) of the
high-pass filter and lag time (in s), respectively. ƒ indicates
the frequency (in Hz). j is the imaginary unit. We set ƒC at
0.1 Hz and L at 0.5 s.

The other simulator (SIM2) has a neural arc that
mimicked the native neural arc transfer function (Fig. 3A).
The mathematical description of the neural arc for SIM2 is
as follows.
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=Fig. 1. Transfer function from carotid sinus pressure to
sympathetic nerve activity. The solid and dashed lines
indicate mean and mean+S.D. values.
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where ƒC1 indicates the corner frequency of the high-pass
filter, and ƒC2 indicates the higher frequency limit above
which the transfer gain decreases. We set ƒC1 and ƒC2 at 0.1
and 0.8 Hz, respectively.

For both SIM1 and SIM2, the peripheral arc transfer
function was modeled using a second-order low-pass filter
with a lag time as follows [1].
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where ƒN and ζ indicate the natural frequency and damping
rate, respectively. We set ƒN and ζ at 0.07 Hz and 1.37,
respectively. The lag time, L, was set at 1 s for the
peripheral arc.

First, we simulated the closed-loop AP response against
40-mmHg stepwise pressure decrease using SIM1 and SIM2
without including any nonlinearities. The pulsatile pressure
was simulated by a 4-Hz sinusoidal pressure variation with
the peak-to-peak amplitude of 20 mmHg. As shown in
Figures 2B and 3B, the exogenous perturbation was
attenuated to -20 mmHg, on average, both in SIM1 and SIM2.
The time for the AP response to reach steady state was
slightly shorter in SIM1 than in SIM2, indicating that the
high-pass characteristics beyond 1 Hz was effective to
improve the quickness of the AP response against exogenous
perturbation. However, at the frequency of 4 Hz, the input
amplitude was enhanced as much as 40-folds that at 0.01 Hz
in SIM1. Thus, the peripheral arc in SIM1 was exposed to
SNA changes comparable to the peak-to-peak input
amplitude of 800 mmHg (20 mmHg×40). The native

peripheral arc unlikely has the operating range wide enough
to process this large signal.

Next, we put a nonlinear component with threshold and
saturation in the course from the neural arc to the periphral
arc components as a typical example. Because the
magnitude of the AP response to static changes in SNA
would be at most 200 mmHg centering around the operating
pressure, we set the threshold and saturation by SNA values
corresponding to the peak-to-peak input amplitude of 200
mmHg. This nonlinearity did not yield any deteriorating
effects on the AP regulation in both SIM1 and SIM2 when
nonpusatile AP was used for the simulation. However, when
pulsatile AP was used for the simulation, the reflex
regulation of AP against exogenous pressure perturbation
was blunted in SIM1 by the inclusion of the nonlinearity
(Figure 2C). In contrast, the reflex regulation of AP against
exogenous pressure perturbation was well preserved in SIM2
even in the presence of the nonlinearity (Figure 3C). These
simulation results indicate that the attenuation of the
pulsatile component is effective to avoid the failure of AP
regulation by the arterial baroreflex.

There are several limitations to the present study. First,
we did not measure the nonlinearity of the peripheral arc
between SNA and AP. However, the lowest and highest
pressure values attained by baroreflex activation and
deactivation were about 50 mmHg and 150 mmHg,
respectively, in our experimental settings. Because we set
the threshold and saturation of the nonlinearity based on
SNA values corresponding to 100-mmHg below and 100-
mmHg above the operating point, respectively, the linear
range of our simulation would cover physiological linear
range of the peripheral arc. Although our simulation settings
less likely caused the nonlinear AP response than the native
peripheral arc, the pulsatile pressure with peak-to-peak
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Fig. 2. A: The neural arc transfer function model with
high-pass characteristics alone. B: A simulation result of
arterial pressure (AP) response against stepwise pressure
decrease obtained from a linear model. C: A simulation
result of AP response against stepwise pressure decrease
obtained from a model including nonlineaities with
threshold and saturation.
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Fig. 3. A: The neural arc transfer function model
mimicking changes in transfer gain of the native neural
arc. B: A simulation result of arterial pressure (AP)
response against stepwise pressure decrease obtained from
a linear model. C: A simulation result of AP response
against stepwise pressure decrease obtained from a model
including nonlinearities with threshold and saturation.



amplitude of 20 mmHg still blunted the reflex regulation of
AP in SIM1. Thus, we believe that the attenuation of the
pulsatile pressure component plays an important role to
retain the reflex regulation of AP in the native baroreflex
system as well.

Second, there exists a species difference in the frequency
of heart rate. Because the neural arc transfer function at the
frequency of heart rate in other species remains unknown,
the simulation results in the present study should be
carefully interpreted.

VI. CONCLUSION

The neural arc of the baroreflex attenuates the pulsatile
pressure component to retain the ability of reflex regulation
of AP in rabbits. If the attenuation does not exist, the
enhanced pulsatile pressure component would saturate the
peripheral arc signal transduction, hampering the reflex
regulation of AP against exogenous pressure perturbation.
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