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1.0 INTRODUCTION 

This report describes the theoretical basis for the low frequency propagation and 
scattering models used by PC SWAT 7.0. These models are based on the normal mode 
description of propagation of sound in a range independent waveguide. 

hi addition to the hitroduction and Reference sections, this report is composed of 
thirty sections. Section 2 gives a brief derivation of the acoustic wave equation. Section 3 
provides a brief review of the theory of Sturm-Louville operators. Sections 4, 5, and 6 provide a 
description of the construction of the Greens' Function in a horizontally stratified waveguide. 
Section 7 provides a derivation of the normalization of the depth functions in a waveguide in 
terms of the boundary conditions at the top and bottom of the waveguide. Section 8 describes the 
construction of the normal mode description of propagation in a waveguide with a piece-wise 
constant soimd speed and density profile and a rigid basement. Section 9 describes the extension 
of the methods of Section 8 to include a homogeneous half-space as the basement of the 
waveguide. Section 10 extends the normal mode description to include piece-wise linear sound 
speed profiles. Sections 11 and 12 provide examples of the normal mode description in an 
isovelocity waveguide with a rigid and homogeneous half-space basement. Sections 13 and 14 
describe the effects of small-scale roughness of the coherent (mean) field. Section 15 provides 
the derivation of the time domain description of the propagation of normal modes based on a 
saddle point analysis of the propagation of a normal mode. Sections 16, 17, and 18 describe 
representations of cylindrical and spherical wave functions, and the transformations between 
these two sets of solutions of the free-field Helmholtz Equation. Section 19 describes the 
expansion of the normal mode contributions to propagation in terms of a spherical basis set about 
the source and receive points. Section 20 describes the use of the multipole expansion of the 
Greens' Function in the inclusion of the effects of the directivity of the source and the receiver on 
the acoustic field. Section 21 describes the effects of rotating the local coordinate system on the 
spherical expansions of the Greens' Function. Section 22 presents a review of the 
Helmholtz hitegral Equation in preparation for the introduction of the spherical T-matrix 
approach to scattering from a target. Sections 23 and 24 derive the spherical T-matrix approach 
for scattering from rigid and elastic solids. Section 25 describes the scattering from an elastic 
target in a waveguide based on the preceding section on the spherical T-matrix. Sections 26,27, 
and 28 describe the normal mode and time domain representation of the scattering from a rough 
interface and volume inhomogeneities. Section 29 describes the plane wave approximation of 
the computation of the signal-to-noise ratio using the normal mode method. Section 30 describes 
the global matrix method of solving for the normal modes, and Section 31 presents some 
examples computed using PC SWAT 7.0. 

1-1/1-2 
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2.0 ACOUSTIC WAVE EQUATION 

Conservation of mass and momentum are given by the hydrodynamic equations of 
motion''^: 

~p + W*(pv) = 0 (2.1) 
ot 

p—v + fn}»Vv = -VP + pF (2.2) 

where p is the density of the fluid, v is the velocity of the fluid, P is the pressure of the fluid, and 
F is the external force per unit mass (for example, gravity). The acoustic wave equation is 
defined by linearizing the above hydrodynamic equations by making the following change of 
variables in the above equations. 

p = Po + Sp (2.3) 

v = Vo + ^ (2-4) 

P = P, + p (2.5) 

The linearized equations of motion are: 

^Sp + V* (Sp<^,) + V • (po^) = 0 (2.6) 
at 

—dv + v,*VSi} + Sv»Vv.=-—Vp + ^VP, (2.7) 
^t Po       PI 

If one neglects the thermal conductivity of the fluid, and difftision of the components of 
the fluid, the acoustic propagation of a wave can be treated as an adiabatic process, where the 
density and pressure fluctuations are proportional: 

Sp = c-^p (2.8) 

In the above equation, c is the speed of sound in the fluid given by the partial derivative of the 
pressure in the fluid with respect to density at constant entropy: 

c^=(^)(^ = 0) (2.9) 
dp 

2-1 
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Assume that in the absence of the wave the medium is at rest. In addition, neglect 
gravitational effects on the wave, that is, the gradient of the background pressure field in 
Equation 2.7. In this case, the linearized equations of motion are: 

/'o-^ = -Vp (2.10) 

-^ = Poc'V«(5iJ (2.11) 

Eliminating the velocity of the acoustic wave in the above pair of first order differential 
equations, one arrives at the following second order differential equation in terms of the pressure 
of the acoustic wave for a stationary medium: 

VJ-.V;,4(-L^) = 0 (2.12) 

In the case of a monochromatic wave with e""" time dependence, the acoustic wave 
equation takes on the following form: 

poV»—V;j + A:V = 0 (2.13) 
Po 

where 

k = - (2.14) 

is the acoustic wavenumber of the wave. 

2-2 
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3. STURM-LOUVILLE OPERATORS 

This section provides a brief overview of the theory of Sturm-Louville operators. An 
overview of the Sturm-Louville Equation can be found in Morse and Feshbach^'"*. 

The Sturm-Louville Differential Equation is a linear, second order differential equation of 
the following form: 

ax        ax 

The differential operator 

L = -^{-^p(x)^ + {q(x)-Mx))} (3.2) 
w(x)     ax        ax 

is a self-adjoint operator on the space of smooth functions C°°(a,b) on which the following inner 

product is defined: 

^ I ^'>= \i//(x)y/\x)w(x)djc 

THEOREM 1 

This theorem establishes the criterion for a pair of solutions of the Sturm-Louville 
Equation to be linearly independent. 

If the functions pfjcj and g(x) are continuous function in the interval (a,b) and ^,(x) and ^jC^) 
are a pair of solutions of the differential equation: 

l2 7 

—jifr(x) + p(x)—y/(x) + qix)y/(x) = 0 (3.3) 
ax ax 

for which the Wronskian (W) is defined below: 

Wiif^^M = ¥^(x)-^^ v^^2(^) (3-4) 
ax ax 

3-1 
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is non-zero for a point in the interval (a,b). Then every solution of this differential equation in 
this interval is a linear combination of these two functions. 

THEOREM 2 

This theorem yields information about the Wronskian of a pair of solutions of the 
Sturm-Louville Equation. 

If %{x) and y/iix) are solutions of the Sturm-Louville Differential Equation: 

-—P(jc)—<«^(jf) + {q{x) - Xy^{x))}\f{x) = 0 (3.5) 

Then the Wronskian of these two functions is of the following form: 

W(Wu¥2) = ¥^{x)^^-^^if^,(x) = Const/p(x) (3.6) 
dx dx 

THEOREM 3 

This theorem states that two eigenfunctions of the Sturm-Louville Equation are 
necessarily orthogonal if they have different eigenvalues. Note, the converse statement is not 
true. 

Let i//(x) and y/'(x) be two eigenfunctions of the Sturm-Louville Equation: 

d d 
- ^^/'W—V^(jf) + igix) - MxWix) = 0 (3.7) 

with eigenvalues A* A.', respectively. Then the inner product 

h 

< y/1 y/'>= jyr(x)y/'(x)w{x)dx = 0 
a 

vanishes. 

3-2 
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THEOREM 4 

This theorem describes the orthonormaHty and completeness of the spectrum of the 
Sturm-Louville Equation. Equations 3.9 and 3.10 describe the orthonormaHty of a suitable basis 
of eigenfunctions of the Sturm-Louville Equation. Equation 3.11 describes the completeness 
condition for this basis. 

Suppose the eigenvectors of the Sturm-Louville Equation 

-^p(x)4-¥ix) + (^ix)-MxW(x) = 0 (3.8) 
ax        ax 

consist of a discrete set of eigenvectors ^/„(x) with a discrete spectrum and a continuous set of 
eigenvectors ^^(x) with a continuous spectrum. Then one can normalize a complete set of 
eigenvectors, such that the following orthonormality conditions are valid: 

<¥J¥„ >= S^. (3.9) 

and the following completeness condition is valid. 

Yjl'M¥lx')-^^.\WxixWxix')d^ = -]-S<.x-x^) (3.11) 
„ 2m J w(x) 

THEOREM 5 

This theorem describes the construction of the Green's Function for the 
Sturm-Louville Equation from a complete orthonormal basis of the spectrum of the equation. 

Let G(x,x': X) be a solution of the inhomogeneous Sturm-Louville Equation: 

- — p{x)—Gix,x':X) + {q{x)-hv{x))G{x,x':X) = -5{x-x') (3.12) 
dx        dx 

subject to the boundary conditions: 

cc,G{a,x': X) +p~G{a,x': A) = 0 (3.13) 
dx 

afi{b,x\ X) + I3,—G(b,x': A) = 0 (3.14) 
dx 

3-3 
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Let ifr„(x) be a complete, orthonormal basis of the discrete spectrum, and y/(x,X) be a 
complete, orthonormal basis of the continuous spectrum as described in Theorem 4. Then the 
solution of the above differential equation for the Green's Function of the 
Sturm-Louville Equation is of the form: 

in terms of this basis. 

THEOREM 6: 

This theorem describes an alternative solution for the Green's Function of the 
Sturm-Louville Equation, which does not require the construction of an orthonormal basis of the 
homogeneous equation. 

Let G(x,x': A) be a solution of the inhomogeneous Sturm-Louville Equation: 

-—p(x)—G(x,x':A) + (qix)-Xwix))G(x,x':A.) = -S(x-x') (3.16) 

subject to the boundary conditions. 

a^Gia,x': ^,) +fi,-^G(a,x': A) = 0 (3.17) 

a,G(b,x':X) + fi,j-Gib,x':A) = 0 (3.18) 

Let y/^(x) and y/^ix) be a pair of solutions of the differential equation: 

-^/'W;^t«^, W + (^W - MxWXx) = 0 (3.19) 

and the boundary condition: 

a,V^,(a) + yS,—y^,(a) = 0 (3.20) 

(X2x¥2(b) + p2—Wiib) = 0 (3.21) 

3-4 
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at X = a, and x = b, respectively. Then the Green's Function can be represented in the form: 

G(,,,,;i) = _fi(£.M(S) (3.22) 
^ Wix') 

in terms of the functions 5^,(x) and y/2(x), where 

W{x) = \if^{x)   ^]^    —^^y/^ix) (3.23) 
ax ax 

is the Wronskian of these two functions. 
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4. GREEN'S FUNCTION FOR A RANGE INDEPENDENT OCEAN 

This section gives a brief overview of the construction of the Green's Function for a 
range independent waveguide. One must adopt a cyhndrical coordinate system where the upper 
surface is given by the plane z =0, and the z-axis is oriented downward. The source is located at 
a 
depth z^ at a horizontal range r = 0. 

The Green's Function for the acoustic wave equation in a constant density ocean is a 
solution of the differential equation: 

d^     \ d      \   d^      d^     ,2        1 

dr^     r dr    r^ df    dz^ 
(■^+-^ + ^^ + ^ + nG(r,rJ = —S(r-rjS(z-zjS(<p-^J (4.1) 

subject to appropriate boundary conditions. 

Make the simplifying assumption that the speed of sound is a function of the depth 
coordinate only. Make the further simplifying assumption that the source is omni-directional and 
located a horizontal range r = 0. In this case, Green's Function simplifies to the following 
differential equation: 

(-^ + -^ + 4T + ^(^y)G(r,z,z,)==-^S(r)S(z-zJ (4.2) 
dr      r dr    dz Iw 

Here 

Gir,z,zJ = — jG(r,r, =O,(P,^^,z,z^)d0 (4.3) 

is the relationship of the three-dimensional Green's Function of Equation 4.1 to the 
two-dimensional Green's Function of Equation 4.2. 

Neglecting the inhomogeneous term on the right hand side of Equation 4.2, the left hand 
side of the differential equation is separable. Define the one-dimensional Green's Functions for 
the radial and depth coordinate as solutions of the following differential equations for a given 
separation parameter A,: 

^ ■G,(r:A) + -—GXr:^) + AG,(r:X) = ——S(r) (4.4) 
dr r dr iTtr 
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-^G,iz,z^:A) + (k(z)' -Z)G,(z,z^ :Jl) = -d(z-zJ (4.5) 

The two-dimensional Green's Function G(r,z,z Jean be written as the spectral integral 

Gir,z,z,) = ^JG^ira)G,(z,z^ ■.X)dX (4.6) 

of the radial and depth Green's Function over an appropriate Contour C. The Contour C can be 
either chosen to enclose all the poles of the radial Green's Function or the depth Green's 
Function in a positive sense, that is, the Contour C is chosen such that either the spectral integral 

^|C,(.:AMA = ^^W (4.7) 

over the radial Green's Function is equal to the Dirac Delta Function with respect to range, or the 
spectral integral 

PJG,(Z,2,:A)^A = ^(Z-ZJ 2m^-- s. (4.8) 

over the depth Green's Function is equal to the Dirac Delta Function with respect to depth. The 
fact that such a contour may be chosen is due to the fact that both the radial and depth dependent 
Green's Functions are the Green's Functions of a Sturm-Louville Differential Equation. 

Now one may make the change of variables: 

9^ = ^ (4.9) 

One can express the spectral integral for the Green's Function as the integral: 

■foo-lO 1    -roo~ju 

G(r, z, z J = —    \G, (r : q)G^ (z, z, : q)qdq 
-«o+(0 

4-2 



CSS/TR-02/10 

5. RADIAL GREEN'S FUNCTION 

This section presents a derivation of the radial Green's Function. 

The radial Green's Function for a range independent waveguide satisfies the following 
differential equation, 

^'      .      .    I d ^ ^      .      2^ ,      , 1 ,G,(r:g) + -—G,ir:q) + q'G,(r:q) = ---Sir) (5.1) 
ar r dr 27tr 

subject to the boundary conditions 

Hm.^Jr—G,(r)] = -— 
dr 2K 

lim.^„V^(4c?,(r)-/^G,(r)) = 0 
dr 

at the origin and at infinity. The boundary condition at the origin follows from integrating 
Equation 5.1 in an infinitesimal region about the origin. The boundary condition at infinity 
follows from the requirement that the Green's Function asymptotically approaches an outgoing 
plane wave. 

Equation 5.1 is the Bessel Differential Equation of Order 0. Thus, the Green's Function 
is of the form: 

GXr:q) = AH^'l.qr^^BH'i'iSir) 

where H^^^{qr) and Hl^\qr) are the Hankel Functions of the first and second kind. The 
boundary condition at infinity allows us to discard the term with the Hankel Function of the 
second kind. The boundary condition at the origin determines the coefficient A. The radial 
Green's Function is given by the following expression: 

GM:q) = -^H^\qr) 
4 
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6. CONSTRUCTION OF THE DEPTH-DEPENDENT GREEN'S FUNCTION 

This section describes the construction of the depth dependent Green's Function from 
solutions of the homogeneous differential equation. 

The depth dependent Green's Function is a solution of the following differential equation. 

ZG,(z = 0,z,;g)^p(z)|-   ] ^^'^':''''^\{k\z)-q')G,{z,z,-q) = -S{z-z,)        (6.1) 
az p{z)        dz 

The Green's Function is subject to the following boundary conditions. 

5,G,(z = %z-q) ^ f{q)G,{z = 0,z,;^) + l^^^^i^^i£^ = 0 (6.2) 
p(0) dz 

Bfi,{z = d,z-q) ^ f\q)G,{z = d,z;,q)^-^^^^^^^^^^ = 0 (6.3) 
p{d) dz 

The Green's Function satisfies the following conditions in the limit z approaches the 
source depth: 

lim,^o(G,(z, +f,z,)-G3(z, -£,z,)) = 0 (6.4) 

lim,.o(^^^%^^-^%^^) = -p(^..) (6.5) 
az az 

Let p,(z) and P2{z) be a pair of solutions of the homogeneous differential equation that 
satisfy the boundary condition at the surface and bottom respectively, that is, they satisfy the 
differential equation 

M(^) = 0 {6.6) 

Lp,(z) = 0 (6.7) 

and boundary condition 

5,/?,(z = 0) = 0 (6.8) 

B2P2(z = d) = 0 (6.9) 

6-1 
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The depth dependent Green's Function is given by the following expression: 

|(^<)/^2(^: 
^2(^'^5'^) = :;;z—^^ (6.10) 

where 

oz oz 

is the Wronskian of the two solutions, and 

2^=min(z,zJ (6.12) 

z>=max(2,zj. (6.13) 

6-2 
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7. NORMALIZATION OF DEPTH FUNCTIONS 

This section describes the normaUzation condition of the depth functions and the depth 
dependent Green's Function following the discussion by Porte/. 

The depth function is a solution of the following differential equation: 

L{q)xifiz) = piz)^i-^^^^ik\2)-q')xif{z) = 0 (7.1) 
dz p{z)    az 

and the following boundary conditions: 

i!,(,M. = 0) = r(«)Kz = o)+l^^!!^ = o (7.2) 
/7(0) dz 

s,(,Mz = rf) = /'(,)K- = d)+^^^!fc^ = o (7.3) 
p(a)        dz 

hi general, a non-zero solution of the above differential equation and boundary conditions 
only exists for a discrete spectrum of eigenvalues. 

Let /),(z) and P2(z) be a pair of unforced solutions of the differential equation: 

L(q)p,iz) = 0 (7.4) 

Liq)p,iz) = 0 (7.5) 

and boundary condition at the surface (bottom), respectively: 

B,(q)pXz = 0) = 0 (7.6) 

B,{q)p,{z = d) = 0 (7.7) 

Here, boundary conditions are only imposed on j9,(z) and Pjiz) at one end of the 
domain, respectively. This relaxation of the boundary condition at one end of the domain allows 
the existence of a continuous spectrum of solutions. The functions p^{z) and p^iz) are 
analogous to the left-going and right-going traveling waves on a one-dimensional string. The 
depth functions are analogous to the standing waves on this string when both ends of the string 
are clamped. 

7-1 
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Let 

W(z,q) = p^(z)-^-^^p^(z) (7 8) 

be the Wronskian of the above pair of solutions of this differential equation. The two solutions 
are said to be linearly independent if the Wronskian is non-zero. 

Recall the depth dependent Green's Function may be represented in the form 

iViz/,q) ^'-^^ 

in terms of this pair of solutions and the Wronskian. The spectrum of normal modes is 
comprised of those values of q for which the above Wronskian vanishes: 

W(^,;q) = 0 (7.10) 

Let y/{z) be the depth fiinction at eigenvalue q^ at which the above Wronskian vanishes. 
Without loss of generality, one may assume /J,(Z) and pjCz) form a one-parameter family of 
solutions of the depth equation that satisfy the limiting conditions: 

lim^^,^ p^(z) = y/(z) (7.11) 

lim,->,„ Pzi^) = W(z) (7.12) 

that they approach the depth fiinction y/(z) as q approaches the eigenvalue q„. 

The following relationship: 

P2(^)Liqj¥(z)-(Liq)pAz)Mz) = 

i^iM^)'-^-'-f^.i^wm)H.'-.'j^^--o 
(7.13) 

between i//(z) and p^iz) follows fi-om the fact these two fiinctions are solutions of the depth 
equation for eigenvalue q„ and q, respectively, tategrating the above quantity over the water 
column, one arrives at the expression 

oz dz 
= -(9' ~ql)\p^{z)\if{z)lp{z)dz (7.14) 

--=0 0 
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Similarly, the relationship: 

Mz)L(q)p,(z)-iL(q)p,{z))Mz)=^^^i(Mz)^-^ (7.15) 

proves that the ratio 

Wiz;g)fp(z) = M,)^-^p,(z))/piz) (7.16) 
dz oz 

of the Wronskian and the density is a constant. 

Using the relationship: 

3^_^        = (_LM£)-_L^M£))^^(,)^(,) (7.17) 
dz dz y/^z)    dz       p^iz)    dz 

and the boundary conditions 

1       dHz = D)_   f'jqj 
il^(z = D)       dz g\qj 

one arrives at the expression 

p{D) (7.18) 

p^^n)^-^W(D)^(^-^)piiD)p,(D)HD) (7.19) 
dz dz g (q)     g {qj 

Since the depth function y/{z) satisfies the boundary condition at both the top and bottom 
siuface, one has the following expression for the impedance of the depth function at the top 
surface: 

_LM2)=_/!Mp(o) (7.20) 
yfiO)   dz g'iqj^ 

Utilizing the fact that the ratio of the Wronskian and density is a constant one obtains the 
following relationship for the impedance of the function P2(z) at the top surface: 

1    dp,(0)^    1    8A(0) , ^(0;g) ^   -^'^"^Kmi       ^^''-^^ nou 
p,iO)    dz        /7,(0)   dz p(0) g'(q)^        Piz)pmP2(^) ^     ^ 
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Using Equations 7.17,7.20, and 7.21 one arrives at the following expression: 

az az 

= (^ - ^^)/'(0);^a(0)t/(0) + mz: q) - W{z: qjwi^)! p,{Q) 

(7.22) 

Here, use of the vanishing of the Wronskian 

W{z:q„) = Q (7 23) 

at the eigenvalue q„ has been made to add a term that is proportional to this term to 
Equation 7.22. 

Substituting Equations 7.19 and 7.21 into Equation 7.14, one arrives at the following 
expression for the normalization of the depth functions: 

Divide this equation by {q^ - ^^) and take the limit q approaches q„ to obtain the 
following relationship between the Wronskian and the normalization of the depth functions. 

Without loss of generality, one can normalize the depth functions such that the partial 
derivative of the Wronskian at the m'th normal mode is given by the expression: 

^W{z;qJ _ 
 3^  29„P(z) (7.26) 

by requiring the following normalization condition on the depth function: 

V(z)t/(z)^_J_j_(/:(0w(0)2 ,    1    ^/'(^-)wm^ -1 n 97^ 
I     Piz)     ^    2q„^q\^iqJ^^'^  ^2q„^q^g\qJ''^''^   -' ^''^'^ 
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In the case of a pressure release surface and a rigid bottom, the partial derivative terms in the 
above expression vanishes and the previous expression reduces to the usual normalization 
condition in the case the spectrum is discrete. 
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8. N HOMOGENEOUS FLUID LAYERS OVER A RIGID BOTTOM 

This section describes the construction of the Green's Function for N fluid layers over a 
rigid bottom. 

The Green's Function is given by the following spectral integral: 

+oo-;0 

G(r,z,z^) = —   \H'^\qr)G^iz,z^:q)qdq (8.1) 
4/r 

—oo +iO 

where G,{z,z^: q) is the depth dependent Green's Function. This spectral integral can be 
represented as a sum of residues of poles of the depth dependent Green's Function in the upper 
half q-plane. The remainder of this section will be devoted to solving the characteristic equation 
for the location of these poles, and the evaluation of the depth functions. 

