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Abstract-This paper presents a multi-stage algorithm for multi-
channel ECG beat classification into normal and abnormal 
categories using a sequential beat clustering and a cross-
distance analysis algorithm. After clustering stage, a search 
algorithm is applied to detect the main normal class. Then other 
clusters are classified based on their distance from the main 
normal class. The algorithm is developed for both 1-lead and 2-
lead ECG. Evaluated results on MIT-BIH database exhibit a 
classification error of less than 1% for 1-lead and 0.2% for 2-
lead and clustering error of 0.2%. 

 
I. INTRODUCTION 

 
Several algorithms have been designed and implemented 

for ECG analysis and classification over the last 40 years. 
These algorithms employ various techniques such as time 
and frequency domain analysis, neural networks, hidden 
markov modeling and many more [1,2]. 

The major difficulty in ECG automated interpretation is 
feature selection and extraction. The main reason is that 
morphological variety of ECG signals for different patients 
with the same arrhythmia. Hu et al in [3] explained that 
using a lot of training data for developing an ECG classifier 
does not solve the ECG classification problem. A relatively 
successful method to deal with these problems is the use of 
patient-adaptive algorithms. 

Recently, the results of two separate efforts with the same 
point of view were reported in the literature [3,4]. In [3], a 
mixture of experts (MOE) classifier was designed. A five- 
minute manually annotated ECG record was used for normal 
and abnormal beats classification. In the algorithm 
introduced in [4], Hermite models and self-organizing maps 
were used for clustering every 30 minutes of ECG records 
into 25 classes. This research had concentrated only on beat 
discrimination.  

The major problem with these patient adaptive techniques 
is that an inaccurate manual labeling of the created clusters 
or the initial ECG will result in a completely inaccurate total 
classification of the ECG data. The other problem with 
patient adaptive methods is the prohibitive amount of time 
that the operator needs to spend for labeling. 

In the presented algorithm, we have tried to come up with 
a clustering procedure and beat classification method that 
does not need any manual editing. We developed the 
algorithms for both single-lead and double-lead ECG. In this 
paper, we mainly concentrate on the two-lead ECG case. In 
our previous work [5], we presented a single-lead 
classification algorithm. 

In almost all monitoring patients, all normal beats remain 
morphologically very similar during one long-term record. It 
also turns out that in many cases of long-term monitoring 

applications, number of normal beats is quite larger than the 
number of abnormal ones. These are the key features of the 
long-term monitoring ECG signals that make the presented 
algorithm in this paper applicable to many types of ECG 
signals, such as 24-hour Holter monitoring. 

 
II. PREPROCESSING 

 
Preprocessing stage contains sampling rate conversion, 

filtering and QRS complex detection. All of the data used in 
our work is provided from MIT-BIH database. Sampling 
rates of these files that are 360 and 128 are converted to 200. 
A low pass liner phase filter with cutoff frequency of 36 Hz 
is applied for impulsive noise. A low pass multirate filter 
with cutoff frequency of 0.5 Hz is designed for baseline 
estimation and removing from the original signal [6]. 

After filtering, an adaptive QRS detection algorithm is 
used. Adaptive threshold is applied to signal after 
differentiating the original signal and passing it through 
averaging filter. Evaluated error for this QRS detection 
algorithm is less than 0.3% for all available records. 

For classification purpose, a feature vector from ECG time 
samples is constructed from each lead. This vector is of 
length 50 and the R wave peak is used as the reference point 
of this vector. The R wave peak is the point where the 
difference between the next slope and the previous slope in 
QRS region is maximum.  QRS vector covers 20 samples 
before R wave peak and 30 samples after that. To compare 
the QRS patterns, the difference is computed over 30 
samples, 10 before R wave peak and 20 after. The rest of the 
feature vector is used to compensate for any errors that may 
exist in the location of the R wave peak. In this case, we use 
10 samples in each side for this purpose. Thus the total QRS 
vector size of 50 is required. 

 
III. DISTANCE MEASURES 

 
Two different distance measures are used in our algorithm. 

In both measures, each input vector, x1 and x2, are modified 
by removing the dc-component and normalizing their 
energy. For example for x1: 
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where L=50 is the length of QRS feature vectors and 
a and b  are the start and end points of central segment of 
QRS vector, respectively. Then, the first distance measure 
will be computed as follows: 
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where k indicates the shift between two vectors for 
alignment and the values of a and b are fixed as a=10, b=40. 

