
Abstract- A novel procedure is proposed to 1) quantify the 
level of physiological coupling existing between arterial 
blood pressure and heart rate variability during spontaneous 
behavior and 2) identify the relative contribution of the 
arterial baroreflex in the production of this coupling. The 
procedure is based on the estimation of the Cross-Mutual 
Information (CMI) between systolic blood pressure (SBP) 
and pulse interval (PI, the reciprocal of heart rate)  beat-to-
beat values. Use of this statistical function provides a 
quantification of both linear and nonlinear components of 
the coupling between variables. The procedure has been 
preliminarily applied to data collected in two spontaneously 
behaving cats before and seven days after the opening of the 
baroreflex loop. This allowed us to determine the baseline 
level of the SBP-PI coupling in intact conditions and the 
remaining fraction of SBP-PI coupling surviving 
deactivation of the baroreflex control function.  
  We observed that in intact animals the cumulative 
physiological level of linear and nonlinear coupling between 
SBP and PI corresponded to 50% and 35%, respectively, of 
the theoretical maximal coupling. After removal of the 
baroreflex influence CMI values drastically dropped with 
respect to the above baseline values (-76% and –67%, 
respectively).  
  Thus, use of CMI indicates that the arterial baroreflex is 
the major determinant of the SBP-PI link, accounting for 
about 2/3 of the total measured coupling existing between 
these variables. 
 
Keywords – Nonlinearity, baroreflex, blood pressure 
variability, neural control, cardiovascular regulation  
 

I. INTRODUCTION 

 
  Arterial baroreflex is one of the most powerful 
mechanisms aimed at maintaining the blood pressure, BP, 
homeostasis. Any dysfunction in this control system 
usually results in a major BP lability with a consequent 
increased risk of adverse events for the patient [1]. For its 
crucial  role in BP homeostasis, there is now an increasing 
demand for techniques able to quantify the dynamic 
characteristics of spontaneous baroreflex in a non invasive 
way and, possibly, during daily life.  
  Arterial baroreflex controls BP by driving several 
cardiovascular variables, including vascular resistance, 
heart contractility and heart rate, HR. Among other 
actions, the arterial baroreflex responds to BP 
perturbations by inducing opposite changes in HR thus 

being responsible for a certain level of coupling between 
these variables. Most of the techniques so far proposed for 
the analysis of spontaneous baroreflex function selectively 
focus on linear aspects of the BP-HR coupling [2]. In the 
present paper we propose a  procedure able to quantify 
both linear and nonlinear components of the BP-HR 
coupling. This procedure has been used to 1) quantify the 
physiological level of coupling existing between BP and 
HR variability and 2) identify the relative contribution of 
baroreflex in the production of this coupling. This was 
done by developing a novel signal processing procedure 
based on mutual information and by applying this 
procedure on data collected in cats before and after the 
opening of the baroreflex loop.  
 

II. METHODOLOGY 

 
A. Mutual information 
DEFINITION – Mutual information I(ξ,η) describes the 
amount of information on a given random quantity η we 
can obtain from the observation of another quantity ξ. 
When applied to a pair of signals [ξ(t),η(t)] mutual 
information provides a quantification of the coupling 
between these signals. It should be emphasized that, in 
contrast to many other techniques so far used for 
investigating cardiovascular variables, CMIF quantifies 
both linear and non-linear dependencies between signals. 
Moreover, being a pure statistical approach, it does not 
require any a-priori assumption on the nature of the 
signals, apart from the general assumption of ergodicity.  
  The concept of mutual information goes back to 
Shannon [3] and was originally applied to quantify 
information transmission over noisy channels. It is based 
on Shannon’s entropy  
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for a discrete distribution {pm}of any random variable ξ. 
 
Mutual information is defined by: 
       )]()),(([)(),( ξηξηηξ HHHI −−≡          (2) 

where )(ηH  represents the a-priori-uncertainty with 

regard to η, and )()),(( ξηξ HH −  is the remaining a-

posterior-uncertainty with regard to η if ξ is known. 
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In our case, where two different signals ξ(t) and η(t+τ) 
are involved, I([ξ(t),η(t+τ)]) estimated for different values 
of τ is called cross mutual information function, CMIF(τ). 
For any given time lag τ, CMIF may assume values 
determined by the following relation:  

ετ 2log)CMIF(0 −≤≤                   (3)    

where ε  is the relative measuring precision of the signals 
(0.25 in our case) and it is related to the partitioning of the 
amplitude range of each signal in bins. CMIF(τ)  attains 
the lower bound of (3) only if there are no statistical 
dependencies between ξ(t) and η(t+τ)], namely in case of 
no coupling between signals. In case CMIF(τ) = - log2 

0.25= 2 bit we can conclude that η(t+τ) is predictable 
from ξ(t), within precision ε, this corresponds to a very 
strong coupling between variables.  
 
SCHEME OF THE PROCEDURE – In the present paper 
we used CMIF to quantify the linear and nonlinear cross-
dependencies between systolic, S(BP), and pulse interval 
(PI, the reciprocal of heart rate) as a function of the time 
lag τ. Thus we estimated CMIF from (3) by defining the 
vector ξξ(t)=[SBP(t); SBP(t-δ)] and the scalar 
η(t+τ)=PI(t+τ). The vector ξξ(t), which includes SPB(t) 
and SBP(t-1), is used to predict PI(t+τ). The estimations 
were based on a ranking of the SBP and PI values so to 
obtain a more efficient computation and a reduced 
sensitivity to noise and outliers [4,5,6]. Moreover, since 
the ultimate scope of the procedure was to get an insight 
into the  baroreflex control, we had to verify the 
baroreflex nature of the coupling quantified by CMIF. 
This was done by evaluating the results obtained in the 
cats before and after the opening of the baroreflex loop.  
  Essential information conveyed in each CMIF was also 
condensed by estimating the maximal value of CMIF 
(CMIF-max).  
  