Let {/?„, c„ :« = 0,1..7^ -1} denote the density and sound speed in the N layers. Let 
{z„:n = 0,\...N} denote the z-coordinate of the N+1 interfaces. Without loss of generality, one 
may assume Zf^=0, and z^ =D. 

The depth function in the n'th layer is required to satisfy the differential equation: 

^ + (e„-q^)=:0 (8.2) 
az 

where k^ =col c„\% the wavenumber in the n'th layer. The functions: 

F;(z) = e^'''«^-'--"' (8.3) 

F;(z) = e-'^"'-'-'"> (8.4) 

denote a basis for the downward and upward going waved in the n'th layer, where 

hM) = i4q"-kl (8.5) 

is the vertical wavenumber in the n'th layer, and q is the horizontal wavenumber. Here one 
adopts the conventions of Ewing, Jardetsky, and Press^ for the vertical wavenumber; that is, the 
imaginary component of the vertical wavenumber is greater than zero on the physical sheet, and 
the branch cut is the hyperbola on which the imaginary component is zero in the complex q- 
plane. 
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Let the following sum represent the depth function in the n'th layer: 

FAZ) = A:F:(Z) + A-„F;(Z) (8.6) 

of upward and downward-going waves. The depth function is required to satisfy the following 
boundary conditions. 

^o(^o) = 0 (8.7) 

Fn (2„.,) = ^„., (2„., ),n = 0,L.(N- 2) (8.8) 

—^—'> (8.10) 

The above boundary conditions specify the upper surface to be a pressure release surface, 
and the bottom surface a rigid surface. The remaining boundary conditions are continuity of 
pressure and the normal velocity between adjacent layers. 

Equation 8.7 implies the following condition 

^o=-A* (8.11) 

on the depth function in the top layer. Equation 8.10 implies the following condition 

A-,_,=+Al,e^'""'-"'''-' (8.12) 

on the depth function in the bottom layer. The remaining boundary conditions imply the 
relationship: 

A„^i=M„A„ (8.13) 

where A„ is the column vector 

A = 
^A!^ 

\-^» J 
(8.14) 

and M„ is the matrix 

M = Ml      -"-"12 

[MI,   M"J (8-1^) 
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M~\=- 
1      ( M"     -M"] ■22 21 

det(M„){-M^,     M,", 1 y 

(8.16) 

Pn    KM 

M;, =(i-^""' ^" )€-'"'■■/2 
Pn    KM 

M;, =(1-^^—6^'"''" )/2 
Pn    KM 

M;, =(i+^""' ^" ye-""'"/! 
Pn   KM 

Here, 

is the thickness of the n'th layer. 

The characteristic equation for the normal modes is the transcendental equation: 

dz 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

where the depth function in the bottom layer is determined by the following relationship between 
the depth function in the top layer with that in the bottom layer: 

^NM  =M^_2--WoA 

-^0 ~ A 
'+n 

(8.23) 

(8.24) 

The above relationship determines the depth fiinctions throughout the waveguide up to 
the multiplicative factor Al. This factor is determined by normalizing the depth functions 

according to the following condition: 

rF(z)F(z) F„(^)fn(^) 
J    p(z) t^J       p„ 

dz = \ (8.25) 
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Let {g„} be a complete basis for the normal modes in the complex q-plane, and 
^(2 ■• q„) the corresponding depth function. Then the Green's Function for this waveguide is 
equal to the following summation: 

Gir,^'^s) = j^^Y,H%„r)F(z-^„)Fiz^ :qj (8.26) 

where the depth functions satisfy the following orthonormality condition: 

J __ ,,^s„ (3 2,^ 

An alternative method of computing the Green's Function is to directly evaluate the 
contour integral given in Equation 8.1. This is the approach used in fast field programs such as 
"SAFART' and "OASES". This approach requires the construction of the depth dependent 
Green's Function off mass shell. It has the advantage that one doesn't have to solve the 
transcendental equation given by Equation 8.22 for the normal modes. 

In order to construct the off mass shell solution for the depth dependent Green's Function 
one constructs the functions /?,(z) and /JJ (2) according to the following prescription. First, 
define the quantities: 

2<=mm(z,zJ (8.28) 

z^=max(z,2j (8 29) 

Suppose the coordinates z^ and z> are located in the n and n' layers respectively, that is. 
These coordinates satisfy the inequalities: 

^„ < 2< < z„^, (8.30) 

^n-<z^<z„.^^ (8.31) 

Define the coefficients: 

= M„_,...M, 
r+r 

= A/;'...M;U 
f ^ g-'*.v-i<'A'-i ^ 

y-te j 

(8.32) 

(8.33) 
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and define the functions: 

Mz) = A:F:(z) + A:F„-iz) (8.34) 

PA^) = A:,F:(Z) + A;,F-(Z) (8.35) 

These fiinctions satisfy the homogeneous equation for the depth functions, and the 
boundary condition at the upper and lower surface, respectively. The depth dependent 
Green's Function is given by the following expression in terms of these two functions: 

G.(.,..:,) = -^!W£iM (8.36) 

where 

W(P„P,) = P,(^)^-^PA^) (8.37) dz dz 

is the Wronskian of this pair of functions. 

As a means of comparing the above contour integral representation with the normal mode 
representation of the Green's Function, the normal mode representation is given by the following 
expression in terms of the depth functions of the normal modes. 

G,(z.z.:,) = -l-I^<-;-'^<:-;^'> (8.38) 
P(2.) (9     -^«,) 

Substituting the above expression for the depth dependent Green's Function into 
Equation 8.1, one arrives at the normal mode expression for the Green's Function given in 
Equation 8.26. 
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9. N HOMOGENEOUS FLUID LAYERS OVER A HOMOGENEOUS HALF-SPACE 

This section describes the modifications of the previous section, when the rigid bottom of 
the previous section is replaced by a homogeneous half-space. 

One of the major differences between the case of a homogeneous half-space and a rigid 
bottom is that in the case of a half-space there are generally a finite number of normal modes, 
where as, in the case of a rigid bottom there are generally an infinite number of normal modes, 
hi addition, the integrand of the equation 

Gir,z,z^) = ^   ]H^^\qr)G,{z,z,:q)qdq (9.1) 
-OO+/0 

is generally not an even function of the vertical wavenumber of the homogeneous half-space. 
This results in a branch cut contribution of the spectral integral from the integration of the 
spectral integral around the branch cut of the vertical wavenumber of the homogeneous half- 
space in the complex q-plane. The half-space also affects the normalization of the normal 
modes. 

Let {p„, c„:« = 0,1 ..A^ -1} denote the density and sound speed in the N layers. Let 
{z„:n = Q,\...N} denote the z-coordinate of the N+1 interfaces. Without loss of generality, one 
assumes ZQ=0, and z,^ =D. Let {p^, c^^} denote the density and speed of sound in the 
homogeneous half-space. 

The depth fimction in the n'th layer is required to satisfy the differential equation: 

+ (kyq') = 0 (9.2) dF(z) , „ 2       2 
dz 

where k„ = <»/c„ is the wavenumber in the n'th layer. The functions: 

F;(z) = e^'*"^-'-'"> (9.3) 

F„-(z) = €-"•"'-'"' (9.4) 

denote a basis for the downward and upward going waved in the n'th layer, where 

Kiq) = i4<i"-kl (9-5) 

is the vertical wavenumber in the n'th layer, and q is the horizontal wavenumber. 
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One may again represent the depth function in the n'th layer as the following sum 

F„(z) = A:F:{z) + A-„F„-iz) (9.6) 

of upward and downward going waves. The depth function is required to satisfy the following 
boundary conditions: 

-^0(^0) = 0 (9.7) 

Fn (2„.,) = /^.., (^„., ),n = 0,\..iN-1) (9.8) 

Assuming the source is above the homogeneous half-space, one requires the condition 
that the coefficient: 

^^=0 (9.10) 

of the upward moving waves in the homogeneous half-space vanish. 

Equation 9.7 implies the following condition 

Al=-Al (9 11) 

on the depth function in the top layer. Boundary conditions shown in Equations 9.8 and 9.9 
imply the relationship, 

^«+i=-^«4 (9.12) 

where A„ is the column vector 

A = (9.13) 

and Af„ is the matrix given by Equations 8.15 through 8.20 in the previous section. 
Equation 9.10 in conjunction with Equations 9.8 and 9.9 imply one can replace the boundary 
condition for the rigid bottom by the following boundary condition: 

f\q)F,_,{z, :q) + i-M^F^_,(z,:q) = 0 (9.I4) 
PN-I  dz ' 
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where the coefficients f^{q) and g^{q) are given by the following expressions: 

y«(^) = Zi^A^ (9.15) 

g\q) = \ (9.16) 

The depth functions {F{z: ^^)} are normalized by the following condition: 

]E!ll3^d.^J-li^i:MA)nD:,J^X (9.17) 
J     p(z) 2q„ dq  g (qj 

The Green's Function is given by the following residue term and cut contribution: 

G(r,z,z,)==—!—Y^H'tcin,r)F{zyJF(z,:qJ + G,.Jr,z,zJ (9.18) 

Here, the cut contribution is given by the following expression: 

G,^,(r,z,z,) = ^lH^'\qr){G,(z,z, :+h,)-G,(z,z, :-K)}h,dh, (9.19) 

The above integral is an integral over the branch cut for the homogeneous half-space, 
where the integrand is proportional to the difference in the depth function across the cut. 
Evaluation of the above integral requires the construction of the off mass shell representation of 
the depth dependent Green's Fimction. 

In order to construct the off mass shell solution for the depth dependent Green's Function 
one must construct the functions /?, (z) and pj (-^) according to the following prescription. First, 
define the quantities: 

z^=min(z,zj (9.20) 

z>=max(z,zj (9.21) 

Suppose the coordinates z< and z> are located in the n and n' layers respectively, that is, 
these coordinates satisfy the inequalities: 

^„<2<<^„.. (9.22) 

^n'<^><^n'.^ (9.23) 
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Define the coefficients: 

^+0 ^A:^ 

\^n J 

\A„.j 

= M„_,...Mo 
y-h 

= A/;'...M;_, 
0, 

(9.24) 

(9.25) 

and define the functions: 

P2(z) = A:.F:.iz) + A-,F;,iz) 

(9.26) 

(9.27) 

These functions satisfy the homogeneous equation for the depth functions, and the 
boundary condition at the upper and lower surface, respectively. The depth dependent 
Green's Function is given by the following expression in terms of these two functions: 

G^(z,z^:q) = - 

where 

_    PiMPzM 
np^,P2)(Zs) 

(9.28) 

ct dz 

is the Wronskian of this pair of functions. 

(9.29) 
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10. NINHOMOGENEOUS FLUID LAYERS 

This section describes the modifications of the previous two sections in the case the index 
of refraction squared is a piece-wise linear function of depth, hi this case, the complex 
exponential functions of the previous sections are replaced by complex Airy fimctions. hi the 
case of an inhomogeneous layer, there is no longer a natural split of the depth functions into 
upward moving and downward moving components. This work is based on the description by 
Stickler' on the computation of normal modes in a waveguide with a piece-wise linear index of 
refraction squared. 

Let {p„, cj, cf :« = 0,1 ...(TV -1)} denote the density, sound speed at the top of the layer, 
and sound speed at the bottom of the layer for the N inhomogeneous layers, where the index of 
refraction squared is the following linear function of depth: 

ct{z) = a„-P„{z-z„) (10.1) 

(X„={cir 00.2) 

Pn=iicir-{cir)ld„ (10.3) 

Define the change of coordinates: 

z-^Z„(z) (10.4) 

in the n'th layer, where the coordinate function Z„ (z) is required to satisfy the following 
constraint: 

ZS^)i^^r =-(0j' lc{zf -q') (10.5) 
dz 

The coordinate function Z„(z) is given by the following linear function of z: 

Z„{z) = -Ll{a)\a„-p„{z-zJ)-q') (10.6) 

where the coefficient Z,„ is given by the expression 

L„={co'Pir" (10.7) 
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The derivative of this coordinate function is given by the expression: 

^-•^'PA (.0.8) 

The differential equation for the depth function 

dF„{2) 
dz 

■ + iK{z)-q')F„(z) = 0 (10.9) 

in the n'th layer is transformed into the following differential equation: 

dF. 

dZ. 
-ZF=0 (10.10) 

under the coordinate transformation z-^Z^. Equation 10.10 is the Airy Differential Equation, 
which implies the depth function is given by the following linear combination of Airy Functions: 

F„(z) = A:AiiZ„iz)) + A:Bi(Z„(z)) (10.11) 

Note the above expression for the depth function becomes ill conditioned in the limit the 
sound speed gradient in the layer vanishes, that is, the coefficient >S„ -4 0 approaches zero. In 
this case the coordinate transformation z^Z„ becomes ill defined. 

The ill-conditioned nature of this coordinate transformation for infinitesimally small 
sound speed gradients can lead to numerical overflow errors in the computation of the depth 
functions. Therefore it is necessary to place a minimum limit on the sound speed gradient for 
which the above linear representation of the index of refraction squared will be used. If the 
sound speed gradient is below this minimum, the sound speed profile in the layer is considered to 
be a constant, and the depth functions of the previous two sections are used. 

Thus one introduces the following basis for the depth functions if the sound speed 
gradient is sufficiently small: 

F;(z) = e-'^"'-'-> (10.13) 
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where the sound speed 

c„=(c:+cf)/2 (10.14) 

is equal to the average of the speed of sound at the top and bottom surface, and 

hM) = i4<i"-kl (10-15) 

is the vertical wavenumber. Otherwise, we use the following basis: 

F;(Z) = ^/(Z„(Z)) (10.16) 

F;(Z) = 5/(Z„(Z)) (10.17) 

for the depth functions, provided the gradient y9„ is sufficiently large. 

Let 

fF„(z:^) = F;(z)^^-^^F;(z) (10.18) 
dz dz 

denote the Wronskian of the above basis for the depth functions. In the case of vanishing 
gradient (iso-velocity layer), this Wronskian is given by the expression: 

W„(z:q) = -2ih„(q) (10.19) 

where h„(q) is the vertical wavenumber of this iso-velocity layer. Otherwise, the Wronskian is 

equal to the expression: 

W„{z:q) = (o'PXl^ (10.20) 

where the expression 

Ai(x) Bi{x) = — (10.21) 
dx dx K 

is used for the Wronskian of the Airy Functions. 

The depth function F^ (z: q) in the n'th layer may be represented by the following linear 

combination of the functions F^{z: q) and F~{z: q): 

F„(z : q) = A:F:iz : q) + A-„F„-iz : q) (10.22) 
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The depth function in the top layer satisfies the following constraint for a pressure release 
surface: 

^o(^o) = 0 (10.23) 

In addition, the depth function must satisfy the constraint of continuity of pressure and 
normal velocity at the interface between adjacent layers: 

^„(^...) = ^„.,(2„.,), « = 0,1..(A^-1) (10.24) 

In the case of a rigid basement, the depth function satisfies the boundary condition: 

at the bottom surface. In the case of a homogeneous half-space, the coefficient for an upward 
moving wave in the basement is required to vanish and the depth function is required to satisfy 
the constraints of continuity of pressure and normal velocity at the interface with the 
homogeneous half-space: 

^~N=^ (10.27) 

PN-\ {ZN) = PN^ZN) (10.28) 

1     dpN-^i^,)      1   clF,{z,) 
pN-\n       dz PN      dz (10.29) 

The constraint on the depth function by the presence of the bottom can be reformulated 
by a boundary condition of the following form: 

f'{q)F,_,{z,:q) + ^^F,_,{z,:q) = 0 (10.30) 
PN-\   "^ 

where the coefficients f\q) and g^{q) are given by the following expressions in the case of a 
homogeneous half-space: 

j  iq)-—-  (10.31) 
PN 

g'(q) = l (10.32) 
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and the following expressions in the case of a rigid bottom: 

f\q) = 0 (10.33) 

g'iq) = l (10.34) 

The depth functions {F(z: ^„)} are normalized by the following condition: 

piz) 2q„dq\\qJ 
ciz + ^—^(^^^^)F(D:qJ =1 (10.35) 

Equation 10.23 implies the following relationship for the coefficients of the depth 
function in the top layer: 

A-=-A^ (10.36) 

Equations 10.24 and 10.25 imply the following relationship between the coefficients of 
adjacent layers: 

4„=M„4 (10.37) 

Here A_ is the coefficient vector 

A = 
A: (10.38) 

and M„ is the propagator matrix 

M = (10.39) 

whose matrix elements are given by the following relations: 

^„+i(^„+i) dz p„        dz 

j ^p-^^      ) ^Fn^X (^«+l )       Pn^\  dP; (Z„^, ) 

^„+i(2„+i)    "    "^' dz p„        dz 
^n  = + „r      . JK(^n.x)        "^',    "^'     -^:^' ","^"i^,;.(^„..)} (10.41) 

2' ~~";:;r~;^—\^^" ^^"^^^—^ ::;—^«+i(^«+i)} (10.42) 
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Recall that the expression: 

»'.(-9) = f;W^-^F;(z) (.0.44) 

is the Wronskian of the basis for the depth functions in the n'th layer. 

Using Equations 10.36 and 10.37, the depth functions in all the layers are determined up 
to a common multiplicative factor. However, the depth functions constructed from 
Equations 10.36 and 10.37 do not necessarily satisfy the boundary condition in Equation 10.30 at 
the bottom layer. This equation acts as the characteristic equation, whose solutions determine the 
location of the normal modes in the complex q-plane. 

Given the above construction of the coefficients of the depth function, the construction of 
the depth dependent Green's Function and the spectral integral proceeds in analogy to the 
previous two sections. 
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11. EXAMPLE: ISO-VELOCITY LAYER OVER A RIGID BOTTOM 

This section describes an iso-velocity layer over a rigid bottom. 

The characteristic equation for the normal modes in this case is given by the equation: 

cos(V) = 0 (11-1) 

where 

K^i^q'-kl (11-2) 

is the vertical wavenumber. The solutions of this equation are given by the modes vertical 
wavenumber: 

K{qj = {m + \I2)'^ (11.3) 
a 

The normalized depth function is given by the following relationship: 

F(z: qj = ^^ sm{\{qjd) (11.4) 

The Green's Function is given by the following modal summation: 

G(r,z,zJ = -^2^//<'^(^„r)sin(//o(9jz)sin(/2o(9j^J (11.5) 
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12. EXAMPLE: PEKERIS MODEL 

This section describes the Pekeris Model, that is, an iso-velocity layer over a 
homogeneous half-space. 

The normal modes for the Pekeris Model are given by the solutions of the characteristic 
equation: 

mh^ cos(hf)d) - ih^ smih^d) = 0 (12.1) 

where m is the density ratio. 

m = ^ (12.2) 

The depth dependent Green's Function is given by the following expression: 

'    ' * HQ {mhQCOS,{\id))-ih^sin{h^{d))) 

The depth function in the top layer is given by the following expression: 

F(z:^) = ^;sin(V) (12-4) 

where the normalization factor is given by the expression. 

°     sinih^d) ^ h,dim^hl -hf) + imihl - hf) 
(12.5) 

The normal mode portion of the Green's Function is given by the following sum of 
residues: 

GMode(f>^'^s) = 

(12.6) 

- Z ^r (l/) sKhoZ) sin(/zoZ,) 
^   mh    V '0 h 

sinih^d)) h^d{m'h; -h^') + m(h; - h,') 
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The branch cut contribution to the Green's Function is given by the following spectra! 
integral: 

4;ri' " '^   m'/7o^cos(/;o,)^+/,,^sin(V)' ^      ^ 
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13. EFFECT OF A SMALL WAVE-HEIGHT, RANDOMLY ROUGH, TWO FLUID 
INTERFACE ON THE COHERENT COMPONENT OF THE REFLECTED AND 

TRANSMITTED FIELD 

This section describes the effects of a randomly rough two-fluid interface with small 
wave-height on the coherent component of the reflected and transmitted field . 

Let {/?, ,Ci} and {P2,C2} denote the density and sound speed in Regions One and Two, 
where the plane z = 0 is the interface between Region One (z > 0) and Region Two (z < 0) in the 
unperturbed case. The pressiu-e field in Regions One and Two are solutions of the differential 
equations: 

VV,+^,V, =0 (13.1) 

V'p2+k'2P2=0 (13.2) 

where /?, and />2 ^^ ^^^ pressure fields in Regions One and Two respectively. Here, A:, and ATJ 

are the wavenumber in Regions One and Two respectively. The pressure field is subject to the 
following boundary conditions at the interface z =0. 

P,(z = 0) = p2(z = 0) (13.3) 

1 dp^(z = 0)^  1  dp2(z = 0) ^^3^^ 

/?!       dz P2        dz 

Let 

Pine = exp[+/^o,x • ^ - '"^icz^l (13-5) 

be the incident field, where k^j^ is the horizontal wave-vector of the incident field in the xy- 

plane, and 

K..=^K.-k' (13-6) 

is the vertical wavenumber of the incident field. The unperturbed solution for the pressure field 
in the two regions is given by the following expressions: 

p, = exp[+/^oj^ •r-/A:,o.z] + /?„exp[+/A:oj^ • r + /A:,o.z] (13.7) 

13-1 



CSS/TR-02/10 

Pi = ^0 exp[+/^o,i • ^ - '*2o.--^] (13.8) 
where 

/?o=M^^-H^ (13.9) 

^20.../P2+^20.--/p2 

are the reflection and transmission coefficients of the interface. 

Consider the case that the interface is a random rough surface given by the equation: 

z = a{r) (13.11) 

where «(/■) is a random variable with zero mean and slope. 

<«>=0 (13.12) 

<V^a>=0 (13.13) 

The pressure field is required to satisfy the boundary conditions: 

p^{z = a) = p2iz = a) (13.14) 

1 3/?i (z = or) _ 1 dp2 (z = a) 

Pj       dn P2       ^" 

where 

(13.15) 

|- = V„ =^==i===(-V,a.V + |-) (13.16) 
an ^\ + Vj^a»V^a dz 

is the derivative in the direction of the normal to the rough surface: 

1 ,  da    da ,^ 
(-—-—,1) (13.17) n = 

^l + Vj^or-Vj^or     dx'   dy 

Let us express the pressure field in Regions One and Two as the sum of the mean field 
and a zero mean stochastic field. 