The second distance measure will be computed as a more 
accurate one as follows: 
                    )),(),,(min(),( 21221121 xxdxxdxxd s =                   (3) 

where, 

     ))),,(),,(((min),(
],[ ∑

+

+=
−∈

+++−=
kb

kai

2
nqnpp1010k21p kbkakixbaixFxxd ,         (4) 

      








==

==+++
=

∑

∑
+

+=

+

+=

1q2p

or

2q1p

baix

kbkakixbaix
F kb

kai

2
np

kb

kai
nqnp

p

,

,

),,(

),,(),,(
    (5) 

 
where F1 and F2 are the energy normalization factors. 

The first measure is applied in primary clustering stage 
and has less computational load than the second measure, 
which is applied in the last stage for normal and abnormal 
beat classification. The last stage requires exact computation 
of distances to avoid errors originating from misalignment of 
R wave peaks, different DC level and signal energy. The 
second measure considers possible time shifts of up to 10 
samples between two vectors, where both vectors are 
normalized for each time shift, to compensate for the DC 
level and energy differences. The distance measure is 
computed over 30 middle samples of the vector while the 
second vector is shifted to left and right by 10 samples 
(d1(x1,x2)). This is repeated with exchanging the role of the 
two vectors (d2(x1,x2)). Finally, the measure is computed as 
the minimum of d1(x1,x2) and d2(x1,x2). 

  
IV. CLUSTERING  

 
Following algorithm is used for sequential clustering. To 

initialize, the first beat in each lead is assigned to the first 
cluster and all other beats are compared for each lead with 
the centroid of existing clusters. The beat is assigned to the 
nearest cluster, if its distance is lower than a predefined 
threshold. Otherwise, a new cluster is created. For double-
lead ECG, it is necessary to share distance measures of the 
two leads in such a manner that the channel with lower 
signal level or more noise will have a less important role in 
the clustering process. We use a measure of variance in step 
(5) to achieve this purpose. Suppose:  

M: the number of created clusters, 
T: threshold for creating new cluster 
Nk : the number of beats assigned to cluster k, 
CXk  and CYk: centroids of cluster k in two leads,  
Xj and Yj: vectors of j’th detected QRS in two leads  
vX and vY: variance factors in two leads 

1. Initialization: 
    CX1=X1;CY1=Y1; M=1; N1=1; vX=1;vY=1; j=1; 
2. Computing Distance Measure: 
    j=j+1; k∈[1,M]   

   dXk=df(CXk,Xj); dYk=df(CYk,Yj); )(min
],[min XkM1kX dd
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3. Opening New Cluster:  
    IF (dmin>T)⇒ M=M+1; i=M; Ni=0; 
4. Updating Centroids Of The Cluster: 
    CXi=(NiCXi+X)/(Ni+1); CYi=(NiCYi+Y)/(Ni+1);  
5. Updating Variance Factors: 

    IF 
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6. ni =ni+1; Go to (2)   
v For single lead Classification, assume X=Y. 

 
V. CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                         

 
Normal beats recorded from a patient are usually not 

similar to the normal beats of another patient. But, in almost 
all monitoring patients, normal beats remain 
morphologically very similar during one long-term record. 
Also, the variety of beats in normal classes is significantly 
lower than that of all classes associated with abnormal beats. 
Fig.1 shows distributions of distances between normal beats 
and distances between normal and abnormal beats for record 
205. Also, the population of normal classes is often quite 
higher than that of abnormal ones.  

These observations usually result in a small number of 
normal classes that are very close together in the feature 
space. We assign the major class among the normal classes 
as the reference normal class, which we call the main normal 
class. All other clusters are classified (and labeled) by 
comparing their distances to this reference class with a 
predefined classification threshold, Tc.  

The selected threshold must be such that all normal classes 
are within the threshold distance form the reference class 
and all abnormal classes are outside of it. A proper threshold 
has been selected using some of MIT-BIH database files for 
single lead and double lead records. The optimum threshold 
is chosen to reduce the total number of errors to a minimum.    