B. Data collection and processing 
   In two cats arterial blood pressure was intra-arterially 
recorded twice, before and seven days after the surgical 
opening of the baroreflex loop as obtained by a sino-aortic 
denervation (SAD). During the recordings, each lasting 
three hours, the cats were free to move within a large 
plexiglass box [7].  Each BP tracing was sampled at 
200Hz and purified from artifacts by an interactive 
procedure. From each pressure waveform SBP and PI 
were identified, PI being the time interval between 
consecutive systolic peaks. Each SBP and PI series has 
been detrended, edited from outliers and split into 11 
contiguous data segments each including 2048 beats 
(Fig.1). CMIF was then estimated for each data segment, 
after transformation of the original data into a ranked data 
set. Details of the procedure for CMIF estimation have 
been provided elsewhere [4,5].  
 
 

III. RESULTS 
 
Fig. 2 shows the cumulative  CMIF plots estimated  for 
the 11 consecutive data windows in animal #77 and #88 
before and after SAD. In intact condition the average 
coupling level is about 50 % of the possible maximal 
value for cat #77 and about 35% for cat #88. It is worth 
noting that CMIF values are not fixed but rather fluctuate 
over time, possibly reflecting the different activity of the 
animals during spontaneous behavior. After denervation 
CMIF values underwent a major reduction.  
  These trends are confirmed in table 1 where the average 
values of the CMIF-max, i.e. the maximum value of each 
CMIF curve,  are reported for both the animals in the 
intact and denervated condition. The marked reduction in 
the CMIF curves observed in Fig.2, is here confirmed by 
the   dramatic  fall  in  the  CMIF-max  values  after   SAD  
(-76% and –67%, respectively)  with respect to intact 
condition.   
 
 

TABLE I 
 CMIF-max VALUES OVER THE 11 DATA SEGMENTS  

Data are expressed as MEAN (SD)  
Cat #77 Cat #88  

    intact    SAD         Intact  SAD 

CMIF-max 1.00 
(0.25) 

0.25  
(0.12) 

0.69  
(0.19) 

0.22 
(0.07) 

 
Time-modulation of CMIF-max over time is 

represented in Fig.3. Here the CMIF-max values 
progressively obtained from the analysis of the 
consecutive data segments are shown.  

 
 

Fig 1 - Example of detrended data for cat #77 
before (upper panels) and after SAD (lower 
panels). 
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IV. DISCUSSION 
 
Application of mutual information allowed us to obtain a 
comprehensive quantification of the physiological 
coupling existing between blood pressure and cardiac 
rhythm during spontaneous behavior, including any 
possible linear and nonlinear component of such a  
coupling. Obviously, the presence of interactions between 
SBP and PI is not surprising per se and a number of 
quantifications of specific aspects of this interaction have 
already being obtained through linear techniques [2].  
The specific feature of the proposed technique is the wider 
perspective from which this phenomenon can be  
evaluated, which allows for the first time to obtain the 
overall quantification of all aspects of SBP-PI coupling, 
including non-linear components. These non-linear 
components have been suggested to represent an 
important fraction of the fluctuations in cardiovascular 
parameters but, for technical reasons, have been so far left 
largely unexplored. The findings stemming from this 
analysis clearly indicates that the arterial baroreflex plays 
a major role in the overall link between SBP and PI, and 
that its buffering action accounts for more than 2/3 of the 
total measured coupling existing between these 
cardiovascular variables. 
 
 
 
 
 
 
 
 
 
 
 

 
REFERENCES 

 
 
1. Parati G., Pomidossi G., Albini F., Malaspina D., 

Mancia G. Relationship  of 24-hour blood pressure 
mean and variability to severity of target organ 
damage in hypertension. J Hypertension 5:93-98. 

2. Di Rienzo M., Castiglioni P, Mancia G, Pedotti A, 
Parati G: Advancements in Estimating baroreflex 
function. IEEE EMB Mag 20(2): 25-32, 2001.  

3. Shannon CE: Mathematical Theory of 
Communication. Bell System Technical Journal, pp. 
379-423, 623-656, 1948. 

4. Pompe B: Measuring statistical dependencies in a 
time series. J. Stat. Phys. Vol. 73, pp.587-610, 1993 

5. Pompe P, Blidh P, Hoyer D, Eiselt M: Measuring the 
coupling in the cardiorespiratory system using mutual 
information. IEEE Engineering in Medicine and 
Biology, vol.17, pp.32-39, 1998. 

6. Hoyer D, Hoyer O, Zwiener U: A new approach to 
uncover dynamic phase coordination and 
synchronization. IEEE Transactions on Biomedical 
Engineering, vol.47, pp.68-74, 2000. 

7. Bertinieri G, Di Rienzo M. , Cavallazzi A et al.: 
Evaluation of baroreceptor reflex by blood pressure 
monitoring in unanesthetized cats. Am J Physiol 254: 
H377-H383, 1988. 

 

Fig.3 Time course of CMIF-max for cat #77 and #88. 
Data are shown as a function of the progressive data 
segment including 2048 beats. 

Fig. 2 - Cumulative plots of Cross-Mutual 
Information Function (CMIF) estimated over the 
11 data segments for cats #77 and cat #88 before 
and after SAD 
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