13-2 



CSS/TR-02/10 

Px =< Pi > +^1 

Pi =< P2 > +^2 

(13.18) 

(13.19) 

Expanding the fields about the mean surface, one arrives at the following boundary 
conditions on the mean surface (z = 0): 

dp,    a  dp, dp2 , a  dp2 

^'        dz      2   dz dz      2   dz 
(13.20) 

_1_ 

Pi 

J_ 
P2 

dpi      3^1    a^ d^p 
+ a 

dz' 
+ ■ 

2   dz' 
-V^a^S/p, 

dpo        dp.     Ot   d p     ^        - 

dz dz 2   dz' 
(13.21) 

Here, one has only kept terms up to quadratic terms in the random variable. Taking the 
ensemble average of the above equations, one obtains the following equations for the mean field 
on the mean surface (z = 0): 

<Pi>-<P2>=Fi 

1 d<p^> 1  d<P2> 

O,      dz P-,      dz 
= F, 

(13.22) 

(13.23) 

The source terms on the right hand side are given by the following expressions quadratic 
in the random variable: 

F, = - < a 

F2 = - < a 

<Vjx»V 

3w, 
dz 

dw^ 
dz 

' 1 d' w, 

> — 
<a > 9^ </), >    d^ < P2> 

A 5^ 

W, W^ 

1 a'w, 
Pi 5^' 

> 

dz' 

<a > 

dz' 

1   9^ <p, >      \   d' <P2> 

(13.24) 

dz' dz' 
+ 

(13.25) 

Note, the source terms are quadratic in the random variable. Subtracting Equations 13.24 
and 13.25 from Equations 13.20 and 13.21, one arrives at the following boundary conditions for 
the stochastic field on the mean surface (z = 0). 
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w, - Wj = G, 

1 dw,      1  3w, 

/?,  9z     P2  ^^ 
= G, 

(13.26) 

(13.27) 

The source terms on the right hand side of the boundary conditions are given by the 
following expressions linear in the random variable: 

G, =-a 3 < /?, >    d<P2>' 

dz             dz 

62=-a 
' 1 a'</?, >   1 a '<P2> 

dz' 
+ V^a»V <PI> 

. Pi 

<P2> 

P2 . 

(13.28) 

(13.29) 

In order to solve Equations 13.22 and 13.23 for the mean field, one must eliminate the 
stochastic field fi-om the right-hand side of these equations. In order to do this, one must first 
solve Equations 13.26 and 13.27 for the stochastic fields in terms of the mean field and the 
random wave height. One may solve Equations 13.26 and 13.27 by taking the Fourier Transform 
of these equations. This enables us to reduce the solution of these equations into a set of 
algebraic equations for the spectral strength of these fields. 

Let us introduce the following Fourier decomposition of the random wave height: 

air) = ^ld'^^a(^)e*'^^" (13.30) 

Assume the cross correlation fimction of this random variable is homogeneous. Then the 
cross correlation fimction depends only upon the difference of the two points, and is of the 
following form: 

< a(r)air') >=< a' > air - r') =<a'>— \d'^j^S(^)e^'^'''' (13.31) 

where < or^ > is the root mean square wave height squared, and 5(1) is the power spectrum of 
the surface. The following ensemble averages follow from the above definition of the power 
spectrum: 

< a{r)a{ri) >=< or' > S{rf)e''^''' 

< a(^)a{r]) >= 2^Si^^ -7]J<a'> Si?]) 

(13.32) 

(13.33) 
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The Fourier decompositions of the stochastic fields in Regions One and Two have the 
following form: 

w, 

w. 

(13.34) 

(13.35) 

The functions G, and G2 are linear functionals of the random variable that have a 

Fourier decomposition of the following form: 

^. ('•) = 7T^ \^'^- \d'Ti,e^'^^"ai^ - n)g, i^,ri) (13.36) 

(In)   ■'        •' 
(13.37) 

The Fourier coefficients g^{^,r]) and g2(^,V) have the following form in terms of the 
Fourier Transform of the mean field and its derivatives: 

3 < ^, >    d<P2> 
gA^,l) = - 

gii^^-n) = 

Bz 
(ji) (13.38) 

(13.39) 

1 9^ < ^, >     1 3^ < P2 > 

p,      dz^ P2      dz 
(^)-^i»(li-^i) <Pi>       <P2> 

Pi P2      . 
(TJ) 

Substituting Equations 13.34 through 13.37 into Equations 13.26 and 13.27, one arrives 
at the following algebraic equations for the Fourier coefficients of the stochastic field: 

W. (^) - iv, (^) = -^ jd'TjM^ - 7])g, (^, V) 

P, p. In •" 

Solution of the above equations leads to the following expression for the Fourier 
coefficients for the stochastic field: 

(13.40) 

(13.41) 
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w, 

w. 

ai^-rj) 
2;rJ        i^,Jp,+i4,J 

ik. 
L  ^2 

Sii'^,ri) + g2(^,V) 

a{i-7]) 'I,.- gA^^r)) + g^{^,rT) 

(13.42) 

(13.43) 

Substituting the above expressions for the stochastic field into Equations 13.24 and 13.25 
for the source terms of the mean field, one obtains the following expressions: 

k-U.s^{^m 
J 1_ 

^,= 
<a > 

■'fe.z+^2,.-k(^,^) 

5(1-77) 
(27ry J   ^^J    " ikJP^+ikJp2 

2  ^    nZ 

2   a? -(</?, >-</72>) (13.44) 

<a > 5(^-^) 
'      (l^r  J    ^-^J     '^ ikJP^^ikJP^ 

ikA2.. 

X 

AP2 
■(l,,--+^2,.)g,(^,^) + 

^ p2 p2    \ 
5l,z       *2 

yPx       P 
g2(^,V) 

[ P\P2 
^,(^,^) + 

2; 

J i_ 
\P\        P2J 

gii^.n) 

2    dz' 
<Px>     <Pl> 

I Pi 

^ 
(13.45) 

2    y 

To lowest order, the mean field is given by the unperturbed solution given below: 

< /'i.o >= exp[+/^o ^ • F] {exp[-/A:,o,,z]+R^ exp[+//:,o ,z]} (13.46) 

<P2fi >= 7^0exp[+/A:o^ •?-ik^^.z] (13.47) 
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^0 ^   is the horizontal wave-vector of the incident field, and 

k,o.=iA^*K.-kf (13.48) 

is the vertical wavenumber in Region One, and 

K,..=i4K^^k^2 (13.49) 

is the vertical wavenumber in Region Two. /?„ and T^ are the reflection and transmission 

coefficients of the incident wave: 

R.= ^0 
'^iO.z ' Pi      "-20.z'P2 (13.50) 

Ko.z'P\+klO,zlPl 

The Fourier coefficients of the unperturbed solutions are given by the following 
expressions: 

< Puo > (^) = 2^<^(^x - K±) {exp[-/A:,o,.z] + Ro exp[+iA:,o,,z]} (13.52) 

<p,,o >(^) = 2^^(^x-^o.x)7;expH^2o,z2] (13.53) 

Since the mean field and stochastic field are accurate up to terms quadratic order in the 
random wave height, one can substitute the unperturbed solution for the mean field in Equations 
13.38 and 13.39 for the stochastic field source terms. This substitution leads to the following 
simplification: 

g,i^,V) = 27uS(v^-k,Jg,{^) (13.54) 

g,(^,Tj) = imv^ -KJU^) (13.55) 

^,(^) = /^,o.z(l-^o)-^V'(l + ^o) (13.56) 

g,(^) = (l + /?o) -^•(^x-^o,i)( ) 
P2 Pi       P2   . 

(13.57) 

Similarly, one may substitute the above results and the unperturbed solution into 
Equations 13.44 and 13.45 for the source terms of the mean field without loss of accuracy. 
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F,= <cr_> 
In 

s{^.-K.) 
rJPl Pi       P\ 

+l^exp[/V .F](l + /?o)(fc,t- -K.) (13.58) 

Pi = 
<a > si^i-KJ 

In 

PxPi 
ik-MiMA^)^ 

(p2       e2   > 

1^2 (^) 

Z^;, 

+ lx*(li-V) 
'■(^..+^2.) 

A A 1.A    P2 

^^^o. ^^ 20.r 
^ 

\ Pi Pi 
(13.59) 

In the above equations one notes that Equations 13.58 and 13.59 may be expressed in the 
following form proportional to the root mean square (rms) wave height and incident field 
evaluated at the unperturbed surface. 

^.=<«'>A.c(^ = 0)F, (13.60) 

F,=<a^>p,„,{z = Qi)F, (13.61) 

F,= 
SiL-Kx) 

2ni    ^^iL.lp,+iB,J AJPx+i^iJPi 
kA.sx (^)(— - -) - mx,+^1, )gi (^) 

Pi     Px 
1 

+-(y+R,){K,-ki) (13.62) 
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-X 
PiPi 

(^,.+^2,.-)g,(^) + 
V Pi    P2 ; 

g2(^) 

+ li*(li-^o.x) 
V 

.1 
-I— 

2 

^/,3 

Pi Pi 
u^)^ g2(a 

^:^(i-/?o)-^^(i+i?o) 
A P2 

^ 
(13.63) 

The generalized reflection {R) and transmission (7) coefficients are defined by the 
following equations: 

<;?, >=(1+ /?);?,„, (z = 0) 

<;^2>=7>,„c(^ = 0) 

P\      oz p, 

-L^^ = -.-^2>.(-0) 
P2 ^Z P2 

Substituting the above expressions into the boundary conditions: 

<Px>-<P2>= Fm =< «' > F\Plnc (^ = 0) 

1 3<j9i >     1 9 < /?2 > _ 

az az 
:F,o=<a^>F2;7,,,(z = 0) 

one arrives at the following equations for the generalized reflection and transmission 
coefficients: 

- /^(l - /?) + i^^T =< a^ > F2 

(13.64) 

(13.65) 

(13.66) 

(13.67) 

(13.68) 

(13.69) 

(13.70) 

(13.71) 

13-9 



CSS/TR-02/10 

Solving linear Equations 13.70 and 13.71, one arrives at the following expressions for the 
generalized reflection and transmission coefficients for the coherent component: 

^1,: F,-iF, i{KJp,+k^jp^) (13.72) 

KJpx-^Kz'Pi 
-^F.^iF, i(.KJ Pi+KJ Pi) (13.73) 

The Fourier transform of the cross correlation function of the scattered field is given by 
the following expectation value: 

< w, i.^)^:{^') >= 27cd{^^ -L')<(^'> s{^) ikM^)l P2-^U^) 

kzlPx^'^lrJPl 
(13.74) 

The cross correlation function of the scattered field is given by the following expression: 

<w,(r)w,*(r')>= 

(13.75) 

■^p^,<a^>5(^) ikzSA^)! Pi-^gii.^) 
kzlp^kJPi 

exp[/|_,.(F-r') + /^,(z-z')] 

Similarly, the cross correlation of the field scattered into Region Two is given by the 
following expression. 

<w^i.r)w2 (A-')>= 

_1_ 

In 
\d'^,<a'>S{^) -i^x.m)lp+U^) 

kzlpX^kJPl 
exp[/{,«(r-r')-/^^(z-z')] 

(13.76) 

Suppose the spectrum S{^^) is sharply peaked around the origin, so that one is justified 
by approximating the spectrum as the delta fiinction: 

S{^^)^l7t5\^J (13.77) 

in the above integrals. In this case one arrives at the following asymptotic expression for the 
coherent reflection coefficient and transmission coefficient, where 

"•10.2 ~ 'V^0.1 • "^0.1       "^1 (13.78) 
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and 

^20,.=^V^0.X-^0,X-^2 (13-79) 

are the vertical wavenumber in Media One and Two in the case of a flat interface, respectively. 

^10,z/A+^20,z/P2 

r=- '^K,JPx 
Vz/A+^20,./p2 

— <a> 

.Pi 
-K -iK 

' k 

.A 
K + iF,, 

KKo,JPl+klO,Jp2) 

/(VZ/A+^20.Z/A) 

(13.80) 

(13.81) 

^.0 = 

1 

1 

'Vz/A+^'^20,z/P2 
^10,z^20,z^lo( )     '("•lO.z +^20,z)^20 

Pi       Pi 

+-(! + /?„ )(A:,V,-^2o.z) 

(13.82) 

p  = 1 

iK,zl Px^^K^^zl Pi 
'"^10,z^20,zS^I0v"'10,z "'■"-20,z) "''V    _ _     JSIO 

P\p2      A      A 2 J 

-{{(l-i?o)^-0 + ^o)^} 
2 P, P2 

(13.83) 

Sxa = iKo,z (1 - -^0 ) - '■^2o,z (1 + ^0) (13.84) 

k^       k^ 
^20=0 + ^o){ -} (13.85) 

^0 = 
K^,JPx-ho,z'Pl 
K,z' P\^^i^.J Pi 

(13.86) 

After some tedious algebra, the following simplifications maybe made to the above 
equations: 

i? = /?o(l-24.,<a^>) (13.87) 

r = 7;(l+l<a^>(A:,o,,-^,o,z)') (13.88) 
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The reflection and transmission coefficients thus given agree with Equations 57 and 58 in 
Reference 18. Equation 13.87 also agrees with the low frequency limit of the Kirchhoff 
approximation, which gives an effective reflections coefficient for the mean field of the 
following form: 

R = Ro exp[-2kfo_, < a" >] (13.89) 

Havmg derived the effects of a surface with small wave-height siirface roughness on the 
reflected and transmitted field. Let us reformulate this result into a format amenable to 
calculation m a waveguide. 

Let /?,(, and pjo represent the solution for the pressure field in Media One and Two in the 

absence of surface roughness. They satisfy the boundary conditions: 

/'io = P2o (13.90) 

1   4?,o _    1    4?20 
Px   dz     P2  dz 

at the interface between Media One and Two, and the differential equations: 

(13.91) 

^V,0 
dz' 

;2 

+ (^I'-9')AO=0 (13.92) 

^Hkl-q')p,,=0 (13.93) 

Let 4?i and ^^ denote the difference 

Sp^=<p^>-p^a (13.94) 

3P2=<P2>-P2^ (13.95) 

of the mean field in Media One and Two in the presence of surface roughness and the flat surface 
field in Media One and Two. They satisfy the boundary conditions 

^,-^, =F, =<a'>{b,p,,+b,—^)=<a'>{b,p,,^b,—^) (13.96) 
Px   dz p,   dz 

irf *' -ITT^^ =^^ =<'"' >(^.Ao+c,^^)=<a^ >(c,/,,+c,-*-^)        (13.97) 
p, dz P2 dz p,   dz /?,   dz 
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at the interface between Media One and Two, and satisfy the same differential equations as the 
functions p^Q and /JJO ' respectively. The source terms F^ and F^ are given by the following 

expression: 

F,= 
2;r    J    ^'/^,,/A+'"^2,./y 

^ja. (^)(— - —) - i(^u + k. )S2 (^) 
Pi    Pi 

^01    ^/•;2 72\ 
Z        V'^l.r ~'^2,z)PlO (13.98) 

^2 = 2;r 
■^C^x-^o,!) f .2 e ^'■^J-     "-O.J 

r^S-^,,/A-H/^2„ z/P2 
-X 

AP2 
(^U+^2,Jg^.(a + 

r;:2       e2   \ &      S. 
Pi       P 

g^2(^) 
2 y 

+ li»(l±-^o,i) 
/(^..+^2.) 

P1P2 
g^,(^)+ 

M   1^    ^ 
Pi   P2; 

g2(<^) 

<a > {K2             .2        \  1    4^10 
 IK   10,j—K   20,zJ  
2     ^ Vi   dz 

(13.99) 

where one has neglected higher order terms. The functions g, and gj are given by the following 

expressions in terms of the functions p^^ and /?2o • 

g'i(^) = -(Pi-P2) '^^'°=-(A-P2)-^^^- 
Pi   dz P2   dz 

(13.100) 

1      1 
U^) = i-^-^)p^,-K*i.L-K)i )Ao 

Pi    P2 Pi   P2 
(13.101) 

Substituting the above expressions into Equations 13.98 and 13.99, one arrives at the 
following expressions for the coefficients of the boundary conditions for the perturbed fields: 

^AK-^D 
--Lp^    '^(^x-^^)   (^,_^+^,j ;t^     F       -      -     -     1      1 

A     A A    P 

(13.102) 
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,    J.(AzA)lp^       f--/-'     sVft- (13.103) 

^^   A       P2 ^U'P\+^2,Z'P2 Pi P2 A       A 
(13.104) 

(13.105) 

Let us make the simplifying assumption, that the surface roughness spectrum is isotropic. 
In this case one can reduce the above expressions into the following relations: 

», =|(*? -^;)-(^-^)J,W.   f^-f.    «,. +f,J (13.106) 
2 P\       Pi   i i,.:'P,+Sl.JP2 

h =+/<^^^>V,---M-^„^,. (13.107) 

C, =-, 

^2 

A    A\J^  ^^U/A+^2./A ^ ^ 

4^'' -A:.^)-^^>V,'--f^^(^,, ^^2.)(^,A.- +.'^} (13.109) 
2 AP2       0 ^u'P\-^^2.-Jp2 

Here^ =1 A:j^ | is the magnitude of the horizontal wavenumber. The above expressions can be 
substimted into Equations 13.96 and 13.97 for the boundary conditions of the perturbed field. 
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14. EFFECT OF SMALL WAVE-HEIGHT SURFACE ROUGHNESS ON 
PROPAGATION OF SOUND IN THE OCEAN 

This section describes the effects of surface and bottom roughness on propagation of 
sound in an otherwise horizontally stratified waveguide. 

Let 

z = arix,y) (14.1) 

and 

z = d+as(x,y) (14.2) 

denote a realization of the randomly rough surface and bottom of the waveguide, respectively. 
The random fields aj. and ag are homogeneous, zero mean random fields with cross correlation 

functions of the form: 

<aAr)aAr')>=<ar'>(Jr(r-r')=^^^jd'^JAL)^^P[+iL<r-r')] (14.3) 

<«,(r)a,(r')>=<£^/>(T,(r-r') = ^-|^Jj^^A(^Jexp[+/|,.(F-P)] (14.4) 

where Sj.(^^) and SB(^_^) are the spectral density of the rms wave height of the surface and 

bottom, respectively. 

In the case of a flat surface and bottom, the normal mode contribution to the propagation 
of sound in the waveguide is of the following form: 

Prr^e = ^^-^^^''(^^^^(^ ^ 9„)^(^., :^J (14-5) 

where F(z :q„) is the depth function of the n'th normal mode. The depth function is a solution 

of the differential equation: 

p(^)^-^-^Fiz:q„) + (kizY-ql)Fiz:q„) = 0 (14.6) 
az p{z) dz 

14-1 



CSS/TR-02/10 

subject to the following boundary conditions: 

/rto.)F(^=0:?.)+^^^^^=^^ = 0 (14.7) 

f,(,.)F(z = d:,M^^^^~^-<^ (14.8) p{d) dz ' 

/r(^) = ^^^^(l-^r.o(^)) (14.9) 

g7-(9) = 0 + ^r.o(9)) (14.10) 

A(^) = ^^^^p(l-/?..o(9)) (14.11) 

gs(^) = (l + ^/,.o(9)) (14.12) 

Here, 

hiz:q) = +i^q^-k\z) (14.13) 

is the vertical wavenumber, and 

^r.o(9) = -l (14.14) 

*'''^'    Kd:q)/p{d) + h,id:q)/p,(d) ^'^'^^^ 

are the reflection coefficients of the surface and bottom in the case of a flat surface and bottom. 

Assume the sediment is modeled as a fluid layer, where 

hB{z:q) = +i4q^-ks\z) (14.16) 

is the vertical wavenumber in the sediment, kg{z) is the wavenumber in the sediment, and 
Pa (z) is the density of the sediment. 

The effect of small wave-height surface roughness on the coherent (mean) component of 
the normal modes can be accounted for by substituting Equation 13.80 for the effective reflection 
coefficient of the rough interface into Equation 14.9 through 14.12. In evaluating the parameters 
the quantities in Section 13 are defined by the following limiting value of the parameters on the 
two sides of the interface at z=d: 

14-2 



CSS/TR-02/10 

p,=\\m^^,piz = d + e) (14.17) 

p,=\xm,_,,p{z = d-e) (14.18) 

k,=\im^_^k{z = d + e) (14.19) 

k^=\\m^^^k{z = d-£) (14.20) 

An alternative method of accounting for small wave-height roughness is to treat the 
effects of surface roughness as a perturbation of the normal mode equations. Let F{z: q„) 

denote the depth functions of the unperturbed waveguide with flat boundaries. 

These functions are solutions of the differential equation: 

^li^^ + {k\z)-q')F{z:q) = Q (14.21) 
dz^ 

and satisfy the following normalization condition. 

-H» 

jdzF(z:g)F(z:q)/p(z) = l (14.22) 
0 

Here, one must make the assumption the density is piece-wise constant. The effect of surface 
roughness is to perturb the above eigenvalues and eigenfunctions. 

Let F(z :q„) + SF{z: q^)   denote the perturbed depth function and q„+Sq„ the perturbed 

eigenvalue due to roughness of the interface at z=d. The perturbed eigenfunction satisfies the 
following boundary condition at z=d: 

lim^_,{SF(d + £:q)-SF(d-£:q))=<a' >(b,F(z = d:q) + b,-^^^^ = ^• g)) (14.23) 
p dz 

lim,_„( i —SFid + £:q) ^ —5F{d-£:q)) = 
'-''pid + £)dz p(d-£)dz ^j^24) 

<a'>(c,F(z = d:q) + c,^^^^^^^^^) 
p dz 

The coefficients on the right hand side of the boundary conditions are given by either 
Equations 13.102 through 13.105 for a general surface roughness spectrum, or by Equations 
13.106 through 13.109 for an isotropic surface roughness spectrum. 
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The perturbed depth fiinction satisfies the differential equation: 

'''^'"^];^'"^^(t'M-e'-^'Xf(z:,)^y(z:,)) = 0 (14.25) 

where 5q^ is the perturbation of the horizontal wavenumber squared. Keeping only first order 
terms, one arrives at the differential equation: 

^^^^Hk\z)-q')5F{z-q) = 8q'F{z:q) (14.26) 

relating the perturbed depth functions and the perturbed eigenvalue. Here the perturbed 
eigenvalue acts as a source term for the perturbed depth function. This result is typical of first 
order perturbation theory. 

Combining Equations 14.21 and 14.26 one arrives at the following result for the depth 
derivative of the Wronskian of the perturbed and unperturbed depth functions: 

dSF{z:q)    ^       .dF(z:q)    j.,^, 
F(z:q) ^-^^-SF(z:q)—^-—^ = Sq^F(z:q)F(z:q) (14.27) 

az az 

Dividing the above product by the density and integrating the resulting product over the 
entire waveguide, one arrives at the following relation. 

