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Abstract-Measurements of DC near biomagnetic fields 
are disturbed by low frequency noise, that are not 
reduced suff iciently by most of the magnetically shielded 
rooms or gradiometers. An effective SQUID based 
active shielding system  has been developed and 
installed at the magnetically shielded rooms in the 
Biomagnetic Center of the University Jena to reduce 
external low frequency disturbances. A reduction of the 
magnetic noise of about 23 dB could be achieved at 
50 mHz. 
Keywords – SQUID, biomagnetism, active shielding 
 

I. INTRODUCTION 
 

The advantage of the biomagnetic method is the 
touchless and noninvasive measurement. Magnetic source 
imaging (MSI) utili zes the possibilit y of source localization 
based on biomagnetic recordings [1]. MSI is a completely 
noninvasive diagnostic tool for source localization (e.g. 
presurgical mapping, localization of epileptic seizures). 
Biomagnetic fields fall within the range between Picotesla 
(1 pT = 10-12 T)  and a few Femtotesla (1 fT = 10-15 T) as 
shown in Fig. 1 [2]. 

On one hand external disturbances which exceed the 
biomagnetic signals by more than 6 orders of magnitude 
have to be suppressed  and on the other hand, the sensor has 
to be sensitive enough to detect the signal to be measured. 
The most sensitive magnetic sensor is the Superconducting 
QUantum Interference Device (SQUID). 
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Fig. 1. Magnetic induction of biomagnetic fields and of environmental 
magnetic noise sources as well as the magnetometer resolution;  

by courtesy of  J. Vrba. 

 
 

 
 
Fig. 2. Shielding factor of magnetically shielded rooms versus frequency. 

 
The suppression of disturbing fields can be achieved by a 
magnetically shielded room (MSR). The shielding factor of 
such rooms is frequency dependent (Fig. 2). The solid line 
shows the best characteristic shielding curve of the standard 
magnetically shielded room AK 3b(Vacuumschmelze 
Hanau) made of two layers MUMETALLTM (2 mm thick) 
magnetic shielding and one layer aluminum electric 
shielding. Because of the decreasing shielding effect of 
these shielded rooms with decreasing frequency the 
recording of DC near biomagnetic fields (below 1 Hz) are 
very difficult or impossible.  

Nevertheless, such fields occur in human stroke patients 
(periinfarct depolarization) and in migraineurs (spreading 
depression) as well as in patients (malignant 
tachyarrhythmias) after myocardial infarction. The 
noninvasive measurements of such fields give a powerful  
diagnostic tool in this clinical area.  
 

II. METHODOLOGY 
 

Measurements of DC near biomagnetic fields are 
disturbed by low frequency noise, that are not reduced 
sufficiently by most of the magnetically shielded rooms, 
gradiometers or the combination of both.  

There are several proposals to overcome the problem of 
insufficient reduction of disturbances for measurements  of 
DC near biomagnetic fields. An electronic noise 
suppression was demonstrated by Matlashov et al. for 
unshielded biomagnetic measurements in urban area [3]. 
The biomagnetic signals were recorded by a second-order 
gradiometer and a vector-magnetometer was used to record 
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the ambient noise. They achieved a noise suppression  of 
about 20 dB at 2 Hz. 

Ter Brake et al. reported the shielding improvement via 
active compensation [4]. They achieved a reduction of 
40 dB for magnetometers at low frequencies (around 
0.1 Hz) for an applied vertical field as an artificial source of 
disturbances, but only in the  vertical direction. 

An active shielding system was  described by 
Pasquarelli et al. which consists of two parts: (1) a static 
compensation with a set of three pairs of coils generating a 
DC-magnetic field to reduce the bias effect of the earth field 
and (2) a dynamic compensation of low frequency AC-
compensation stray fields [5]. They achieved a reduction of 
the 1/f noise inside their magnetically shielded room by one 
order of magnitude below 1 Hz. 

A similar cancellation technique of external noise inside 
a magnetically shielded room used for 
magnetocardiographic measurements was published by 
Kandori et al. [6]. They used a multichannel SQUID 
consisting of four gradiometers recording the source signal 
and two gradiometers as a reference. To compensate  for the 
different magnitudes of  the gradiometer wave forms they 
calculated a fitting parameter. This cancellation method 
provided an additional attenuation of over 20-30 dB [6]. 

Our aim was to achieve an active shielding system for 
all three spatial axes. For this reason an effective SQUID 
based active shielding system (Fig. 3) has been developed 
and installed at the magnetically shielded rooms in the Bio-  
 

 
Fig. 3. Scheme of the active shielding system with reference sensor, 

measurement device, compensation coils and PID-controller. 

magnetic Center of the University Jena to reduce external 
low frequency disturbances [7]. A Helmholtz-like 
orthogonal coil system (compensation coils) is installed 

outside the MSR. Both the biomagnetic measurement 
device (biomagnetometer: first order gradiometer) and the 
reference sensors are located inside the MSR. The reference 
sensor system consisting of three orthogonal SQUID-
magnetometers is connected with a PID (Proportional-
Integral-Differential)-controller. The signal of the reference 
system is proportional to the disturbing magnetic field and 
is the base for the PID to generate a current supplying the 
compensation coils.  
 