Since abnormal beats are usually scattered in feature space 
with smaller population, one reasonable solution to find the 
main normal class is a backward search and deletion 
procedure. In each step of this procedure, the most outlying 
cluster with maximum cumulative distance with others is 
eliminated. So, a measure, indicating sum of total cross-
distances of members in two clusters C1 and C2 is defined as:  
                                  ),( 212112 CCdNNS f≅                            (6) 

N1 and N2 are number of vectors in clusters C1 and C2 and 
df(C1,C2) is the distance between their centroids. For more 
than two clusters, we normalize this measure by total 
number of cross-distances: 
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Fig. 1: Distance measure distribution 

 
Since the denominator is constant and df(Ci,Ci)=0, above 

values can be simplified. For the case of three clusters: 
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For example, if only two clusters with N1 and N2 members 
exist, the cluster with more members is the main normal 
class. Whereas if there are three clusters C1, C2 and C3  with 
N1, N2 and N3 members respectively, the cluster with 
maximum number members may not be the main normal 
class. Suppose we have three clusters with two clusters that 
are very close to each other with N members and the third 
cluster is farther away from the first two clusters with N+1 
members. Clearly, the main normal class will be one of the 
first two clusters. It should also be noticed that detecting the 
cluster with the minimum cumulative distances among all 
clusters does not guarantee detecting the main normal class.  

For general case, we look for the main normal class 
among all existing clusters. To achieve this, in each step, the 
most outlying cluster is removed from our search group. 
After finding the main normal class, each cluster is 
compared with this class and is classified into normal or 
abnormal based on the computed distance from this class.  
Suppose M is the number of created clusters, df(CXi,CXk) and 
df(CYi,CYk) are the distances between clusters i and k in first 
lead and second lead and Nk is the number of beats in cluster 
k. The variance parameters vX and vY (obtained in the 
clustering stage) are then used as weighting factors to 
compute distances for each channel. The main normal class 
detection and classification algorithm is as follows: 
1. Initialization: 
   K={i|i=1,…, M}; P=M;P is the number of members in K 
2. Computing Cumulative Cross-Distances: 
  ∑

∈

=
Kk

XkXifkXi CCdND ),( ; ∑
∈
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Kk

YkYifkYi CCdND ),( ; XYiYXii vDvDD += ; 

3. Removing the Most Outlying Cluster From Search: 
   j=arg(max(Di)) i∈K; K=K-{j};P=P-1; IF (P>2) Go to (2);  
4. Assigning the Main Normal Class:  

Now there are two candidate clusters for the main normal 
class. The cluster with more members is the main normal 
class (Cq).  q=arg(max(Ni)); i∈K 

5. Classifying All Other Clusters:  
i∈[1,M]; 
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⇒ Cluster (i) is Normal ELSE Cluster (i) is Abnormal 
    ( Tc is the classification threshold mentioned before).  
v  For single lead Classification, assume X=Y. 
  

In the first merging stage, each cluster is compared to 
clusters that have the same label and are merged if their 
distance measure is less than the classification threshold. In 
the next stage, all clusters with only one beat are merged to 
the nearest cluster. In the last stage, if the number of clusters 
is more than 25, clusters with the least number of beats are 
compared to the first 25 major clusters and merged to the 
nearest cluster, until the number of clusters is reduced to 25.  

 
VI. RESULTS 

 
For evaluation of the presented algorithm, we use a part of 

MIT-BIH records downloaded from www.physionet.org 
including: 17 records of arrhythmia database except those 
containing paced beat (101, 103, 105, 106, 200-203, 205, 
207-210, 213-215, 219), 24 records of supra-ventricular 
database (800-812, 820-821, 823-829, 840, 870) and 10 24-
hour records in long-term database (14046, 14134, 14149, 
14157, 14172, 14184, 16265, 17693, 19093, 19140). All of 
these records have two leads. For single-lead algorithm, we 
use the first lead in these files.   

For each record in MIT-BIH database an annotation file 
with all beat labels is provided. In these files, there are 16 
types of labels that enable us to evaluate our algorithm 
results [7]. Table 1 shows these 16 labels and the associated 
labels defined in our clustering and classification algorithms.  

Since “N”, “S” and “A” labeled beats have similar QRS 
morphologies, we use the same label for all three in our 
clustering stage. These beats can be separated using R-R 
interval information later, if required. So, we apply 14 labels 
in clustering stage.  

Our clustering and classification results are depicted in 
Table 2. These results are obtained assuming no QRS 
detection error has occurred. 