^-=<^->^(^^^)^(^^^>=]^^(^^^)^"(-^^)-^"(^^^)'^(^^^) (14 28) 

Here, one has made use of the orthogonality condition of the unperturbed depth functions. 
Assuming the density is piece-wise constant, the above integrand is a total derivative in each 
layer of the waveguide except at the interface z=d, where the perturbed depth function is 
discontinuous. In this case, the above integral is equal to the following limit: 

Sq' = -lim,^o(F(z: q)SF'(z: q)-F'iz: q)5F{z: q))l p{z) tl, (14.29) 

Using the boundary conditions given by Equations 14.23 and 14.24 for the discontinuity 
of the perturbed field at the boundary, one arrives at the following expression for the perturbed 
eigenvalue: 

Sq'=-<a'>{c,F(d:qy+(c,-b,)F(d:q)rid:q)/p-b,iF'(d:q)/py} (14.30) 
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To first order in perturbation theory, the perturbed depth functions are equal to the 
unperturbed depth functions evaluated at the perturbed eigenvalue q + Sq. hi particular, the 
perturbed depth function SF{z: q) is given by the difference 

5F{z:q) = F{z:q + dq)-F{z:q) (14.30) 

Note, in the above first order perturbation theory, the effect of multiple rough surfaces is 
additive to first order. Thus, one can represent the effect of a rough surface and bottom by the 
sum of the perturbations of each surface on the unperturbed eigenvalues. 

hi the case of a sound sofl surface at z = 0, the perturbation of the eigenvalue is given by 
the following relationship: 

8q^ = + <a' >b^{F\z = 0:q)lp{Q>)y (14.31) 

The coefficient b^ is given by the following limit Pj -^ 0 of Equation 13.107 in the case 
of an isotropic surface roughness: 

b,=+ip,lq'dq'S(q'-q)^,, (14.32) 
0 

hi the case of a rigid rough surface at z=D, the perturbed eigenvalue is given by the 
following expression: 

Sq^=-<a^>c^ iF(z = 0: q)f (14.33) 

The coefficient c, is given by the following limit p, -> +<» of Equation 13.108 in the 
case of an isotropic rough surface: 

c,=-iP2(^rlgW^^ (14.34) 
Pi       0 ^2,. 

14-5/14-6 



CSS/TR-02/10 

15. ASYMPTOTIC EVALUATION OF THE TIME DOMAIN SOLUTION 

This section presents an asymptotic analysis of the propagation of a Gaussian pulse in a 
waveguide in the time domain. This analysis is based on a saddle point evaluation of the 
asymptotic evaluation of the normal mode expression for the Green's Function. 

The Green's Function for the propagation of a monochromatic signal in a 
waveguide is of the following form. 

G{r,z,,z) = —^Y.f^'^'^^nr)F{z/.q„)F{z:q„) (15.1) 
4/?(zJY 

Substituting the asymptotic expression 

Hi^'igry^J-^e'""-""' (15.2) 

for the Hankel Function into Equation 15.1, one obtains the following asymptotic expansion of 
the Green's Function: 

Propagation of a pulse is described by the Fourier Transform: 

G(r,z^,z:t)= jS(o})G(r,z^,z:co)e'""da) (15.4) 

where S(a)) is the spectrum of the incident signal. In the following one may assume a spectrum 
of the following form: 

(co-Oof 5(«) = exp(-^^^^^) (15.5) 

where COQ is the center frequency, and Ao) is the bandwidth of the pulse. The incident signal is 
of the form 

s(t)= jS{o))e-'''da} = yl2jrAo)e\p{-t^Ao)^/2-icOot) (15.6) 
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where 

1 

represents the pulse length of the incident signal. 

Substituting Equation 15.3 and 15.5 into Equation 15.4, one obtains the following 
expression for the propagation of a Gaussian pulse in a waveguide: 

G(r,z^,z:t) = 

-^X hp(Kq„r-ox-7r/4)-io)-a),f/2Aa)')F(z^:q„)F{z:q„)do} ^^^"^^ 

One must now assume that this integral is dominated by the exponential term and the 
depth functions inside the mtegral are approximately equal to their value at the center frequency 
of the pulse. Under this assumption, evaluation of Equation 15.8 reduces to the evaluation of 
integrals of the following form: 

+00 

I„(r,z^,z:t)= \e\piiiq„r-ax-ft/4)-io}-a}oy/2Aa)^)do} (15.9) 

where the horizontal wavenumber q„(Q)) is an implicit function of frequency. Expanding the 
argument of the exponential function about the center frequency, one obtains the following 
expression for the integral: 

+00 

I„(r,z^,z:t)^e\p{i(q„((Oo)r-Q)ot-7i:/4) jexp{-a\co-co^f -i((0-cOo){t-t„))do)       (15.10) 
—-co 

where the reciprocal of the group velocity of the mode is: 

q\{0)) = -^f-^ (15.11) 

the rate of change of the reciprocal of the group velocity is 

^«(^) = -^ (15.12) 

the travel time for the mode is 

tn=rq'„((Oo) (15.13) 
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and the complex width squared of the effective Gaussian is 

a'=-^-y\W (15.14) 

Equation 15.10 can now be computed by completing the square in the argument of the 
exponential function to recast the integral into a simple Gaussian of the form: 

^= fexp(-flr'x')a^: (15.15) 
a    i 

The resulting integral is given by the following expression: 

/„(r,z„z:0«—exp(/(^„(fi>o)^-«o^-^/4)-(^-/„)'/4a') (15.16) 
a 

Substituting Equation 15.16 into Equation 15.8, one obtains the following asymptotic 
expression for the time domain representation of a Gaussian pulse propagating in a waveguide: 

G(r,z,,z:0 = 
(15.17) 

Y l^_:^F(z,:^jF(z:9„)exp(/(9„r-fi)o/-;r/4)-(/-/„)V4a^) 
4p(zJ „ H„r;r a 

where the normal modes are evaluated at the center frequency. 
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16. REPRESENTATIONS OF CYLINDRICAL WAVE FUNCTIONS 

This section focuses on different representations of cylindrical wave functions. 

The regular cylindrical wave functions are given by the following expressions: 

Here, the function £(m) is defined by the following relationship: 

{l,m = Ol /i^-,x I (16.3) 

The irregular cylindrical wave functions corresponding to outgoing waves are given by 
the following expressions: 

;f^'(-«) = jf^//<'>.apsi„(a)).«'—'f°;<"^>! = n (16.4) 
V 8;r [sm{mq))(7 = oj 

V 8;r [sin{ni(p)(7 = oj 

The variable a represents the angle of the wave with respect to the z-axis. The horizontal 
wavenumber q, and vertical wavenumber h are given by the following expressions in terms of 
this angle: 

^ = A:sin(«) (16.6) 

h = kcosia) (16.7) 

The downward-going cylindrical wave functions and upward-going wave functions are 
related by the following relationship: 

ReZ^^(r:a) = Re;}r^'(r:;r-a) (16.8) 
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The following expansion 

+~ +00 

exp[/xcos(or)] = J] /V„(x)e"'"" = J,{x) + 2 j;/V„(x)cos(«c^) (16.9) 
n=-oo n=I 

follows by substituting the expression 

/ = /exp[/a] (1610) 

into the generating function for the regular Bessel Functions: 

cxp[xit-r')/2]=f^J„(xr (16.11) 

Equation 16.8 serves as the basis for the following expansion of a plane wave in terms of 
the regular cylindrical wave functions: 

e\p[±ik»r] = Y,£(m)(±i)'"JJkpsm(a))e\p[+ikzcos(a)]cos(m((p-/3)) 
m=0 

m=o ff V 2;r  [sm(mp),a = o\ 

(16.12) 

where the components of the wave vector are given by the following expressions: 

*, =A:sin(flr)cos(y9) (16.13) 

*^=Asin(a)sin(^) (16.14) 

K=kcos(a) (16.15) 

Using the orthogonality of the trigonometric functions and the above expansion of the 
plane wave in terms of regular cylindrical wave functions, one arrives at the following plane 
wave expansion of the regular cylindrical wave functions: 

Re;ir^'(r:a) = -—-— r ^   . ) ^'"        \cxp[±ik*P]dJ3 (16.16) 

The above integral representation of the regular cylindrical functions may also be inferred 
from the following integral representation of the regular cylindrical Bessel Function: 
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J„ (x) = JQxp[±ixcosifi)]cosinfi)d/3 = jexp[±ix cos(fi)]cos(n fi)dj3 

(16.17) 

Making the following substitution: 

k»r=kp sin(flr) cos(y3 -<p) + kz cos(a) (16.18) 

of the dot product in Equation 16.16, one arrives at the following integral: 

(16.19) 

47t(±i)'" ^\ lit  [sin(Awy9),a-= oj 

which is of the form of Equation 16.17, and leads to the result listed in Equation 16.16. 

A similar plane wave expansion of the outgoing cylindrical waves: 

X'„(r-.a,--^-J ..m.Am^;^}f:\fi (.6.20) 

can be obtained from the following integral representation of the Hankel Functions: 

a-/2+Joo 

7U 
H^\x) = ~   JQxp[+ixcos(fi)-mfi]dfi (16.21) 

JCll-ioo 

The expansions: 

G{r,r') = &xp\ik\r-r'\]IAn\r-f\=likY,\^Hcc)daKtxln,{r-.a)RQXl,Xr'-a) (16.22) 
am c^. 

G(r,r') = exp[ik\r-rW47r\r-/\=2ikY,jsm(a)dazUr> :a)Rczl(r, :«) (16.23) 
am c 

of the free field Green's Function follow from the integral representation of the free field Green's 
Function. The contours C and C+ are the following contours: 
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C^=[0,7r/2]\J[7r/2,;r/2-ioo) (16.24) 

C_ ={nl2+ioo,nll][}[nl2,7t] (16.25) 

C = (+/oo,0] U [0,;r] [)[7r,7r- ioo) (16.26) 

The contour C^ is used in the case (z - z') > 0 and the contour C_ is used in the case 
(z - z') < 0 in Equation 16.22. Conversely, the contour C_ is used in the case (z - z') > 0, and 
the contour C^ is used in the case (z - z') < 0 in Equation 16.23. 

A derivation of Equations 16.22 and 16.23 follows. Start with the following integral 
representation of the free field Green's Function: 

^(^'•')= J7^exp[+/p.(r-P)]/(p^ -k' -iO) (16.27) 

Introduce the variable 

M = ^pl-k' 

and express the denominator of Equation 16.27 as the following product: 

(16.28) (p'-k'-iO) = (p^ + i^p] +M'- mp^ - i^p] + M^ - /O) 

Equation 16.27 takes on the following form: 

j    +~                       +■»                       +00 

V         /     —00                                               —00                                                —00 

0)ip^.-i^pl+M'-iO) 

(16.29) 

The integral over p^ can be performed by the method of residues, where one either 

closes the contour in the upper half or lower half plane, depending upon whether the variable 
y"=(y-y) is positive or negative. Performing the integration over the variable /?,. one obtains 
the following expression for Equation 16.29: 

CP(r,r') = 

+ '>j^    1    "^                         "^ (16.30) 
+ 2/ f2;r)^ J ^J". exp[+/>,z"] \dp^cxp[+ip^x"]cxp[+y"^pl+M']/^pl+M' 
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where the upper sign is chosen in the case y"={y-y)>0 is positive, and the lower sign is 
chosen in the case it is negative, hitroducing the following transformation: 

p^ =iM sm(/3) (16.31) 

in Equation 16.30, one arrives at the following contour integral: 

-^- {dp^expi+ip^z"]   \dJ3exp[-x"Msm(fi) + y"Mcos(j3)] 
"'"•    -~ ar/2-/00 

(16.32) 

Expressing the argument of the exponential in polar coordinates: 

x"Msmifi)±y"McosiJ3) = Mp"cos{p±(p) (16.33) 

Equation 16.32 takes on the following form: 

G(ry)=-^ jdp^exp[+ip^z"]   jdfiQxp[-p"Mcos(fi±(p)] (16.34) 
°^    -«> ;r/2-/00 

The integral over the variable fi is equal to the following expression: 

+00 

\dpexp[-Mp"cos(J3 ± g>)] = -/ JjAexp[-Mp"cosh(A) = m'i^iMp")] (16.35) 
;r/2+/oo 

)r/2-;oo 

Substituting the above expression into Equation 16.34, one arrives at the following expression 
for the free field Green's Function: 

G(r,r') = — [dp, Qxp[+ip,z"]H^'\iJpl -k'p") (16.36) 
—00 

Introducing the following coordinate transformation: 

p^=kcos(a) (16.37) 

iM = i4pl-k^ =)tsin(a) (16.38) 

into Equation 16.36, one arrives at the following integral representation of the free field Green's 
Function.: 

.»     ^—/oo 

G{r,r')=-— \dasm{a)txp[ikz"cos{a)\H'^\kp"sm{a)) (16.39) 
+/00 
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Replacing the integral over the complex angle by an integration over the horizontal 
wavenumber: 

q = ksm(a) (16.40) 

one arrives at the following version of Equation 16.39: 

^(^'■^^   J ^exp[+/fe"K>(^p") (16.41) 
+/»>-0 

where the integral is around the branch cut of the vertical wave number: 

h(q) = i4q^-k^ = k cos(a) (16.42) 

that is, the integral is along the following contour: 

(+/00 - f ,0 - ie] U [0 - /e, k - ie] \J[k + i£,0 + ie] U [0+ie, ioo+£] (16.43) 

where £ is an infinitesimal displacement. 

One can deform the contour around the branch cut of the vertical wave number into one 
along the real axis, provided one chooses the sign of the vertical wave number such that the 
imaginary part of the product lm(hz") > 0 is positive. In this case, Equation 16.41 takes on the 
following form: 

.,     +00-/0 I 

^^"'"'^"^   J^exp[+//;|z"|]/f<"(9P") (16.44) 

Using the relationships: 

Hl,'\x) = Hl^\-x) (16.45) 

•/oW = |(^rW + ^i'*W) (16.46) 

one can express Equation 16.44 into the following integral over the regular Bessel Function: 

^^"'"'^^'^   J^^'^Pt+''^l^"l]-^o(9P") (16.47) 
0-/0 

Equations 16.44 and 16.47 serve as a basis for generating an integral representation of the 
free field Green's Function in terms of the cylindrical wave fimctions. 
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Substituting the expansion: 

H^\qn = Y.^{m)H';:\qp,)JMP<)<^os{m{(p-(p')) (16.48) 
m=0 

into Equation 16.44, one arrives at the following expression for the free field Green's Function: 

G{ry) = if^cos(micp-(p'){\H^^\qp,)J„(qp,)exp[+ih \z-z'\]qdq/h (16.49) 

Equation 16.49 can be expressed in terms of the outgoing and regular cylindrical wave 
function: 

Giry) = i^^j^%'^(r^:q)Rcz':„\r^ :q) (16.50) 

where r. = F and r^=F if p> p\ and F> = F' and r^=r otherwise. The upper sign is chosen 
if the quantity (z> -z<) > 0 is positive, and the lower sign is chosen if it is negative. Converting 
Equation 16.50 into an integral over the complex angle a: 

q = ksm{a) (16.51) 

one arrives at the following expression for the free field Green's Function: 

G(r,r') = ikj;^ lz'^\r, :a)Rezl\r, ■.a)sm(a)da (16.52) 

where C is the contour defined by Equation 16.26. 

Substituting the expansion: 

Joiqp") = f,eim)JJqp)J„(qp')cosim((p-(p')) (16.53) 
m=0 

into Equation 16.47, one arrives at the following expression: 

G(r, r') = 2/£4^cos(m(^ - (p'))]j„ (qp)J„ iqp')exp[+ih \ z - z'\]qdq I h (16.54) 

Expressing Equation 16.54 in terms of the regular cylindrical wave fiinctions, one arrives 
at the following expression for the free field Green's Function in terms of the cylindrical wave 
fiinctions: 
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G(r,r') = 2/2; JRexL(r:q)Rc%l(r':q)^ (16.55) 
am   Q n 

The upper sign is used in Equation 16.55 if the quantity (z-z') > 0 is positive, and the 
lower sign is used if it is negative. Transforming the integral in Equation 16.55 into one over the 
complex angle a, one obtains the expression: 

G(ry) = 2ik'£JRtxi::(r:a)Re%l;^(r':a)smia)da (16.56) 

where the contour C^ is used if the quantity (z -z') > 0 is positive, and the contour C_ 
is chosen if the quantity is negative. 
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17. REPRESENTATIONS OF SPHERICAL WAVE FUNCTIONS 

This section describes various representations of the spherical wave functions. 

The regular and outgoing spherical wave functions are defined by the following 
expressions: 

Rer„,(.) = ,X*^)J«i^fE^r(cos(.))f°f:'-^ = n (.7.1) 
\       47r       (l + m)l [sm(m(p),(7 = o j 

W^.(r) = *'V*r),|«S^.(e„3(.))|™f;^ = 4 (,7.2) 
\       ATU       (l + m)\ [sm(m(p),CT = o} 

where j,ilcr) and hf^{kr) are the regular spherical Bessel Function and Hankel Fiinction of the 

first kind, respectively. The fiinctions: 

pr{x)={-\r(\-x'r'^p,{x)=^ '^ ^'^,^ ^  2-,, ix^ -ly (17.3) 

are the real associated Legendre Functions of the first kind. These fiinctions can be extended to 
the complex plane in two ways. The first method is to define the fimction 

Pr(cos(e)) = (-1)"- sinC^)"" -^Piix = cosm (17.4) 
ax 

in terms of a complex angle 0. The second method is to define the associated Legendre 
polynomial as the analytic fiinction 

P'"iz) = (z' -l)'""-^—Pix) = ^     /^ ^Az'-l)' (17.5) 
' dx"" 2'/!     dz'"^' 

of the variable z, where the fiinction P,'"(z) is related to the real associated Legendre Functions 

on the branch cut [-1,+1] by the following expressions: 

lim.^o Pr(x + i£) = HTPrix) (17.6) 

iim,_,, Prix-ie)=(+ir Prix) (17.6) 
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In the following one may use the extension of the spherical wave functions by the 
extension of the associated Legendre polynomials defined by Equation 17.4 by the notation 
Rcy/a„, and 1//^^,. Similarly, one may use the notation: 

'^^Won.,(r) = Mkr)^^ ~ ^-Pr(.cos(e))\ . ;   ^ (17.7) 
V       4;r       (l + m)\ [sm(m(p),(T = o\ 

~   /N    Id) /I N /^('")(2/ + l)(/-w)!?;„,     ^^^ fcos(m^),cr = el ¥cn„ir) = h''\(kr\^-^ 1^ ^P/"'(cos^      . ;   ^ (17.8) 
V       4;r       (/ + m)! [sm{mq>),CT = o} 

to denote the extension of the spherical wave functions to complex variables defined by 
Equation 17.5. The two representations are related by the following relationships along the 
branch cut [-1,+1] of the associated Legendre polynomials: 

lim.^o Wciix+ie) = Hy Wcii^) (17.9) 

lim.^o Wa.1 (x - i£) = (+0" Wo., (x) (17.10) 

The complex associated Legendre polynomials satisfy the following addition theorem: 

P,(cos(y)) = f^eim)^f^Pr(cosmPricosii}'))cosim((p-q)')) 
m=o        (l + m)\ 

(1-mV ^^^-^^^ 
= Y,£ini)(-ir^ ^^"■(cos(i?))^"'(cos(2?'))cos(m(^-9)')) 

m=0 (/ + /«)! 

The complex angle y is defined by the following expression: 

cos(y) = cos(t9)cos(t?') + sin(t?)sin(tf')cos(^-^') (17.12) 

The associated Legendre polynomials satisfy the following orthogonality relationships: 

i 2/ + l(/-m)!  ' ^      ^ 

\prix±iO)p;ix±iO)dx=i-ir J, [['^"'Is;- (H.M) 
j; 2/ + 1 (/-m)! 

]prix)pr\x)^^=^^J-^s:\m^o (17.15) 
-i yll-x^     m{l-m)\ 
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]^'"(x±fO)r'(^±^'0)-^ = -^=^^^^:',«^^0 (17.16) 
_1 Vl-Jc'        f"    {l-m)\ 

The spherical harmonics are defined by the following expressions: 

'"'^ ^^   V      4;r       (/ + m)! ' ^        ''[sin(m^),o- = oj 

""'^ '^^   ^      4;r       {l + m)\ '        ^ ''[sin(m^),<7 = oJ 

They satisfy the following orthogonality conditions: 

lit +!C 

\d(p \smmdm^,{i»,(p)Y,.^,,,{^,(p) = S^'S:'Sf (17.19) 
0        -ir 

J^9)Jsin(??)^z?iL,(t?,^)i;.„,,(t?,^)=(-i)"'^;'j:'5/' (17.20) 
0 -X 

Using the following identity from Reference 9 evaluated at v = 1/2, 

exp[/A:cos(Qr)] = T{v)(y 12)"" ^ (v + A:)/V,^, {x)Cf (cos(a)) (17.21) 

and the identities: 

Mx) = ^J,^,,,(x) (17.22) 

Cr(x) = Pdx) (17.23) 

one arrives at the following expansion of a plane wave in terms of regular spherical Bessel 
Functions: 

+°» 

exp[+/^ • r] = exp[/ifcrcos(7)] = 2](2/ +1)/'// (^)/^ (cos(7)) (17.24) 
/=o 

The angle y is the angle between the two vectors k and F. Let ii9,<p) and (a,y9) 
be the polar coordinates of the direction of the position and wavenumber vectors, respectively. 
Then the angle y is defined by the following relationship: 

cos(y) = cos(«) cos(z9) + sin(a) sin(z?) cos(y5 - ^) (17.25) 
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Substituting the expansion of the Legendre polynomial given by Equation 17.11 into 
Equation 17.24, one arrives at the following expansion of a plane wave: 

exp[/A:. r ] = 2 (2/ + \)i'j, (^) £f (w)^-^/',"' (cos(t?))i^"' (cos(a))cos(m(^ - ^)) 
/=0 m=0 (/ + W)! 

+~ +/ (I-mV (17.26) 
2(2/ + l)/*y;(^)X(-l)"f(m))—^^"'(cos(i?))^'"(cos(a))cos(m(^-^)) 
1=0 m=0 (' + 'W)! 