III. RESULTS 
 

To demonstrate the efficiency of the active shielding 
system dc recordings are shown in Fig. 4 and Fig. 5. The 
Butterfly plot of the magnetic field disturbances by 31 mag- 

 

 
 

Fig. 4. Butterfly plot of the magnetic field disturbances by 31 magnetic 
SQUID-sensors (first-order gradiometers) inside the shielded room during 
15 minutes (ordinary working hours, daytime). The 10pT signal changes 

are due to external disturbances. 

 
 

 
 

Fig. 5. Butterfly plot of the magnetic field disturbances by 31 magnetic 
SQUID-sensors (first-order gradiometers) inside the shielded room during 

15 minutes (ordinary working hours, daytime) with active shielding 
system on. The external disturbances are significantly reduced. 

 

netic SQUID-sensors connected with symmetrically first-
order gradiometers inside the shielded room during 
15 minutes (ordinary working hours, daytime) is shown in 
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Fig. 4. The 10pT signal changes are due to external 
disturbances. In Fig. 5 the Butterfly plot of the residual 
magnetic field with active shielding system on is recorded. 
The external disturbances are significantly reduced. 

Applying an additional solenoidal coil located about 
10 m away from the MSR controlled magnetic interference 
was produced and the transfer of this interference to the 
reference sensor  and to the measuring system was recorded.  

Fig. 6 shows the transfer function between magnetic 
noise and the reference sensor in an MSR without an active 
shielding (A), with active shielding using a Proportional (P) 
controller (B) and using a combined Proportional-Integral 
(PI) controller (C) in an MSR. Curve A in Fig. 6 shows an 
increased transfer of noise to the reference system at low 
frequencies which is due to the decreasing shielding factor 
of the MSR towards low frequencies. By using the active 
shielding with a P-controller the transfer of noise to the 
system stays constant at frequencies below one Hertz. This 
is because the shielding factor with active shielding is much 
greater then the shielding factor of the MSR. With the use 
of a combined PI-controller the amplification of the 
feedback circuit increases towards lower frequencies which 
in turn increases the shielding factor of the active shielding. 
This can be seen in curve C as the decreased noise transfer 
towards low frequencies. Curve C also shows a slight 
overshoot where the amplification of the integral 
component becomes unity. This can be explained with the 
phase shift of the compensation field introduced by the 
integrating part of the controller.  

Fig. 7 shows the transfer functions between magnetic 
interference on the measuring system without active 
shielding (A), with active shielding using a P-controller (B) 
and using a PI-controller (C). Curve A in Fig. 6 and Fig. 7 
look very similar as the noise has almost the same effect on 
both sensors. By using the active shielding with a P-con- 
 

 
 
Fig. 6. Transfer functions of magnetic interference on the reference system 

(SQUID magnetometer) without any active shielding (A), with active 
shielding  using a P-controller (B) and a PI-controller (C) 

 

 
Fig. 7. Transfer functions of magnetic interference on the measuring 

system without any active shielding (A), with active shielding  using a P-
controller (B) and a PI-controller (C). Dotted line: transfer function of 

magnetic interference on the reference sensor applying P-controller (B) 
and PI-controller (C). 

 
troller the noise transfer function to the measuring system 
(Fig. 6, curve B) is shifted ca. 20 dB below curve A. The 
dotted line in Fig. 7 represents the transfer function of 
magnetic interference on the reference sensor applying a P-
controller (B) and a PI-controller (C).  

The according transfer functions in Fig. 6 and Fig. 7 
differ due to the different positions of the reference sensor 
and the measuring sensor in the MSR. The difference 
between curve B in Fig. 6 and Fig. 7 is caused by the 
different transfer of both the noise and the compensation 
field to the two sensors. This difference limits the shielding 
factor of the active shielding on the measuring system. This 
can be seen in Fig. 6 curve C as there is no significant 
increase in shielding factor by using an additional integral 
controller component. 

With the use of a PI-controller we achieved a reduction 
of external low frequency magnetic fields by about 23 dB 
(Fig.6) at 50 mHz. 
 

IV. CONCLUSION 
 

DC near biomagnetic fields caused by spreading 
depression could be detected with an active shielding 
system in animal experiments [8]. Furthermore, the active 
shielding system enables measurements of dc near 
biomagnetic fields in human stroke patients in search for 
periinfarct depolarizations and spreading depression in 
migraineurs. 

The system can be installed at every usual magnetically 
shielded room. Reference sensors inside a measuring system 
can be used as feedback signal for the PID controller, so 
that no additional magnetic sensor is required. 
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