Error in clustering occurs if beats of certain type are 
assigned to a cluster whose majority of beats is of different 
type. Also, Five statistics for classification results are 
reported in table 2, defined such: 
True Positive (TP):  Normal beats classified as normal  
True Negative (TN): Abnormal beats classified as abnormal  
False Positive (FP):  Abnormal beats classified as normal  
False Negative (FN): Normal beats classified as abnormal  

Classification Error: 
FNFPTNTP

FPFN
+++

+
  



TABLE I  
 LABELS OF MIT-BIH RECORDS  

 

TABLE II 
 RESULTS FOR MIT-BIH AVAILABLE RECORDS  
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Normal  N 1 1 
Left bundle branch L 2 1 
Right bundle branch R 3 1 
Atrial premature A 1 1 
Abberated atrial premature  a 4 2 
Junctional premature J 5 1 
Supraventricular premature S 1 1 
Ventricular premature V 6 2 
Fusion of ventricular and normal  F 7 2 
Ventricular flutter  B 8 2 
Atrial escape  e 9 2 
Junctional escape j  10 1 
Ventricular escape E 11 2 
Paced  P 12 2 
Fusion of paced and normal  f 13 2 
Unclassified Q 14 2 

 
 
 

Record Seri 1xx & 
2xx 8xx 24 

Hours Overall 

Normal Beats 35553 53144 875454 964151 
Abnormal Beats 4801 1572 55344 61717 

SINGLE LEAD 
Average clusters 11 5 14 9 
Clustering Error 1.0% 0.16% 0.17% 0.21% 
True Positive 35132 52925 866641 954698 
False Positive 354 103 242 699 
False Negative 421 219 8813 9453 
True Negative 4447 1469 55102 61018 
Classification Error 1.92% 0.58% 0.97% 0.98% 

DOUBLE LEAD 
Average clusters 23 17 25 21 
Clustering Error 0.97% 0.11% 0.09% 0.13% 
True Positive 35312 53027 874622 962961 
False Positive 241 27 366 634 
False Negative 241 117 832 1190 
True Negative 4560 1545 54978 61083 
Classification Error 1.19% 0.26% 0.13% 0.18% 
 
As shown in table 2, low number of created clusters with 

very small error percentages such as 0.2% overall, shows 
significant improvements compared to existing algorithms 
for single-lead ECG.  Besides, average number of created 
clusters is 9 and 21 for single-lead and double-lead 
clustering.  The algorithm also successfully classifies more 
than 1000,000 beats with an average error rate of less than 
1% for single-lead and 0.18% for double-lead records. The 
arrhythmia database records are proper evaluation signals 
due to their complex morphologies and various noise types 
and levels. Our classification results for this database (1.92% 
for single-lead and 1.19% for double-lead records) are quite 
promising. The main cause of clustering and classification 
error is in the separation of “F” beats from “N” beats or “V” 
beats as in records 208, 213 and 870. Other source of 
classification error is due to a rather large distance between 
normal classes as in record 203. 

To compare our results to that of [4], we calculated the 
clustering error reported in [4] by combining clusters “N”, 
“A” and “S”. This reduces the error rate reported in [4] from 
1.5% to 1.2% with fixed number of clusters to 25. Our 
clustering error in 1xx and 2xx series is 1.02% and 
maximum and average number of created clusters in our 
method is 25 and 11 all for single-lead.  

With 2xx records, an error of 6.0% for PVC beat 
classification is obtained from results in [3]. Our single-lead 
algorithm has a normal and abnormal classification error of 
2.1% for the same records.  

Computational complexity of our algorithm is quite low 
and using a Celeron 500 MHz PC, maximum computation 
time is less than 10 second for 30 minutes records and 90 
seconds for 24-hours records including all stages. 

 
VII. CONCLUSION 

 
We introduced a double-lead ECG clustering and 

classification algorithm. Our algorithm uses low variance 
and large population of normal beats in long-term records 
and effectively overcomes many of the existing 
classification problems. Presented algorithm satisfactorily 
classifies beats into normal and abnormal categories without 
external reference or manual annotation. Average error rate 
of the clustering and classification algorithms are 0.13% and 
0.18% for double-lead ECG. These results, in comparison 
with previous works in ECG classification are very 
promising and can be used in many real world problems. We 
are currently using this algorithm in a Holter monitoring 
application. 
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