Expressing this equation m terms of the regular spherical wave functions and spherical 
harmonics, one arrives at the following expansion of the plane wave: 

exp[+/^ • r ] = 

(17.27) 

4^Z'TSRe,/^,(r)y^,(flr,;S)=4;rg/'XI(-irRet/^,(r)f^,(«,yS) 

Using the orthogonality condition of the spherical harmonics and the expansion of a plane 
wave in terms of spherical wave functions given by Equation 17.27, one arrives at the following 
plane wave representation of the regular spherical wave functions: 

■I     2a-       +JC 

Re?/<,„,(r) = —j- Idfi lsm(a)daexp[+ikmr]Y^,{a,ft) (17.28) 
0      -«• 

47ti 

1      2ic       +;r 

Re(/^,(r) = —^ jdfi jsin(a)dacxp[+ik*?]Y^,(a,P) (17.29) 
0       -ir 

The irregular (outgoing) spherical wave functions have the following mtegral 
representation: 

1   ^' 
¥on„(r) = —-j- \dp \sin{a)datxp[+ik*r]Y^,{a,P) (17.30) 

^^    0       c 

1   ^'' 
¥on.,ir) = —j \dp |sin(flr)^aexp[+/^.F]f^,(or,y3) (17.31) 

The contour Q is used in the case of the inequality z > 0, and the contour C_ is used in 
the case z < 0. 

The proof of Equation 17.30 follows. From the addition theorem of the spherical 
harmonics and the definition of the angle y in Equation 17.25, one arrives at the following 
transformation: 
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P,{cosm = -^YLYo.,iA<P)yo.,{cc,P) (17.32) 
•^« "r 1 m=017=1! 

Equation 17.32 rotates the vector {'d,^) to (0,0). Using the fact that the spherical 
harmonics form a linear representation of the rotation group, one may represent the effects of the 
rotation: 

{^(P) = /?,(/)/?, (y9')i?,(a')(0,0) (17.33) 

on the spherical harmonics by the following unitary transformation: 

/      o (I) 

Y^,oRAY>Rym°RAccl = YL'^ ioc\P\r)Y.>., (17.34) 

The rotation coefficients in Equation 17.34 are given by the following expression: 

DZ:o.(cx\fi\r) = S^^,S^^^Y^,(t},^) (17.35) 

From Equations 17.32 through 17.35 one arrives at the following result: 

Y^,(cx,fi) = Y^,(i^,<p)P,icos(r)) (17.36) 

Substituting Equation 17.36 into Equation 17.30, one arrives at the following expression: 

-—^ \d/3 fsin(a)Jaexp[+/^ • r]Y^,(a, P) = 
2/n   r     J 

°     ^* (17.37) 
lit 4 l.Jt, 

-—j-Y^,(t},<p) \dp Jsin(a)^aexp[+/fe-cos(r)]P,(cos(7)) 
0      c+ 

Making a change of integration form the variables {a,P) to the variables iy,P") one 
obtains the result: 

1   '" 
- \dp Jsin(a)Jaexp[+/^ • r]Y^,{a,p) = 

"     ^^ (17.38) 
2;r 1 

—y^,(t?,^) |J;5" Jsin(r)^rexp[+/^rcos(r)]P,(cos(r)) 
2^' 0      c. 

The above integrand is independent of the variable P" and the integration over this variable is 
trivial: 
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1   ^" 
2m' ^^^ l^Ma)daexp[+ik»r]Y^,(a,fi)- 

0        Ct 

iTT                      f 
T ./ yonii^^'P) sm{y)dyexp[+ikrcos(y)]P,(cos(y)) 
2m               ^ 

(17.39) 

Making the change of variables 

Z = cos(j') (17.40) - 

m Equation 17.39, one arrives at the following integral: 
*• 

1   'f     f 
.,   dfi sm(a)daexp[+ik»r]Y^,ia,fi)- 

zm  i    z 0        Cj 

lit               ' 
-z-^'^.^A^M f^Zexp[+/^Z]P,(Z) 
im               • 

(17.41) 

Substituting the Rodriguez Formula for the Legendre polynomials from Reference 9 into 
Equation 17.41: 

'•'^'-'^.>'-''' (17.42) 

and integrating by parts one arrives at the following expression for the integral: 

1   ^' 
2m' -f"^^ Js'"(«^)^«e''Pt+'^•'']^o«/(«.y5) - 

0        Cj 

^^i;«,(^,9') J^Zexp[+//:rZ](l-Z^y 

(17.43) 

Using the following integral representation of the spherical Hankel Function: . 

h>'(^)=YfJdZcxp[ixZ]il-Z')' (17.44) . 

one arrives at the result: 

1   ^'' 
2m  I    ^ 

(17.45) 

A similar derivation follows for Equation 17.31. 
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The free field Greens' Function has the following expansion in terms of the spherical 
wave functions: 

G(r,F: k) = exp(ik \?-F\)/47t \r-r'\=-^h^\k \r-F\) = /^X^-/(^>)Re^i^^,(rJ       (17.46) 

This expansion follows from the following addition theorem for Bessel Functions from 
Reference 9 evaluated at v = 1/2: 

Hi\w)/w^ =rriv)f^(v + k)"^\^"^ -^-^f"'^Cf>(cos(cy)) (17.47) 
r(i) 

w = ^]u^+u'^-2uu'cos(a) (17.48) 

the following identities and the addition theorem for spherical harmonics given by Equation 
17.32 are: 

hP(x) = ^HJlUx) (17.49) 

Mx) = ^J,,,„ix) (17.50) 

Cr\x) = P,(x) (17.51) 
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18. TRANSFORMATION BETWEEN SPHERICAL AND CYLINDRICAL WAVE 
FUNCTIONS 

This section discusses the transformations between spherical and cyhndrical wave 
functions of the free field Helmholtz Equation. 

The transformations from spherical to cylindrical wave functions are given by the 
following expressions: 

Re;ir^'(«) = |;C^(or)Rev^^, (18.1) 

C'(«) = B:^^{n-a) = (±0'-" F^j^r(cos(a)) (18.2) 

Equation 18.1 follows from the expansion of the free field Greens' Function in terms of spherical 
and cylindrical wave functions. 

The transformations from cylindrical to spherical wave functions are given by the 
following expressions. The upper contour is used in Equations 18.4 and 18.5 if the z-coordinate 
is positive, and the lower contour is used if it is negative: 

Re^^r,^, = ]sm(a)daBl:,\a)Rez'^ia) (18.3) 
0 

y^^, = 2 Jsin(«)^oSl7'(flr)Re;}r^'(«) (18.4) 

y^^, = 2 Jsin(«)^«Sl;>(a)Re;^^>(«) (18.5) 
C- 

y/^, = \smia)daB':;>{a)x'^{a) (18.6) 
c 

Equation 18.3 follows from Equations 18.1 and 18.2 and the orthogonality of the 
associated Legendre polynomials. The remaining transformations follow from the expansion of 
the Greens' Function. Note: Equation 18.5 follows from Equation 18.4 under the 
transformation: 

a^>K-a (18.7) 
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in the integrand. A discussion of these transformations may be found in References 10 through 
12 by the author. 

The proof of Equation 18.1 follows. Equations 16.12 and 17.27 give the expansion of a 
plane wave in terms of cylindrical and spherical wave functions. Equating these two expansions, 
one arrives at the following relationship between cylindrical and spherical wave functions: 

+~        +/    o 

1=0     m=Oa=e 
exp[+*.?]=4;rj;/'|;J;Rer„,WJ'„,(a,^) = 

m=o (T V 2;r  [sm{mp),(T = o\ 

Using the orthogonality of the trigonometric basis set, 

e(m) cos(mfi),(T = e 

2n   sm(mfi),(T = o (18.9) 

Equation 18.1 is obtained upon multiplying both sides of Equation 18.8 by the basis given 
in Equation 18.9 and integrating with respect to fi from 0 to 2;r. 

Equation 18.3 follows from Equation 18.1 and the orthononmality condition. 

jsm(a)daBi',\a)B^:,}(^) = Sf (18.10) 
0 

Equations 18.4 and 18.5 follow from the expansions provided by Equations 16.56 and 
17.46 of the free field Greens' Function in terms of cylindrical and spherical wave functions: 

ami 

= 2ikY jRe;ir^'(/', :or)Re;ir^'(r, :a)sm{a)da (Ig.U) 
am c» 

= 2/^2; JRe;ir^'(r, :a)Re;jr^'(Av :a)sin(a)da 
om (^__ 

The upper contour is used in the case the quantity(z^ -zj > 0 is positive, and the lower 
contour is used if the quantity is negative. Substituting the expansion of the regular cylindrical 
wave function in terms spherical wave functions provided by Equation 18.1, one arrives at the 
following expression: 
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ami 

= 2ikY^ \Rtx'::{r. ■.a)B'J{a)Ktiff^,{rJsm{a)da (18.12) 
ami c^ 

= 2ikY, jRezLH^> ■.(x)Bl]\a)Rey/^,(rJsm{a)da 
ami c_ 

Equating the coefficients of the regular spherical wave function in Equation 18.12, one 
arrives at the following expressions for the representation of the outgoing spherical wave 
function in terms of regular cylindrical wave functions: 

Wamlif) 

= 2lRczl:„\r:a)B'-/(a)sm(a)da (18.13) 

= 2JRez'an!('-:a)Bl]\a)sm(a)da 

thus proving Equations 18.4 and 18.5. 

Equation 18.6 follows from Equations 16.52 and 17.46, which provide the following 
expansion of the fi-ee field Greens' Function in terms of cylmdrical and spherical wave functions: 

G(r,F:k) = ik'^il/^,(r,)Rty/^M = ik'^l%'^(r, :a)Re%'^\r, ■.a)sm(a)da (18.14) 
ami am c 

Substituting the expansion provided by Equation 18.1 of the regular cylindrical wave 
functions in terms of spherical wave functions one arrives at the following expansion of the free 
field Greens' Function: 

G(r,F: k) = ikJ^yfa^MRtVamM = ''^Z J^-(^> ■ o:)B^i\a)'^WamM^Ha)da     (18.15) 
ami am c 

Equating the coefficients of the regular spherical wave functions, one arrives at the 
following expression: 

¥am,ir)= lz'l\r:a)Bl:,\a)sm(a)da (18.16) 
c 

thus proving Equation 18.6. 
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19. EXPANSION OF NORMAL MODE IN TERMS OF A SPHERICAL BASIS 

This section describes the expansion of the normal mode representation of propagation in 
a waveguide in terms of a spherical basis set about the source and receiver points. Throughout 
this section, one will assume the density and sound speed are piece-wise constant as described in 
Sections 8 and 9. 

From Equations 9.18 and 9.19 the normal mode representation of the Greens' Function in 
a homogeneously layered waveguide with a homogeneous half-space as a basement is given by 
the following normal mode and branch cut contributions: 

Gir,z,,z) = —^Y."^''(^'''-^^('.^-^'')F'iz:g„) + G,Jr,z^,z) (19.1) 

G,Jr,z,,z) = ^ \h,dh,H'i\qr){G,Sz,z.:+h,)-G._{z,z^:-h,)} (19.2) 

The following function is the depth function of the normal mode in the n'th layer: 

F{z,q) = A:F:{z:q) + A-„F;{z:q\z„<z<z„,, (19.3) 

The fiinctions: 

F„*(z:^) = exp(±/7^„(z-z„)) (19.4) 

are the basis set of upward and downward-going waves in the n'th layer, and the coefficients 
{A^ : n = 0,1...iV} are the coefficients of the depth functions of a normal mode as described in 

Sections 8 and 9. The function G,(z,z^) is the depth dependent Greens' Function defined in 

Section 8 and 9. In the case of a rigid basement the cut contribution vanishes. 

Using the expansion: 

Hi:\w)= f^HZiu)Muloos(k<p) (19.5) 

w = ylu^ +u'^-2uu'cos((p) (19.6) 
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from Reference 9, and the following properties for integral order Bessel Functions: 

H['Ux) = (-l)'Hl'\x) (19.7) 

'f-,(x) = (-iyj,(x) (19.8) 

one obtains the following expansion of the normal mode contribution to the Greens' Function 
about the source point: 

'        -rd) Hl'\q„\?-AF^, \)F(z:q„)F(z^+Az_,) = 

.      « (19.9) 
j—T2leim)H2\q„r)JJq„Ar^)Fiz:q„)F(z^+Az^)cosimA(p^) 

Here, (Ar^,Az,,A^,) are the polar coordinates of the displacement of the point about the source 

point (0,z^,0), where the orientation of our coordinate system is such that the source and 
receiver points lie in the ^ = 0 plane of the coordinate system. Expanding the depth functions in 
terms of upward and downward-going plane waves, one may express Equation 19.9 in terms of 
the product cylindrical wave functions about the source and receive points: 

' 'T(l) Hl'\q„\P-AP^ \)F(z:q„)F(z^ +AzJ: 
4p(zJ 

-Z7r^LLLGU^-^n)GUz, :q„)%l:^,,Jr,0,0:q„)Rezl^\jAr,,Az,,A(p^ :q„) 

The following functions are the coefficients of the expansion of the depth functions in 
terms of upward and downward-going plane waves about the source and receiver points, where 
^src and A^„^ are the indices of the layers within which the source and receiver are located. 

Gtc(^s '•<ln) = ^LKS^s-Qn) (19.11) 

<^i (^: 9„) = ^L ^L^^-^r.) (19.12) 

Define the following generalization of the expansion coefficients of the regular 
cylindrical wave functions in terms of regular spherical wave functions in the N'th layer: 

.,_„   2/ + l(/-w)!,     ,,   ^„ d <.(.) = (±0'-"^^^(-WA:,)"A_p,(,)|^^^^^^^^^.^ (19.13) 

Equation 19.13 is equivalent to Equation 18.2 evaluated at the complex angle a^ defined by 
Equation 19.14, where k^ is the wave number in the N'th layer: 
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q = k^sm(a!,) . (19.14) 

In this case the vertical wave number is given by the following expression: 

K (^) = +'V^^ -^l =^N cos(a^) (19.15) 

Substituting the following expansion of the regular cylindrical wave functions in terms of 
regular spherical wave functions into Equation 19.12: 

^^ZkN^. = S^^/,^. (^)^^¥o.,K.^ (19.16) 
l=m 

one arrives at the following expansion of the normal mode contribution to the Greens' Function 
in terms of a spherical basis set around the source point: 

' -rd) 

4/?(2j 

E ^<^/,^,. (nz„z:qJRe y/^,j,^^^ (Ar,, Az,, A^,) 
(19.17) 

ami 

2m 
Aom,,N,^(r,z,,^■^J = ir\I.llG:jz:qJGUz,:q„)x':l,s^^,(r,0,0:9„X^^^{q„)       (19.18) 

P\^s ) s=+ s'=+ 

Simplifying Equation 19.18, one arrives at the following expression: 

■^aml,N,„ (^' ^i-' ^ • ^/i) ~ 

2m     R^^o).    „,^     ...„^^..    zr.   ._   .„xo. .   .-    zr-   .,  . . ^z,-        ,     ^^^'^^^ 
p(zj\ STC 

-H':{qj)F,(z:qMAlKiz/.q„)B:,.   +A-F-Jz,:q„)B:,.} 

The odd parity terms vanish in Equations 19.18 and 19.19 because one has chosen the orientation 
of our coordinate system such that the source and receiver points lie in the ^ = 0 plane. 

The expression for expanding the normal mode contribution about the receiver point 
instead of the source point is made by exchanging the source and receiver depths in 
Equations 19.18 and 19.19, except in the density term in these equations. 

The expression for expanding the normal mode contribution about both the source and 
receiver points, where (Ar,,Az^,A^^) is the displacement ofthe source point and (Ar,Az,A^) is 
the displacement ofthe receiver point follows fi-om expanding Equation 19.19 about the receiver 
point. 
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Using Equations 19.3, 19.4, and 19.5 to expand the Hankel Function and depth functions 
in Equation 19.20 about the receiver point, one arrives at the foUoAving expression: 

p{z,)\ %7C t=^ (19.21) 

{^l^PL (^ '■ ^n)exp(+/\^ Az) + A-^J-^ (z: ^Jexp(-/\^ Az)} 

The factor of ;T in the cosine function arises from the choice of orienting our coordinate 
system such that the direction of the line from the source point to the receiver point is in the 
direction (p = 0. One can make the following rearrangement of the summation in Equation 19.21: 

Z\^(«^U<F)H-irH2Aqr))J„.(qAr)cos(mX7r-A<p))= (19.22) 
m'=0 2 

m'=0      ■^ 

Upon substitution of Equation 19.22 into Equation 19.21, one obtains the following 
expression for the expansion about the receiver point: 

^™;.A/„ (\r+Ar\,z,,z + Az:qJ = 

{Al„F*^ {z: q„)txp(+ih^^Az) + ^"^F^^ (z: ^Jexp(-/\^ Az)} 

^^^^^^L(^. • ^n)B:,.   + A-F-^(z,:q„)B-„,,_^} 

(19.23) 

Making the following substitution into Equation 19.23: 

n     ±        /A    A    A   X       £(f"') r  .  . ^      ... ,,cos(/M'Afi7),cr'=e 
Re;ir*v.A:^(Ar,Az,A^) = J-^y„,(^Ar)exp(±/7;Az)( .  '      ^  ,     } (19.24) 

V   67r s\n{m Aq>),a =o 
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one arrives at an expansion in terms of the regular cylindrical wave functions about the receiver 
point: 

^src       '^J/r ■*        ■* " '        "")".Trf "jrc       '^src 

Substituting the expansion of the regular cylindrical wave function in terms of the regular 
spherical wave functions about the receiver point one obtains the following expansion: 

A^,,,J\r + ^\,z,,z + Az:qJ=Y^T^,^^^^„,„r,Njr,Zs^^^^^ (19-26) 
(T'm'r 

{AlF:jz,:q„)B:,,^^ +A-,J-Jz^ :q„)B:,,J (19.27) 

{A;,^FI, (Z : q„ )B:,,^ + A'^F-^, (z: q„ )B:,,^ } 

The overall factor of (-l)""' in Equation 19.27 is due to the fact that the orientation of the 
coordinate systems at the source and receiver points are oriented such that the line fi-om the 
source to the receiver point is in the direction q> = 0, that is the orientation of the local coordinate 
systems at the source and receiver points are parallel. 

Substituting Equation 19.26 into 19.17, one arrives at the following expression for the 
expansion of the normal mode component about both the source and receiver points: 

-/fi'>(^„|F + AF-ArJ)F(z + Az:^„)F(z,+Az,): 
4p(z.) (19.28) 

ami tj'm'l' 

Here, (Ar,.,Az^,A^^) is the displacement of the source point, and (Ar,Az,A^) is the 
displacement of the receiver point. 

A similar expansion may be made for the integrand of the branch cut contribution, where 
the coefficients {Aj,} ofthe depth functions are replaced by the expansion coefficients {Af,,A'^,} 

of the depth dependent Green's Function in the integrand. 
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The generalization of Equations 19.19 and 19.27 to local coordinate systems whose z-axis 
are vertical but whose orientation of the x-axis is not parallel to the line from the source to the 
receiver are given by the following expressions: 

= e 
} 

(19.29) 

OW/j »„.,•.•„„ ('•,z„z.«'.,«')=-^V«(»'W'«')(ffi'L(?.'-)+(-l)-.W™..(«.r)) 

«,.F;J., :,,)B:„_ ^Ai^F^J., :,,K,,„)r''"«''>''' = ^) (,9.30) 
sm{m(p^),(T = o ^        ' 

sin(/w'^),cr'=o 

Here (p^ is the angle between the x-axis of the local coordinate system at the source and the 

location of the receiver as seen from the source, and (p is the angle between the x-axis of the 
local coordinate system at the receiver and the location of the source as seen from the receiver 
Note, in Equations 19.19 and 19.27 these two angles have the following values: ^, = 0, and 
(p = n. 
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20. METHOD FOR INCLUDING DIRECTIVITY OF THE SOURCE AND THE 
RECEIVER IN THE NORMAL MODE TERM 

This section uses the results of Section 19 to include the effects of the directivity of the 
source and the receiver in the normal mode description of propagation. 

Let Ds,,i'&,(p) denote the beam pattern for the source, and D^^^{i},(p) denote the beam 
pattern of the receiver. Using the orthogonality of the spherical harmonics, one can project the 
beam patterns for the source and receiver onto the spherical harmonics by performing the 
following surface integrals: 

dsrcan,, = \d(p\sinii»)dm^,{i»,(p)DsMM (20.1) 
0 0 

^.„,<^/ = ]d(p]sm(€f)dm^,{p,(p)D,„i^,(p) (20.2) 
0 0 

These integrals can easily be performed for arbitrary beam patterns by using Gauss 
Legendre integration of sufficiently high order. Using the expansion of the normal mode 
contribution about the source and receiver points given by Equation 19.28: 

-i—//^'>(9jF + AF-ArJ)F(z + Az:^JF(z,+Az,) = 
4p(^.,) (20.3) 

ami (X'm'r 

one may project the above normal mode contribution onto the directivity pattern of the source 
and receiver by performing the following summations: 

Z Z ^c^i,N„..owr.N^^. in Zs. ^. ^.v. 9>: q)dsrc,cn„d„,.,,^.„.r (20.4) 
(Pnl a'm'l' 

The coefficients {r^/,Af„,,aw/',A'„,(''>^.'^'9'3'^-9)} are defined in Equation 19.30. 

In the case the receiver is omni directional, the projection of the normal mode onto the 
directivity of the source is given by the following summation: 

Z ^«»".^.,. (^' ^s' 2, (p., •■ q)dsrc,cn„ (20.5) 
ami 
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The coefficients {A^,j^^^ {r,z^,z,(p^: 9)} are the expansion coefficients of the normal mode 
contribution about the source point defined in Equation 19.29. 

Equations 20.4 and 20.5 assume the coordinate system used in computing the projection 
of the source and receiver beam pattern onto a spherical basis are parallel to the coordinate 
system used in computing the coefficients in Equations 19.29, and 19.30. In the event these 
coordinate systems are not parallel, the computation of projection of the source and receiver 
beam patterns onto a spherical basis set will require rotating the origin of the argument (z?,^) of 
the directivity functions. 
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21. ROTATION OF COORDINATE SYSTEMS 

This section describes the procedure for rotating the local coordinate systems at the 
source and the receiver for an arbitrary orientation. A practical introduction to the theory of 
representations of the rotation group "S0(3)" is provided by Tinkham'^ More advanced 
treatises on representation theory are provided in texts by Helgason''* and Weyl'^. 

The conventions of Rose are used to describe an arbitrary rotation as a series of three 
rotations about the fixed axes (x,y,z): 

R(aJ,y)=^R,(a)oR^(J3)oR^(Y) (21.1) 

The equivalent rotation about relative axes is given by the following set of three rotations 
about the rotated axes: 

Ria,J3,r) = R^ia)oR^ij3)oR^ir) = R^.(Y)oR^,(fi)oR^(a) (21.2) 

Here, (x\y,z') are the axes obtained by rotating the axes ix,y,z) by the rotation /?,(/) about 
the z -axis, (x",y",z") are the axes obtained by further rotating the axes by the rotation Ryifi) 

about the y' -axis, and (x"',y"',z"') are the axes obtained by further rotating these axes by the 
rotation R,..((x) about the z"-axis. 

The complex spherical harmonics are defined as follows: 

j;,,(^,<P) = j^7f-^exp(+/m.?))P,'"(cos(t?)),m = -/,-(/-l)...+/ (21.3) 
\ An  {l + my. 

Assume the Condon-Shortley phase convention for negative indices given below: 

P-"" (cos(i9)) = (-1)"" P,'" (cos(i?)) (21.4) 

Y.„,{^,(p)={-\rY:,{^,(p) (21.5) 

The spherical harmonics {7„/ {&, <p):m = -I-{I -1)...+/} form a (2/ +1) -dimensional 
irreducible representation of the rotation group "S0(3)" on the homogeneous manifold 
SO(3)/SO(2)~5^. The spherical harmonics obey the following transformation rules imder an 
arbitrary rotation: 

R{a,P,r)*{Y„,){7»,(p) = Y„,{R{a,p,r){A(p))= f^Y„M(p)D'!),M,P,7) (21.6) 
m'=-l 
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The Wigner rotation coefficients D^^^„,{a,p,y) are given by the following relationships 
from Reference 13: 

£><L(«.Ar) = expH/w'a)exp(-/m/)ar;[/Uy5) (21.7) 

The summation in Equation 21.8 extends overall possible values of the index k for which 
the denominator is finite, that is, k satisfies the following inequalities: 

^^0 (21.9a) 

j+m-k>0 (21.9b) 

j-m'-k>0 (21.9c) 

k + m'-m>0 (21.9d) 

Equation 21.9 results in the following limits for the index k: 

min(y + /w,y-m')>/:>max(w-/w',0) (21.10) 

The Wigner coefficients form an irreducible, unitary representation of the group 
Spin(3)~SU(2) corresponding to the covering group of the rotation group "S0(3)". "SU(2)" is 
the Zj-valued covering group of the rotation group "S0(3)" associated with the spinor 
representation of the rotation group. One of the properties of the group "SU(2)" is that the 
rotation of a spin 1/2 representation by 2;r results in a multiplication of the spinor by -1. 

The relationship between group elements in "SU(2)" and "S0(3)" is given by the 
following correspondence: 

u{a,p,r)e SU(2) -^ u(a,/3,y)(j.u'(a,/3,y) = R.j{a,p,y)Cj (21.11) 

Here, u(a,p,y)& 817(2) is the following group element: 

„(Q, «^) = r+e'^P(+''(«+?')/2)cos(y9/2)   +exp(+/(r-flr)/2)sin(^/2)^ 
|,-exp(-/(y-flr)/2)sin(y9/2)   +exp(-/(flr+y)/2)cos(y?/2)J ^   *   ^ 
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The Hermitian matrices {<T, : / = 1,2,3} are the following Pauli spin matrices: 

fo n 
^1 = 

0-2 = 

(J,= 

yl      0, 

^0    -/ 
,+ /    0) 

V 0    -1 

(21.13a) 

(21.13b) 

(21.13c) 

The matrix i?,. .{a,P,y) is the three-dimensional rotation matrix with the following 

elements: 

Rii(a,fi,Y) = +cos(a)cos(fi)cos{y)-sm(a)sm(y) 

i?, 2 (a, fi,y) = + sin(a) cos(y?) cos(7) + cos(or) sin(7) 

i?, 3 (a, p, y) = -sin(yf?) cosiy) 

/?2, (or, P,y) = - cos(flr) cos(/?) sin(7) - sin(flr) cos(7) 

/?2,2 («r, P,y) = - sin(or) cos(^) sin(}') + cos(a) cos(/) 

^2.3(«'Ar) =+sin(y^)sin(r) 

i?3, (or,y9,7) = +cos(a)sin(y5) 

i?3 2 (a,fi,y) = + sin(a) sin(y3) 

/?3 3(a,yS,7) = +cos(yS) 

This matrix is given by the following rotations about the z-axis and y-axis: 

RAr)Ry(fi)RA(^) = 

^+cos(y)   +sin(j^)   0Y+cos(y5)   0   -sin(y?)Y+cos(a)   +sin(or)   0 

-sin(y)   +cos(y)   0        0 10 

0 0 ljl+sin(;3)   0   +cos(^) 

-sin(<ar)   +cos(ar)   0 

0 0        1 

(21.14a) 

(21.14b) 

(21.14c) 

(21.14d) 

(21.14e) 

(21.14f) 

(21.14g) 

(21.14h) 

(21.14i) 

(21.15) 
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The correspondence between the Wigner coefficients and the matrix representation of the 
corresponding group element is given by the following relationship: 

^i:u«,y«,7)=c/i:i.(/?.(-r)^,(-y9)/?,(-«))=t/i:u(^z(«)^ (21-16) 

Here, {f/l'l„.(g):m,w'=-/,...+/} are the matrix elements of a (2/+1)-dimensional unitary 
representation of the group element g e 80(3) c SU(2). Strictly speaking, this matrix is a 
representation of the covering group "SU(2)". The group "SU(2)" is a non-trivial Z^-valued 
principal fiber bundle over the group "S0(3)". However, in the case of integral angular 
momentum, the above matrix elements are constant along the fiber of this principal bundle, and 
the matrix elements may be considered to be functions of the base space "S0(3)". The constant 
nature of this matrix along the fiber follows from the fact that for integral angular momentum a 
rotation by multiples of ITT leaves the representation unchanged. 

The action of the group element ge 50(3) acting on the spherical harmonics can be 
expressed in the following form in terms of this unitary representation: 

i. *(>'«/) = I Ilv^l'Ug-') (21.17) 

The function: 

I, : SO(3)/SO(2) -^ 50(3)/50(2) (21.18) 

L,[g']^[g»g'] = {g*g'*h:he 50(2)} (21.19) 

denotes the natural left action 

SO(3)xSO(3) -> 50(3) ^ 50(3)/50(2)« S' (21.20) 

(g,g')-^g»8'-^g»[gl = [g*g'] (21.21) 

of the group element ge 50(3) acting on the homogeneous space 

;r :50(3) ^ 50(3)750(2) = S' (21.22) 

g-^^(g)=[g] = {g»h:heS0(2)} (21.23) 

and L^ * denotes the pullback of this function. 

One may introduce the following transformation from the complex spherical harmonics: 

{Ki(^>9) '• fn = -/,... + /} to the real spherical harmonics {Y^,(^,p): a = e,o\m = 0,..i}: 
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j;.,(^,^) = ^^(j;/(^.9') + (-l)'"J^-.,(^.9'))                                                              (21-24) 

Y„A^,(p)-^^iYA^,(p)-(-irY_^,i^,<P))                                                             (21-25) 

The effect of the rotation R{a,P,y) on the real spherical harmonics is of the foini: 

R(a,p,y)\Y^,){A(p) = t,j;,Y,-„M<P)DZ,o.icc,fi,r)                                             (21-26) 
(T'=em'=0 

The matrix elements of the real Wigner rotation coefficients are given by the following 
relationships: 

(,)    ^1   lf(m)     (,)             .   (/)   +(_!)'"/)(/)    +(_!)'"-'"•/)(0, „}                           (21.27) 
em .em        ^ ■tl     ,     i\ ^     m.m       V      /          -m ,m       V      -'         m ,-m       v       /               -m -m i                                                 v               ' 

DZ,em = Y^^^^-- -(-l)"'^--- +(-l)'"^l'U -(-l)'"'"^--,-.}                                            (21-28) 

^'<om=YJ^^{DZH-ir'DZm-HrDZ^^^                                               (21-29) 

Dl2;om =^^7^{^'> -(-D'^-i'.. -(-i)'"^2-.+(-i)'"^'"'^12..-J                  (21.30) 

From Equations 21.7 and 21.8 one may derive the following relationships by rearranging 
the terms in the summation in Equation 21.8: 

D'Jl(a,fi,r) = expi-im'a)exp(-imMJl(fi)                                                            (21.31) 

dZ-m(P) = (-r''"'d'JJ:,.m(fi)                                                                                     (21.32) 

d%m(fi)-i-T'^'d^A-mm                                                                                     (21-33) 

Substituting Equations 21.31 through 21.33 into Equations 21.27 through 21.30, one 
arrives at the following representation of the real Wigner rotation coefficients: 

Dl!:-,„=]^{d^Ji(fi)cosim'a + mr)H-\r'd'3j^^^^^                                        (21.34) 
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Consider the case j - 1. The spherical harmonics are given by the following 
relationships: 

(21.35) Dli!,e.=J^^{dlUfi)sHrn'a + mr) + i-ird[^^^^^ 

Dl<o.=-]^AdlJ^JP)sm{m'a-^mr)-i-\r (21.36) 

(21.37) 

(21.38) 

V 4;r V 4;r r 
(21.39) 

r,.=.jAsin(^)e-"=.JX£z£ (21.40) 

In the case of the rotation R{a,0,0) = R,(a) about the z-axis, the Wigner rotation 
coefficients in the case j=l are given by the following relationships: 

Di:Ucc,0,0) = 
'exp(-/a)    0 0     ' 

0+10 
^     0 0    exp(+za)^ 

(21.41) 

In this case, the rotated spherical harmonics are given by the following linear combination 
of the spherical harmonics: 

(21.42a) 

(21.42b) 

(21.42c) 

In the case of the rotation /?(0,/?,0) = R^ifi) the Wigner rotation coefficients in the case 
j=l are given by the following relationships: 
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^ cos(y5/2)' -V2cos(/?/2)sin(y3/2) sin(y3/2)' 
+ yf2cos(/3/2)sm(j3/2)    cos(y3/2)'-sin(yS/2)'    -V2cos(yff/2)sin(y9/2) 

sin(^/2)' +yf2cos(j3/2)smiJ3/2) cos(fi/2Y 

^(l + cos(yff))/2   -V2sin(yS)/2   (l-cos(y»))/2^ 

+V2sin(yff)/2        cos(y9)        -V2sin(yS)/2 
(l-cos(y8))/2   +V2sin(y5)/2   (l + cos(y8))/2 

A 

(21.43) 

The rotated spherical harmonics are given by the following linear combination of the 
spherical harmonics: 

3  (xcos(y9)-zsin(y9) + i» _ 
i^,°i?.(y5)=- 

a±£^^,,|3in(m,.ii^f^7, 
(21.44a) 

Fo.off (y9) = +. 3  (xsin(yff) + zcos(y9)) 

-^sin(^)}^, +cos(y9)ro, +^sm(fi)Y_,, 

(21.44b) 

V      p ^/?^   ^ fT(xcos(y9)-zsin(yg)-iy) _ 

(iz£^,.._|sin(/?),„.,(l±£^ 
(21.44c) 
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22. HELMHOLTZ INTEGRAL EQUATION 

This section reviews the Helmholtz hitegral Equation in anticipation of the next section 
on the T-matrix description of scattering from a target. 

The free-field Greens' Function for the Helmholtz differential equation is given by the 
following expression: 

G(r-..-:^= '"f ;*J^":,f'l> =ftSy„,(^)Rey„,R) (22.1) 
4;r|r-r'| ^ 

This fiinction satisfies the following inhomogeneous partial differential equation: 

(S •V + e)Gir,r:k) = -5\r -r) (22.2) 

Let S^ u5o denote the bounding surface of the volume V, where the surface S^ is the 
surface at spatial infinity, and ^o is the union of the surfaces of all scatterers in the volume. Let 

the fiinction 

V = ¥l„ciden,+¥scauered (^2.3) 

denote the solution of the Helmholtz Equation in the volume V resulting from the scattering of 
the incident field \l/,„^iden, from the scatterers interior to this volume. The incident field is given 
by the following surface integral over the sphere at spatial infinity: 

¥,nc>,en, (^) = \\dA • {G{7,9': k)V yfiF) - yr{r')VG{r,7': k)} (22.4) 

Using Greens' Theorem, one obtains the following integral equation for the total field: 
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jdA • {Gi?,F: k)V y/(?') - VGi?,r': k)y/(r')} 
s_ 

- jdA • {G(r,F: k)Vy/{F) -VG{r,F: k)y/{F)} 
So 

= pF{G(r ,r •: k)V • V y/i?') - V • VG(r, F': k)y/{F)} 
V 

= -|£/F{V • VG(F,r': k) + k'G(r,r': k)}i/r{F) 
V 

Wir),reV 

-yr(?lredV 

0,rgFu8F 

(22.5) 

Substituting Equation 22.4 for the surface integral over the sphere at spatial infinity, one 
obtains the following integral equation for the field in terms of the incident field and the surface 
integral over the surface of the scatterers: 

Wirc^en, (^)" J^ • {G(.r,F'. k)V <^(r') - VG(r,F: k)i/^(F)} = - 

y/(r),reV 

-i/r(r),reBV 

0,?€VudV 

Equation 22.6 is the Helmholtz Integral Equation for the acoustic field. 

(22.6) 
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23. SCATTERING FROM A RIGID TARGET 

This section gives a basic description of the spherical T-matrix approach to scattering 
from a rigid target. One of the first articles to appear on the use of the spherical T-matrix 
description of acoustic scattering is the article by Waterman'^. Hackman'^ provides a review of 
the spherical and spheroidal T-matrix methods. 

In the following derivation, one may make use of the following bilinear expansion of the 
free-field Greens' Function in terms of spherical wave fiinctions: 

ami 

Let the function 

W ~ VIncident "^ W^Scattered 

(23.1) 

(23.2) 

denote a solution of the Helmholtz Equation representing the acoustic field in the presence of a 
rigid target. The acoustic field is required to satisfy the following boundary condition on the 
surface of the rigid target: 

h*V\}/\s=0 (23.3) 

The incident and scattered fields satisfy the following Helmholtz hitegral Equations: 

¥,nciden, (^) = \\dA • {G{r ,7^ k)V yf{P) - ^(r •)VG(F,r': k)} (23.4) 

\l/{r),r&V 

y^/„c,..„,(?)-H*M^.^':^)V^(?0-VG(F,P:^)v^(rO} = ]}?^(r),rea^ 
s. 

(23.5) 

Q,riV\jdV 

Substituting Equation 23.3 for the normal gradient of the acoustic field on the surface of 
the target into Equation 23.5, one arrives at the following integral equation: 

il/(r\r&V 

So 

(23.6) 

0,r^VudV 
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The incident field and scattered field may be expanded in terms of the regular and 
outgoing spherical wave functions: 

Wi^idm = E ^°>"/ ^^ ^<^i (23.7) 
ami 

WscaUered=Yj^<^lWa.i (23.8) 
am! 

The scattered field on the surface of the target may be expanded in terms of the regular 
spherical wave fimctions: 

Wscanered =T.fia.,Wan,, (23.9) 
ami 

Substituting Equations 23.7 and 23.9 into Equation 23.2, one arrives at the following 
expansion of the acoustic field on the surface of the target: 

¥\s=Y.(^a.i+fio.i^^^V^am,\s (23.10) 
ami 

Substituting Equations 23.1 and 23.10 into Equation 23.6 evaluated at a point interior to 
the target, one arrives at the following linear equation: 

T.''oml^^y^aml+T^^y^c,>'"TQoml.aWriaa-mr+fiaWr) = 0 (23.11) 
ami ami a'm'V 

The matrix Q is the infinite dimensional matrix defined by the following surface integral over the 
surface of the target: 

Qa.l.a'mr =-\\dA*^ Warn, ^^a'mT (23.12) 
s 

Substituting Equations 23.1 and 23.10 into Equation 23.6 evaluated at a point exterior to 
the target, one arrives at the following linear equation: 

llb^l¥am,-Y.V^^' l.^^Qon,l.a-mA^a:r+fia-n,T)=0 (23.13) 
o>nt ami a'mT 

The matrix ReQ is the infinite dimensional matrix defined by the following surface integral over 
the surface of the target: 

^^Qam,.amT=-ii<^A»VRQlfr^,R&//^.^.,. (23.14) 

The solution of this pair of infinite dimensional linear equations is given by the following 
expression: 
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h    -YT a (23.15) 
a'm'l' 

Here, the matrix T is the T-matrix of the scattering from the target defined by the following 
matrix product 

Tam,,a^.r =- SRee^,,."„T.e"'-"'«"'V'"'" (23-16) 
(T"m'7" 

In the case of a rigid sphere, the T-matrix is diagonal and has the following form in terms 
of the derivative of the regular spherical Bessel Function and Hankel Function: 

T =:_^<^''"'"JL(M. (23.17) 
^aml,(T'mT "ami      ZjOi/j^A 
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24. SCATTERING FROM A SOLID ELASTIC TARGET 

This section describes the scattering from a soHd, elastic target using the spherical 
T-matrix methods described by Hackman'^. 

In order to describe the scattering from an elastic target it is necessary to introduce the 
vector Helmholtz Equation for an elastic solid. Let us begin by describing the Helmholtz 
Equation for a fluid in terms of Newton's' Second Law of Motion and the stress tensor for a 
homogeneous, isotropic fluid: 

p^ = y.f (24.1) 

T.=-g..P (24.2) 

Equation 24.1 is Newton's' Second Law of Motion for a fluid in terms of the displacement 
(w.) of the fluid and the stress tensor of the fluid (Ty). Equation 24.2 is the stress tensor of a 

homogeneous isofropic fluid, where P is the pressure of the fluid, and gy is the metric tensor of 

the coordinate system. Substituting Equation 24.2 into Equation 24.1 and assuming a harmonic 
dependence on time, one arrives at the following expression for the displacement of the fluid in 
terms of the gradient of the pressure: 

u=J-VP (24.3) 
po) 

Analogous equations of motion for a homogeneous, isotropic, elastic solid are given 
below: 

pf^^y.f (24.4) 

T;. =g,2V.M + //(V,M,+V.M,) (24.5) 

Here, the parameters A, and p, are the compression and shear components of the Lame' constants 
of the material. The longitudinal and shear velocities are given by the following expressions in 
terms of the Lame' constants and the density of the material: 

v^ = 2+2^ (24.6) 
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v.=^^ (24.7) 

Substituting Equation 24.5 into Equation 24.4, one arrives at the following equation of 
motion for the elastic solid: 

p^ = gy*V,r,, =a+2//)V,(V.M)+//(V.V(M,)-V,(V.M)) 
"« (24.8) 

= (A + 2//)V,(V.M)-//(VX(VXM)), 

In the case of an elastic solid, it is often convenient to express the displacement vector in 
terms of the Debye potentials <!> and .4: 

u=V(^ + VxA (24.9) 

Substituting Equation 24.9 into Equation 24.8, one arrives at the following equation of 
motion for the Debye potentials: 

p—(V<D + Vx;i) = (>l + 2//)V(V»VO)-//(Vx(Vx(Vx;i))) (24.10) 

This equation of motion is equivalent to the following pair of differential equations, since 
the longitudinal and transverse components of the vector in Equation 24.10 are uncoupled: 

;,^(VO) = (A + 2//)V(V.V4>) (24.11) 

p~iVxA) = -M(yx(Wx(yxA))) (24.12) 

Extracting an overall gradient from Equation 24.11, and curl from Equation 24.12, one 
may express this pair of equations in the following form: 

J2 

p_0 = (A+2//)V.V<D (24.13) 

J2 

P^^ = -i"(Vx(Vx;i)) (24.14) 

Let u and vv be a pair of solutions of the equations of motions for an elastic solid 
occupying the volume V. The following surface integral over the boundary of this volume is 
equal to zero: 
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|J|JF{M,V 7^ (w) - w,Vjr (u)} = JJJJFV^. {u,r M - w.p (w)} = 
" "" (24.15) 
\\dAnj {u,r (w) - w.r (u)} = jjdA{u • t(w) - w» F (M)} = 0 
dy ay 

Here, the vector 

t.iu) = T.j(u)n' (24.16) 

is the surface traction at the boundary of the volume V, where the vector n is the outgoing 
normal to the surface dV. Equation 24.15 is the third Betti Identity for the equations of motion 
for the elastic solid. This identity is used extensively in the construction of the T-matrix 
description of an elastic target. 

The boundary conditions between a pair of elastic solids are that the displacements and 
surface tractions be continuous at the boundary. 

w+ =M (24.17) 

t(,u,) = t(u_) (24.18) 

Here, M+ and u_ are the displacement vectors on the two sides of the boundary evaluated at the 
boundary. In the limit the shear modulus of both solids approach zero, the above boundary 
conditions become the following boundary conditions between two fluids, respectively. 

J-^i.VF, =—«•¥/> (24.19) 
P^ P- 

P^=P_ (24.20) 

The boundary conditions between a fluid and a solid are that the normal components of 
the displacement and surface traction are continuous, and the tangential surface traction of the 
solid vanishes at the boundary. 

u^»n=u_»n (24.21) 

t(u^)»n = t{u_)»n (24.22) 

r(MjxH = r(M_)xH = 0 (24.23) 

The tangential surface traction of an inviscid fluid is zero. Equations 24.3 and 24.2 give 
the displacement vector and stress tensor of an inviscid fluid in terms of pressure. 
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The vector spherical wave functions: 

Ko.,=^MrV^L,(r))                                                                                                (24.24a) 

V2.o.,=^^xK<^,                                                                                                   (24.24b) 

Kc.i = ,   ^WL,                                                                                                       (24.24c) - 

are the analogues of the scalar spherical wave functions. The functions - 

vUr) = hf\Kr)Y^,{^,(p)                                                                                       (24.25a) 

VLM) = hj\k,r)Y^,{A(p)                                                                                      (24.25b) 

are the scalar spherical harmonics for the longitudinal and transverse components of the acoustic 
field. They are solutions of the following scalar Helmholtz Equations: 

V»Vy^i,+A:,Vi,=0                                                                                                (24.26a) 

^•^¥L+krWL=0                                                                                              (24.26b) 

The first two vector spherical wave functions are solutions of the transverse wave equation, and 
the third vector spherical wave function is a solution of the longitudinal wave equation. 

The incident and scattered fields may be expanded in terms of the regular and outgoing 
spherical wave functions, respectively: 

Wfnaden, = Z ^^1 ^^ ¥c.l                                                                                                                                                                           (24.27) 
ami 

¥sc-.uered =T.^on„¥:^,                                                                                                                                                                                   (24.28) 
ami ■ 

The displacements and surface tractions interior to the target may be expanded in terms of 
the regular vector spherical wave functions: 

■ 

"-=ZSAr.<^/ReF,.^,                                                                                               (24.29) 
r=l ami 

3 

I =TllK<^'f(^^K.aml)                                                                                                                                               (24.30) 
T=l an:l 
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The displacements and surface tractions on the fluid side of the interface may be 
expressed in the following form: 

The displacements and surface tractions on the fluid and elastic solid sides of the 
boundary are related by the following boundary conditions: 

M, •n = u •n "+ 

t^»n = t •n + 

(24.33) 

(24.34) 

t_xh = 0 (24.35) 

Substituting Equations 24.31 and 24.32 into Equations 24.33 and 24.34, one obtains the 
following expressions for the acoustic field and its normal gradient at the boundary in terms of 
the elastic field in the interior of the target: 

y/\^=t^mn = 7_»n (24.36) 

n»^i//\s= p^O)^u+»h = p+co^u_»n (24.37) 

The scattered field satisfies the following integral equation: 

j L      Y IncidenlV )■>'  ^ ' 

Substituting Equations 24.36 and 24.37 into Equation 24.38, one obtains the following 
integral equation for the scattered field: 

\dA{Gir, r •: k)pyu_ .fi-h. VG(F, r': k)l .«} = {"' ^^—^[^^'r ^ ^ (24.39) 

Substituting the bilinear expansion of the firee field Greens' Function 

G(r,F: k) = ik'^Wa„,iK)^oyf^,(rJ (24-40) 
ami 

and the expansions for the normal displacements and surface traction given by Equations 24.29 
and 24.30 into Equation 24.39 evaluated at a point exterior to the scatterer, one obtains the 
following linear equation for the scattered field: 
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bcn,i = E ll^^Qo.ixcwiA:cr-n.r (24.41) 
r'=l a'mT 

^^Qa.Kr-.-n.r=iklldA{pyReW^,n*RcV^,^.^.,-n.VRt^^^^ (24.42) 
s 

Evaluating Equation 24.39 at a point interior to the scatterer, one obtains the following 
linear equation for the incident field: 

3 

^ow/ = S 2 Qoml.fa-mr A'.<TWr (24.43) 
r'=I a'm'r 

Qa.,r-.-n,T=iklldA{pyy/^,n*RtV,,^,„,,,-n*Vy/^^^ (24.44) 
s 

The interior fields satisfy Betti's Third Identity: 

IJ^IReF,,^, .r -M_ .F(ReF,.^,)} =0 (24.45) 
s 

Using the identity 

u_=nx(nxu_)-{u_»n)n = nx(nxu_)-(u^»n)n (24.46) 

one can express Equation 23.45 in the following form: 

IJ^IReF,,^,.r -(«»«J(/5»/(ReF,,^,)) + («x(/2X«_))./-(ReF,.^,)} = 0 (24.47) 

Assume the acoustic field on the surface of the target has the following expansion in 
terms of the regular spherical wave functions: 

¥.=Y.^^i'^^y^<^' (24.48) 
ami 

In this case, the displacements on the fluid side of the interface have the following expansion: 

K =-^Tficn,,^^^y'o., (24.49) 
P+f^    ami 

Substituting the above expansion into Equation 24.47, one arrives at the following linear 
equation between the expansion coefficients of the fields on the fluid and target sides of the 
interface: 
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3 

/.  "iaml,cT'm'rP(7'mr      2^ 2^^xaml,T'a'm'r-'^fa-mT       ^ \      •      ) 
a'm'V T'=1 a'm'V 

Pr^,.'.r = jjdA{(n.t{RcV^,))iffVRew..^r)} (24-51) 
s 

Rro.,,r'.:r = Jl^lReF^, •?(ReF,,.„,0-?(ReF_,)«(«x(«xRen,,,„,,^ (24.52) 
s 

Combining Equations 24.41,24.43, and 24.50, one obtains the following representation 
for the T-matrix: 

T = ReQR-'P(QR-'Py (24.53) 

The expansion coefficients for the interior fields are given by the following linear 
equation in terms of the expansion coefficients of the incident field: 

A = R-'P(QR-'Pr'a (24.54) 

An altemative formulation of the T-matrix for a solid target is obtained by using the 
boundary conditions to express Equations 24.39 and 24.45 in the following form: 

\dA{G(r,r': k)pyu_ •h-h*S/G{r,r: k)t, •«} = {'"'^'-'-^^'^'^l''^^^ (24.55) 

lldAiReV,^^, •I -u_.t (RcV,,^,)} = 0 (24.56) 
s 

Suppose the surface traction at the surface of the target has the following expansion in 
terms of the spherical harmonics: 

ami 

Evaluating Equation 24.55 at a point exterior to the target, one obtains the following 
linear equation for the scattered field: 

ba.i=TZ^^Qon,,,r.wrA,.'n.r-^^M^,,.wiA'.r (24.58) 
r=I a'm'r 

^^Qan.,r:'.r = i^p.^)' IJdAR^W^, ReF,,,,„,, (24.59) 
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Re M^, _„.„,, = ik \\dAn • V Re \lf^,Y„-„r (24.60) 
s 

Evaluating Equation 24.55 at a point interior to the target one obtains the following linear 
equation for the incident field: 

3       ___ 

°<ml - ~2-( Z-(^o«/,nT'mV^r,CT'mV + ^aml.a'mrPa'mT (24.61) 
r=l a'mT 

Qo.i,r'awr = ikp.O)^ \\dA y/^, Re F,.„,„,,, (24.62) 

^<^/.a-«v = ik IJclAn • V WciY^wr (24.63) 

Evaluating Equation 24.56, one obtains the following linear equation between the interior 
and exterior fields: 

2J   "toml,c7'mrPaWr   2^   / .^mml rWrnV^r'/r-mV —0 (24.64) 
a'm'V r'=I a'm'r 

Pran,i,c'n,'r = \\dA{fi • ReF,^, )};,„,. (24.65) 
s 

Rran„,ra-n,r = \\dAi (^tV^^^,)*RQV^,^.^,,, (24.66) 

Combining Equations 24.58, 24.61, and 24.64 one obtains the following expression for 
the T-matrix: 

T = -(Re M - ReQR-'P)iM - QR-'Py' (24.67) 
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25. SCATTERING FROM AN ELASTIC TARGET IN A WAVEGUIDE 

This section uses the results of Sections 19 through 24 to describe the scattering from an 
elastic target in a waveguide. This section assumes the scattering from the target is described by 
the spherical T-matrix of the target. 

The free-field scattering from the target is of the following form: 

^Scattered ~ 2^ 2^y^amr(ml.(y'mr'^(7Wr ^      "   ^ 
ami a'm'r 

The coefficients a^, are the expansion coefficients of the incident wave in terms of 
regular spherical wave fimctions 

¥ Incident =Y.'^om'^^y^on,, (25.2) 
ami 

hi Section 19, the following expansion of the normal mode contribution to the waveguide 
Greens' Function was derived in the following form: 

//i"(9j^ + Ar-Ar,.i)F(z+Az:^„)F(z,+Az,) = 
4/7(2.) (25.3) 

ami (T'mT 

The coefficients of this expansion are defined as follows: 

m 
p(z^) 

{^; F; (z^:q„)B:,,   +A-  F; (z,:q„)B:,^  }{ . '   "^^ } (25.4) 

Here q)^ is the angle between the x-axis of the local coordinate system at the source and the 
location of the receiver as seen from the source, and (p is the angle between the x-axis of the 
local coordinate system at the receiver and the location of the source as seen from the receiver. 
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In Section 20, the following expansion of the directivity functions of the source and 
receiver in terms of spherical harmonics was introduced: 

2;r       IT 

dsrc.cn,, = ld<pjsm{j})di}Y^,(i},(p)D,Jt},<p) (25.5) 
0        0 

2;r       X 

dR„.^, = jdip jsin(t^)dt}Y^, (2?, <p)D,^^ (i?, (p) (25.6) 
0        0 

Neglecting multiple scattering terms, the normal mode contribution of the scattering from 
an elastic target has the form: 

Wsca,ereA<} ■ ^') = 

ZJ 2-1    2-1      2-1    Src.m^eml,Ns„-,a"m"r.Nj^,(''Src-Tgn^Src>^Tgr'Psrc-Tgl'9Tgl-Src'-^) (25.7) 
ami a'm'ra"m"l"a"'m"'l"' 

^a'm'l\a"m"r*^ a'm-l\Nj^,\a'"m'"l'".Ni,„ VKcv-Tgn^Tgt^^Rcv^^Tgl-Rcv'^Ri-v-Tgt '• ^ )"/?rv,(T'"m"V"' 

The addition of multiple scattering terms to the calculations replaces the free field 
T-matrix in the above expression with the waveguide T-matrix of the following form: 

r"'=(r-'+/^)-' (25.8) 

Here, the matrix R is the rescattering matrix of References 10 through 12. Generally, the 
rescattering matrix only affects the scattered field by a few decibels. 
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26. NORMAL MODE REPRESENTATION OF SCATTERING FROM A ROUGH 
INTERFACE 

This section presents the normal mode description of the scattering from a rough 
interface. This formaUsm can be utilized to describe both surface and bottom reverberation from 
a rough interface. The topic of bottom reverberation due to volume inhomogeneities in the 
sediment will be addressed in a separate section on the normal mode representation of volume 
reverberation. 

This section begins by recalling Equation 19.29 representing the expansion of the normal 
mode contribution to the Greens' Function in terms of a spherical basis about the source: 

^..^.J^-.-.^. :^J = ^^^^^J(^«^)^.J-^«)^„(,^ ),^.,} (26.1) 

src src 

Expand the normal mode contribution to the Greens' Function in terms of a cylindrical 
basis set about the field point: 

(26.2) 

CT*m' 

One may make use of the following expansion of the Hankel Function: 

^r (w) = 2;^{Hl'L.(«) + (-l)'"'//l'i.(«)}J„,(«')cos(/.zV) (26.3) 

w = ylu^+u'^-2uu'cos((p) (26.4) 

One may also make use of the following representation of the depth fiinction in terms of 
upward and downward-going plane waves: 

F^{z + Az:q) = A;, {q)F; (z: q) exp(+z/2^ Az) + A'^ {q)F^ (z: q) expi-ih^Az) (26.5) 

Substituting Equations 26.3 and 26.5 into Equation 26.1, one obtains the following 
expression for the expansion coefficients in Equation 26.2. 
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B'omi.N,^y.a-m:N{r,z^,z,(p^,(p^ ■.q„) = 

m 
-M^)eint'){Hi:iAq„r) + (-ir'HllUq^r)} 

P(^.v) 

cos(m<p^),(T = e   COS(/W^J,(T'= e 
sin(m^^),a = o   sm(m<p^),a'= o 

Here (p^ is the angle between the x-axis of the local coordinate system at the source and the 

location of the receiver as seen from the source, and ^^ is the angle between the x-axis of the 
local coordinate system at the receiver and the location of the source as seen from the receiver. 

One may introduce the following expansion of the directivity fiinctions of the source and 
receiver in terms of spherical harmonics: 

2a-       a 

dsrc.cn,, = \d(p\&vci{TQi)dT3Y^,{i^,(p)D,^X^,(p) (26.7) 
0        0 

2K       jt 

dR„,a., = jd(plsm(i3')di^Y^,(0,(p)D,„ii9,(p) (26.8) 
0        0 

The above expansion is used to include the effects of the beam pattern of the source and receiver 
on the scattered field. 

Suppose scattering from the interface is described statistically by a scattering ftinction 
S(i^,i9',(p) dependent upon the frequency and the incident and scattered angles. The scattering 
from the rough interface is equal to the surface integral of the product of the incident field, the 
scattered field, and the scattering fimction over the rough surface. Decompose the rough 
interface into rectangular facets, whose areas are small in comparison to the range to and from 
the facet, hi this case, the scattering fimction is approximately constant over the area of the facet, 
and the surface integral over the facet requires the integration of the following product of 
cylindrical wave fiinctions: 

+1/2       +hl2 

\dx \dy^tx'^{rfi,(p:q)Rtx'^UrA(p-q') (26.9) 
-112      -h/2 

hi general, the above integral is restricted to one over either the upward or 
downward-going components of the cylindrical wave fiinctions. Equation 26.9 maybe expressed 
as follows: 

.„,„(,:,, = ffl^7rf^,.(.,),„,.,,r<'"''>-''-H'°f;''>''^:=^,        (26.10) 
o^        .,,2    -A/2 sm(m^),a = o   sm{m'(p),&=o 
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One may simplify the calculation by replacing the rectangular facet by a circular facet of 
the same area. In this case, Equation 26.10 takes on the following simplified form: 

S^,.Ur.q')-jK3:']rdrJJqr)JJq'r) (26.11) 
^ 0 

In the limit /? -» +oo, the integral approaches the following limit: 

lim,_ 5^,..„.(9 :gl = -S^'S^^Siq - q^) (26.12) 
Aq 

Here, one has used the fact the following mtegral is equal to the Dirac delta distribution: 

]xdxJM^)JM^) = -S{q-q') (26-13) 
0 ^ 

In order to simplify Equation 26.11 and obtain a closed form solution, replace the above 
integral by the following Gaussian weighted integral: 

S^,..Aq-q')--S:'S':\drJMr)JMr)^^Vira'r') (26.14) 
^ 0 

The parameter "a" is chosen such that the following integral is equal to the area of the facet: 

2;r Jr^rexp(-aV')=-a-' =7dl^=lh (26.15) 
2 

1 1 
a = 

-jlJ^    V2/^ 
(26.16) 

One may regard this approximation as replacing the incident field by a Gaussian beam 
with the appropriate beam width. 

The following integral is found on page 718 of Reference 18: 

]xdx exp(-a^x^ )/„ {co:)J„ (A) = T^ exP(-^7^)^. (7^) (26-17) 

Substituting this integral into Equation 26.14, one arrives at the following approximation 
of Equation 26.11. 

S^,.Aq-q') = ^K'S'::^M-i.q'^q'')7tR'l2)ISqq'J^') (26-18) 
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The integral given in Equation 26.18 is proportional to the area of the facet. The ratio of 
Equation 26.18 and the area of the facet may be regarded as the directivity function of a flat facet. 
The normal mode contribution to the scattering from the facet is given by the following 
expression: 

ry   h) omi .v=+(T'm'<T"m"j'=+(T"'m'7" 

(26.19) 

where r^^ is the horizontal range from the source to the facet, r^^ is the horizontal range from the 

facet to the receiver, z^ is the depth of the source, z^ is the depth of the receiver, and z^ is the 
depth of the facet. Other variables are the angle between the x-axis at the source and the location 
of the facet (q>^^), the angle between the x-axis at the facet and the location of the source (^^^), 

the angle between the x-axis at the receiver and the location of the facet (^^^), and the angle 

between the x-axis at the facet and the location of the receiver (^^^^). 

The function S'J„.^.„,(a,a',fi: q,q') is given by the following expression in terms of the 

scattering function S{'d,i3\(p) and the ftmction S^^,^,(q:q') defined in Equation 26.18. 

S'^],.Aa,a\l3: q,q') = S^_,.„.(q: q')- 
S(+a,+a',/S),s = +,s'=- 

S(-a,+a\fi),s = -,s'=- 

The angles a, a' are the grazing angles of the incident and scattered field at the interface 
defined by the following relationship, and the angle fi is the azimuthal angle between the source 
and receiver as seen from the facet: 

q = k^^cosia) (26.21a) 

q'=k^^cos(a') (26.21b) 

In the case one is given a statistical representation of the scattering from a randomly 
rough facet in terms of a scattering strength, Equation 26.20 is replaced by the following 
function, where the function S(+a,+a',fi) is the square root of the scattering strength: 
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Si.-Aoc,a\p:q,q')^S'-X^q:q^y 
S(+a,+a\fi),s = +,s'=- 

S{-a,+a\P),s = -,$'=- 

(26.22) 

S^'S:' cxp(-(q' + q'' )7lR'/2)I„(qq'7ai')^-2log(u,)exp(+2mu,) 
(26.23) 

Here M, and u^ are a pair of uniformly distributed random numbers in the interval from 0 to 1 
used to generate a single realization of a randomly rough surface. 
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27. NORMAL MODE REPRESENTATION OF SCATTERING FROM VOLUME 
INHOMOGENEITIES 

This section presents the normal mode description of the scattering from volume 
inhomogeneities. This formalism can be utilized to describe scattering from volume 
inhomogeneities in the case of both volume and bottom reverberation. For simplicity, attention 
will be restricted to the case of isofropic scattering from volume inhomogeneities. 

This section begins by recalling Equation 19.29 representing the expansion of the normal 
mode contribution to the Greens' Function in terms of a spherical basis about the source: 

^.^.J^-.-,^..:^J = ^^^-^^l^(^«^)^.J-^J^,(,^),^ = ,} (27.1) 

Express Equation 27.1 in terms of upward and downward-going plane waves about the 
field point: 

Aa^i,N,„ ir^ ^s' ^. <?.,: ^«) = ^27 2) 

A'cmi.N^.N (r,z,, g)^: q„)exp(+ih^ (z - z^))+A~ami,N,.^ (r, z,,^,: q„) exp(-ih;^ (z - z^ )) 

,     2m    /£(w)„(,),        cos(m^,),o- = e 

{A;,^j;;jz^:q„)B:,,^^ +A-^^F-Jz,:q„)B-„,,JA\iq„) 

Here, one makes use of the following expansion of the depth fiinction in terms of the propagator 
matrix: 

F^(z:q) = Al (q) expi+ih^ (z - z^)) + A' {q) exp(-ih^ (z - z^)) (27.4) 

Introduce the following expansion of the directivity functions of the source and receiver 
in terms of spherical harmonics: 
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2ir       n 

dsr..on„ = ld<p\sm(7^)di^Y^,(t},(p)D,Jr},(p) (27.5) 
0        0 

2/r      X 

dR„.<^, = fd(plsm(t})di9Y^,(0,(p)D,Jt^,(p) (27.6) 
0        0 

Use the above expansion to include the effects of the beam pattern of the source and 
receiver on the scattered field. 

Consider the isotropic scattering due to volume inhomogeneities from a given volume 
element whose horizontal cross section is constant. Scattering from such volume 
inhomogeneities can be approximated by the following integral over depth: 

-     - z+d ,     V 

ZZZ^^rcom/ Z d,„_a-„rArea jck-^Sy^,^„J'       (r„z^,z,(p^:q)4        (r^,z^,z,(p^:q') 

(27.7) 

Here, Area is the area of the horizontal cross-section of the volume element and Sy^,^„^ is the 

linear scattering strength per unit volume, that is, the scattered field at unit distance is equal to 
the product of the linear scattering strength, the volume of the scattering volume, and the incident 
field. Assume the scattering strength is constant and isotropic within each layer of the 
waveguide. In this case, the integral over depth in each of the layers in the waveguide contains 
an integral of the following form: 

\dz exp[+w/i^ {z-z^) + is'h\ (z - z^)] = 

''      j (27.8) 

i(sh  +s'h'  )^^^P^-^^'^^^(^^^i -ZN) + is'h\ (z^,, -z^)]-l} 

In the case the denominator i(sh + s'h') vanishes, this integral is equal to the depth of the layer 

^N = (^/v+i -^N)- The depth integrated scattering from volume inhomogeneities with the given 

horizontal cross-sectional area may therefore be expressed in terms of the following summation: 

VVVW^       d {exp[i+ish^-\-is'h\ )(z;,„ -z^)]-l} 
Z-(Z-(Z_(ZJ Z^ "Src.oml^Rcv.a'mT' ~,     ~, TTT,     T 
N j=+ j-=+ ami awr (+W"w + '•y " V ) 

p{z) (27.9) 

HN 

Here, p^ is the density of the N'th layer, and 5j,„,„„,^ is the linear scattering strength of the N'th 
layer. 
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Consider the case were the scattering from a random collection of volume 
inhomogeneities is described by a depth dependent volume scattering strength. The energy in the 
scattered field at a unit distance is equal to the product of the volume scattering strength, the 
volume of the volume containing the scatterers, and the energy of the incident signal. In this 
case, replace the product of the linear scattering strength and the cross-sectional area of the 
volume in Equation 27.9 by the following expression: 

VSS^Area 
Sy,..e,.Area ^ r^'^^^'''''^-2\og(u,)cxp(+2mu,) (27.10) 

Here, VSSfj is the volume scattering strength in the N'th layer, dfj is the thickness of the N'th 
layer, and M, and u^ are a pair of uniformly distributed random variables between 0 and 1. In 
this manner, one produces a single realization of the scattering from random volume 
inhomogeneities. Equation 27.10 describes a zero mean Gaussian random process, with standard 
deviation squared proportional the product of the volume and the volume scattering strength. 
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28. TIME DOMAIN REPRESENTATION OF SCATTERING FROM A ROUGH 
INTERFACE AND VOLUME INHOMOGENEITIES 

This section combines the results of Sections 15, 26 and 27 to create a time domain 
representation of the normal mode contribution to the scattering from a rough interface and 
volume inhomogeneities. Our attention will be limited to the propagation of a simple Gaussian 
pulse with the following frequency spectrum: 

5(«) = exp[-^^^] (28.1) 

Here, a^ = IT^Q is the angular frequency of the center frequency, and Ao) is equal to ITT times 
the bandwidth of the incident signal. The time domain representation of the incident signal is of 
the following form: 

sit) = jdaS(Q}) exp[-icot] = V2^Afi)exp[-/^ A<y^ / 2 - ico^t] (28.2) 

The approach adopted in this section is to approximate the scattered field by a Gaussian 
integral of the following form: 

Ss,,,,,,A0 = ^ldQ)F((o)cxp[-a\o)-a),f+J3{co-CD,)] (28.3) 
—oo 

One approximates this integral by either the saddle point approximation or the method of 
stationary phase. In the case of a broadband signal, the bandwidth is sub-divided into a 
collection of sub-bands for which the above technique is applied: 

^w..-</(0 = ^(«o) k«exp[-a'(fi>-6)o)'+A6^-6)o)] = FK)^^exp[+(^/2a)']       (28.4) 
—oo 

This technique is extended to an arbitrary band-limited signal by convolving the scattered 
signal from a broadband Gaussian pulse with the incident signal. This technique approximates 
the spectrum of the incident signal by the following Gaussian weighted spectrum, where the 
bandwidth of the Gaussian pulse is sufficiently large this approximation has adequate accuracy: 

S{0})« S(Q})exp[-(a)-(D^Y /2Ao)^] (28.5) 
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From Equations 26.6, 26.18,26.19, and 26.20 one obtains the following representation of 
the scattering of a monochromatic wave by a facet on a rough interface, where the function 
S{i),'d\(p) is the bistatic scattering function of the rough surface: 

P\^h) oml s=+a'm'a'mV=+<T"'m"'l 
2^2aAj 2^2^   2-1 "Srcaml^aml.Nsrr .cWMt (''sh '^s^^h^ 9sh»9hs '• ^) (28.6) 

Rev,a'" m'" I'" 

B''aml,N„-a-m'.s{r,Z^,Z,(p^,(p^ •. ^J = 

m 
■Mm)€(m'){HZAqnr) + Hr'H:Uq„r)} 

K^FL(^s ■■ qM,s.^ + A-,J-^^(z,: ^J5;,,^^}4^F;^(Z : q„) ^^^'^^ 

cos(/M^J,(T = e   cos(w^J,<T'= e 

sin(/w^J,cr = o   s,m{m(p^),&=o 

S-„U-{a,CC\P:q,q') = S^_,,Aq:q^y 

'S(+a,-a\fi),s = +,s'= + 
S(+a,+a',fi),s = +,s'=- 
S(-a-a\/3),s = -,s'=-t 

[S(-a,+a',J3),s = -,s'=- 

(28.8) 

S^,.Aq: g') =—S^'S:- cxp(-iq'+q'' )^' /2)IJqq'7di') (28.9) 

The problem of deriving the time domain representation of the scattering from a rough 
surface entails expressing the following integral in the form of Equation 28.3: 

VscalteredV'sh^^rh^'- q^^qn' ' 0 = 
+00 

|^67exp[-/tyf]exp[-(fi)-fi)„)V2Afi)^]V^,,„,„^^„(F,„?,„:9„,^„,:6;) ^^^'^^^ 
—00 

One may begin by deriving an asymptotic expression for the coefficients defined in 
Equation 28.7 by substituting the following asymptotic expression for the Hankel Functions: 

fiT W = J— exp[uc - imn 12-iKlA] (28.11) 

Upon substitution of Equation 28.11 into Equation 28.7, one obtains the following 
asymptotic expression: 
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Y~ ~ (28.12) 

\7ai„r 

2m 

{Air,Jz,:q„)B:,M.^ ^^If-.J^s ■qn)Bl,,,JA',j;,Jz:q„) (28.13) 

cos(w ^,), (7 = e   cos(m ^,), cr' = e 
sm{m(p^),a = o   sin(/M ^J,(T'=O 

Next, one derives an asymptotic expression for the directivity function of the facet based 
on the asymptotic expansion for the modified Bessel Function in Equation 28.9. Make the 
following approximation for Equation 28.9: 

S^,.Uq ■ ql-^K^:' ^xp[-(q-q^r7dl' l2-\txv[-qq'7rR']IMq'^") (28-14) 

Define the following asymptotic expansion of Equation 28.8: 

Sf:;„.Aa,cc\P: q,q^)« expR^-^')'^' /2K-;,„.(a,a',yS: q,q') (28.15) 

S.:^:^-Ac^,0C\/3:q,q') = 

^S:'S:' exr>[-qq'7^']Uqq'^R') 
4 

'S(+a-a\fi),s = +,s'= + 
S(+a,+a'J),s = +,s'= - (28.16) 

S(-a-a',fi),s = -,s'= + 

S{-a,+a\P),s = -,s'= - 

Substituting Equations 28.12 and 28.15 into Equation 28.6, one obtains the following 
asymptotic expansion for the scattering fi-om a facet on a rough interface: 

^^PUiqr^h+q'rJ-iq-q'y^R' IWscaUereA^sh^Kb-^^q') 
2   rT~       3.„2,.... .-   -  ... (28.17) 

^ZZZEl S^..-,w5L....;.w,..(-.,-*,^..,^*.: q) (28.18) 
P\^b' ow/ .«=+0"m'0'"»n"i'=+(T"'m"7" 
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Substituting Equation 28.17 for the asymptotic expression for the scattered field from a 
monochromatic source into Equation 28.10 one obtains the following expression: 

y^ Scattered Vsh ^^rh^'^n' ^ n' ' 0 = 

jda)cxp[-iQX]exp[-(co-Q),y llb.a)' +i(q„r,, +9„.'-.J-(9„ -^„-)'^' /2] (28.19) 

9Scattered i^sh > ^6»(Jn > ^«' '• ^) 
^ V ^n^n'fshfrh 

Expand the integral about the center frequency by making the following substitutions and 
keeping only terms of quadratic order in the exponential evaluated about the center frequency: 

^n = gno + g'no (^-6^0) + ^"„o (o) - cOof / 2 (28.20a) 

^n- = 9n-o +9Vo(^-6>o) + ?"„-o (G) - (o,f / 2 (28.20b) 

gr,O=1n(^0) (28.20c) 

^^0=   ^"\^    °^ (28.20d) 

^ „o = —2—- (28.20e) 
^'g„(6> = 6)o) 

W Scattered Vsh '^rh'-^n'^n' ' 0 - 

2  I        \ .        ,_   _ 
^ iL     ^      ^   ^    y^W.r.rf (^,A > '■rA . ^„0 ' 9„.0 : ^0) (28.21) 
'"   V "n(iHnV'sh^rh 

+00 

exp[/(9„o';A + ^«-o^/.) - icoj - (^„o - 9„'o)' ^' / 2] |c/6)exp[-a' {a-co.f - ip{o) - a,)] 
—00 

«' = ^^;;^ - '(9"„o'"./, + ^"n'o ^/,)+iq\, -^Vo)' ^/?' / 2 (28.22) 

P = t- (g\o rs, + q\'o frt) - Kq„o - g„-o )(9'„o-?'„-o )^' (28.23) 

upon completing the Gaussian in Equation 28.21, one arrives at the following expression 
for the field scattered from the facet on the rough interface: 
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VScattered Vsh i^rh>'-^n^^n' • 0 " 

2 1 
■^Scattered (^.A ' 'V*' ?nO ' 9«'0 ' ^0 ) ^^^"^^^ 

/2;r 
It 

to = i^\o r., +q\'o rr,)-Kg„o-1n-o)(q'no-q\'o )^R' <28.25) 

T'=2a' =^-2i{q\,r^,-^q\,,rJ + {q\,-q\,,f7tR' (28.26) 

The parameters /„ and T are the complex arrival time and pulse-length of the scattered signal, 
respectively. Neglecting terms proportional to the area of the facet, the travel time reduces to the 
sum of the travel times of the two modes. 

From Equations 27.3 and 27.9, one obtains the following expression for the depth 
integrated scattering from volume inhomogeneities with horizontal cross-sectional area Area: 

WScattered(j;,r^,z^,z^,(p^,(p, : q„,q„. : a) = 

VVVW/y       // {exp[(+ish^ +is'h\ Xz^^, -z^^)]-!} (28 27) 
Z^Z^ZJZJ Zj^Src.aml"Rcv,C7Wr ... . , .,     x 

A^  s=+ s'=+ ami a'm'V KT'^S^N ^ " '^ N ) 

PN 

, , ,     2m    lf(m)„(,)/     .cos(m(pJ,(T = e 
A ^,,^.,(.,.^,^, :,J = -^^^-//„ i<l.r\^^^^^^^^^J (28.28) 

The time domain representation of the scattered field is given by the following equation: 

¥sc:attered (^s ^rr„Z ^,Z ^ ,(p^,(p^ : q„, q „, '. t) = 

+~ (28.29) 
\d(0 exp[-/6)r] exp[-(ft} -co^f 12^co' Wscattered (fs ^rr„z^,z^, (p^ ,(pr:q„, q„.: Q)) 

Substituting the asymptotic expansion for the Hankel Function into Equation 28.28, one 
arrives at the following asymptotic expansion of Equation 28.27: 

¥ Scattered (^. ' ^ ' ^.v ' ^r > <Ps ,<Pr-1n^ ^ n' ' ^) = 

2   1 1  ^ . . (28-30) 
—J exp[/(^„r, +q„~r,)]y/s..,,„,,jiz^,z„(p^,(p^ ■q„,q„'-0)) 
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yyyyy^   d     {exp[(H-/5/;^+;y/;v)(2^„-zj]-i} 
Z-(Z-(Z-fZ-( Z-( "Src,aml"Rcv,a-mT ~    Tl 777,—^^  (28.31) 

HN 

p(zj V 8;r   sm(m^J,o- = o (28.32) 

{^^..^^.(^. • <ir,)B:,,,^^ + ^^,^F;,^(Z, :q„)Bl,,_^)A^s{q„) 

Substituting Equation 28.30 into Equation 28.29 and expanding the argument about the 
center frequency, keeping terms of quadratic order in the expansion, one arrives at the following 
approximation of the scattered field: 

W Scattered i^s ^''r^^s'^r'^s'fr ' ^n'<i n' '• f) = 

Iri Vn     n     K   K    ^Scattered (^. ^^r^fPs^fPr- q nO ' ^ n'O ' ^0 ) (28.33) 
'"  V qnoqnV'^sh'rh 

+00 

—00 

2        1 
"     "^^~^^^"'-0^^»+<i"n'Orr,) (28.34) 

fi = t- (q'nO fsk + q\-0 frk ) (28.35) 

Upon completing the Gaussian in the integrand, one obtains the following asymptotic 
representation of the scattered field: 

¥ Scattered i^s '^r^^^ s^^ r ^^Ps^fPr '• q n>q n' '• t) = 

2 r~i—~   , 
Iri \\n    n     »-.  ^Scattered K^ s ^^r^fPs^^Pr- 9„0 ' ^«'0 ■ ^0 ) (28.36) 
'"   V qnOqnff'^s'^r 

^^P[Kq„0^s + qn'ofr ) - '6>0^0 J^^ eXp[-(/ - /„ ) V 2T' " iO), (t - t, )] 

to=iq'no''s+q'„-on) (28.37) 

^' = 2«' = ^ - 2Kq"„, r, + ^-^.^ r,) (28.38) 

The parameters t^ and r are the effective arrival time and pulse-length of the scattered signal. 
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29. PLANE WAVE APPROXIMATION OF SIGNAL-TO-NOISE RATIO 
CALCULATIONS 

This section uses the plane wave approximation of the normal modes to calculate 
signal-to-noise ratio (SNR). This approxunation decomposes the normal mode contribution to 
the Greens' Function at the source and field point into upward and downward-going plane waves 
with a grazing angle given by the following relationship between vertical wavenumber and 
acoustic wavenumber at the source and field points: 

Re(:^^>£M) = sin(t?,,,) (29.1) 

The parameter ^^rc denotes the grazing angle of the normal mode at the source. A similar 
expression is used for the grazing angle of the normal mode at the field point. The vertical 
wavenumber is positive for downward going plane waves, and negative for upward going plane 
waves. Similarly, the grazing angle is positive for downward-going plane waves and negative for 
upward-going plane waves. This sign convention is related to the fact that the z-axis is directed 
downwards in PC SWAT. 

One begins with the time domain representation of a normal mode. Propagation of a 
pulse is described by the Fourier Transform: 

+00 

G„(r,z„z: t) = jS(a))G„(r,z„z: (o)e-"-'da (29.2) 
—00 

Here S{Q}) is the spectrum of the incident signal. In the following instance, one may assume a 
spectrum of the following form: 

5(fi;) = exp(-^^^) (29.3) 

Here, (OQ is the center angular frequency, and Afij is the angular bandwidth of the pulse. 
Propagation of an arbitrary band-limited pulse can be obtained by convolving the scattered signal 
from a broadband Gaussian pulse with the incident signal. The incident signal is of the following 
form: 

+00   

sit) = J5(6))e"""^<y = ^f27t^(oexpi-t^Act)^ 12 - ico^t) {29 A) 
—00 

The parameter x represents the pulse length of the incident signal. 
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r = - 
1 

A« (29.5) 

Equation 15.17 describes the time domain representation of the Greens' Function, as 
shown below: 

(29.6) 

Here, the reciprocal of the group velocity of the mode is: 

^■.« = ^ (29.7) 

the rate of change of the reciprocal of the group velocity is: 

^"„(«) = -^ (29.8) 

the travel time for the mode is: 

tn=rq\{(0^) (29.9) 

and, the complex width squared of the effective Gaussian is: 

"'^^'i'"-"""^ (29.10) 

The normal mode terms in Equation 29.6 can be decomposed into an upward and 
downward-going plane wave: 

G**(r,z„z:/) = 

i      I   2    >/^„+, ,_±,       ,      ,., , ,       , (29.11) 

Here, the function F^(z:q) represents the decomposition of the depth function into upward and 
downward-going plane waves, as defined below in terms of the components of the propagator 
matrix in the N'th layer containing the depth z: 

F*(2: g) = Al{q)F'-{z : q) = Aliq)txp[±ih,{q){z-z,)] (29.12) 
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The normal mode contribution to the signal from the target is of the following form: 

\lf''''-'"''"'scauerec,{r^,r^,z^,z^,z,(p„(p, iq„,q„. :t + n = i47rfAs,,DsJsi}src'^-^s) ^29 13) 

The parameter ^^5^^ = lO'^^'^" is the amplitude of the incident field at a unit distance from the 

source, where 51 is the source level of the projector in decibels. The vectors (r^,z^,(pj and s 

(r^,z^,g)^) are the cylindrical coordinates of the source and receiver relative to the target, that is, 

r^ is the range from the target to the source, z^ is the depth of the source, and (p^ is the bearing 

of the source as seen from the target. Similarly, r^ is the range from the target to the receiver, z^ 

is the depth of the receiver, and <p^ is the bearing of the receiver as seen from the target. The 

fimctions G'/'(r,z,z': t) are the decomposition of the n'th normal mode contribution to the 

Greens' Function in terms of upward and downward going plane waves at the two endpoints. 
The angle: 

i?„=sin-'(Re(^^)) (29.14) 
k 

is the grazing angle of the n'th normal mode at the target. The angles i^src ^^^ ^RCV ^re the 

grazing angles for the outgoing and incoming normal mode at the source and receiver, 
respectively. Thefiinction ^rargeX^'^'^''^') is the bistatic scattering fiinction for the target. In 

the case of an omni-directional point target, this fiinction is equal to the constant lO"'^", where 
TS is the target strength in decibels. 

hi general, one estimates the signal from the target by incoherently adding the magnitude 
squared of all the normal mode contributions given by Equation 29.13 that arrive at the receiver 
within a pulse length of each other. 

The next step in evaluating the signal-to-noise ratio of a system is to estimate the amount 
of surface, bottom, and volume reverberation arriving at the receiver as a fimction of travel time. 

First, consider the case of calculating the mean square surface reverberation. The 
magnitude squared of the normal mode contribution to surface reverberation is of the following 
form: 

I \l/''''surface(j;,r„z^,z„z^ 0,^: q„,q„.:/ + /') |' = 

{A7tY\A,,, nD,,,(5^?,,„0)D,„(5•^?«,„9))nGr(r„z„z = 0:0G„r(r„z = 0,z, :/')|^    (29.14) 

Here, the quantity Ssurface^'^^'^'^9) is the bistatic surface scattering strength. 

29-3 



CSS/TR-02/10 

The term: 

do) 
Area = v^,,r, —^ Az?^„,M (29.15) 

is the area ensonified by the incident signal, where ^R is the range resolution of the signal, and 
^^Hor is the horizontal beam-width of the system. The parameter r, is the range from the 
projector to the ensonified area on the surface, and z^ is the depth of the source. Similarly, r^ is 
the range from the receiver to the ensonified area, and z^ is the depth of the receiver. The 
parameter z is the depth of the surface. The angle (p is the azimuthal angle between the projector 
and the receiver, as seen from the center of the ensonified area. For a monostatic, active sonar, 
this angle is approximately zero. 

In the discussion of bottom reverberation, one may decompose the bottom reverberation 
into two parts. The first describes bottom reverberation due to the roughness of the mterface. 
The second describes bottom reverberation due to volume inhomogeneities in the sediment. 
High frequency models of bottom reverberation usually combine these two contributions into a 
single scattering ftmction, since the sound is generally limited to a narrow layer about the 
interface owing to the attenuation of sound in the sediment, h the case of low frequency 
propagation, the sound has significant penetration into the sediment, and scattering from volume 
inhomogeneities cannot be considered to arise from scattering from a thin layer about the 
interface. 

I y/'-^'Bonon, irs,n,z,,z^,z^,<p:q„,q„.:t + t')f = 

(4/r)^ I ^.. n D,,As^,,.,0)D,^As'^«„,<P) \'\ ^r (r„z.„z,: t)G-/(r,,z„z,: /') i^ (29.16) 

SBor,on,(^n^^n-,<Pr - <Ps + ^Xv^..^, ^At?^„,A/?) 
do) 

Here, the quantity 5g„„„„(??,i3^\(p) is the bistatic bottom scattering strength for the rough 
interface. The term: 

dq„ 
day 

Area = v^^j, —=-At?^„,A/? (29. i j) 

is the area ensonified by the incident signal, where AR is the range resolution of the signal, and 
^^Hor is the horizontal beam-width of the system. The parameter r^ is the range from the 
projector to the ensonified area, and z, is the depth of the source. Similarly, r^ is the range from 
the receiver to the ensonified area, and z^ is the depth of the receiver. The angle q> is the 
azimuthal angle between the projector and the receiver, as seen from the center of the ensonified 
area. The parameter z is the depth of the bottom interface. In the case of a multi-layered bottom, 
one can easily sum over the scattering from each interface. 
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The magnitude squared of the mean normal mode contribution due to the scattering from 
volume inhomogeneities in the N'th layer is of the following form: 

y/ Volume 

(ySrJs^^^HoM)Svo,un,e 

(29.18) 

The function Gf-{r,z^ -.t) is the following function, where the coefficients Al{q) are 

the coefficients of the depth function in the N'th layer: 

G:-'(r,zr-t) = 

i       I   2    47t 
Ap(z^)iq„rn: a 

F'(z,:qJA,'(qJexpiiiq„r-0),t-7r/4)-(t-t„y/4a') 
(29.19) 

These functions arise by integrating the product of the two Greens' Functions over the 
depth of the scatterer: 

^Af-fl 

\dzG:''\r,,z,,z: t)Gf''"\r,,z,z,: f) = 

P^ldzG:'\r,,z,,z : t)Gf''\r,,z,,z : /') 
PN   I 

(29.20) 

P(0 
PN 

G'/\r,,z,:t)G';''\r,,z,:n 
exp[{+is'hj,(q„) + is''h\ (q„,)}(z^^, -Z/^)]-1 

i+is'h,iq„) + is^'h\iq,)) 

One may use the following expression for the upward and downward-going components 
of the depth function in terms of exponentials and the coefficients of the propagator matrix in 
evaluating the above integral. 

F- (z:q) = Al (q) exp[±//z^ iq)(z - z^ )] (29.21) 

An alternative expression for the scattering from volume inhomogeneities is to replace 
Equation 29.18 by the following expression: 
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I yf''''■'"•''Volume {r^,r„z^,z^,z,<p:q^,qy.t + f)f= 

{Any I As,, n /)5.c(^^5.,0)D,„(5-t?,„,^) n p{z,)lp, pl G:'\r,,z^: OG;?"(r,,z,: /') f 

^^     ..     ^..,      .j;.„w (2.'Im(/;) + 2."Im(A'))(z,,-z,) iysrA 

(29.22) 

In deriving this expression one replaces Equation 29.20 by the following incoherent sum of the 
magnitude squared of the Greens' Function over depth, that is, one performs a summation over 
the energy rather than pressure as a function of depth: 

mG;''"(r„z„z:OG/-'"(r„z,z, :/')f = J dz ——G„    (r^,z^,z't)G„.     ir„z,,z:t') 
PN 

^^''^Gf{r,,z^:t)G^;-^\r,,z^:n 
PN 

^G'/(r,,z,:t)G:y\r,,z,:n 
PN 

jdz exp[-(25' ]m(h) + 2s" ]m(h' ))(z - z^)] = 

y^N+\    ^N) 

(1 -exp[-i2s']m(h) + 2s"]m{h'))(z^,, -z,)]) 

(25'Im(/i) + 25"Im(A'))(z^„-z^) 

(29.23) 

In the limit the imaginary component of the vertical wavenumber vanishes the following 
limit is obtained: 

(1 -cxp[-i2s'lm(h) + 2s"]m(h'))iz^,, - z,)]) 

(25'Im(/;) + 25"Im(/;'))(z^„ - z J "^ (29.24) 

The quantity 5',,„,„„^ is the volume scattering strength for volume inhomogeneities in the N'th 
layer. The term: 

ro/Mme = v,,^r,^Az?^„M(z^,, -z,) (29.25) 

is the volume ensonified by the incident signal. The parameter r, is the range from the projector 

to the ensonified volume, and z^ is the depth of the source. Similariy, r, is the range from the 

receiver to the ensonified volume, and z, is the depth of the receiver. The angle q) is the 
azimuthal angle between the projector and the receiver, as seen from the center of the ensonified 
volume. In the case of a multi-layered bottom, one can easily sum over the scattering of the 
volume inhomogeneities in each layer. Scattering from volume inhomogeneities in the water 
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column (volume reverberation) is similarly treated. One must implicitly assume the directivity of 
the beam is approximately constant over the depth of the layer, thus application of Equation 
29.18 or 29.22 may require sub-dividing the layers into smaller layers. 

Calculation of the signal-to-noise ratio begins with calculating the retum from the target 
at a fixed range by adding those retums from the target that retum within a pulse length of each 
other using Equation 29.13. This process produces the envelope of the time series representing 
the different multipath retums from the target. Next one calculates the scattering from the 
surface and the bottom by integrating Equations 29.14 and 29.16 with respect to the range from 
the projector to the ensonified area on the surface and bottom respectively. Again, one adds 
contributions to the envelope of the surface and bottom reverberation that lie within a pulse 
length of each other. This process produces the envelope of a time series representing the 
scattering from the surface and the bottom. Next, one uses either Equation 29.18 or 29.22 to 
compute the scattering from volume inhomogeneities in the sediment by integrating these 
equations with respect to the range from the projector to the ensonified volume in the sediment. 
Similarly, one integrates either Equation 29.18 or 29.22 with respect to range from the projector 
to the ensonified volume to obtain the scattering from volume inhomogeneities in the water 
column. Finally, one adds the ambient noise term to the sum of the surface, bottom, and volume 
reverberation levels to determine the total noise in the system. The signal-to-noise ratio for the 
system can be estimated by taking the ratio of the largest retum from the target and the total noise 
arriving at the sonar at the same time. 
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30. COMPUTATION OF NORMAL MODES 

Direct application of the characteristic equations in Sections 8 and 9 lead to numerical 
instability in the case of large sound speed gradients in the water column. This section describes 
a numerically stable technique for solving the characteristic equation for the normal modes in a 
waveguide. 

Suppose one has a waveguide consisting of N homogeneous layers, where the following 
matrices transform the depth coefficient at a given interface into the pressure and normal 
displacement at that interface: 

il/,7''^=exp(+//z^^;,) (30.1a) 

M,7-^=expH;;^flr^) (30.1b) 

j^N.X,N  ^ +lhlLQ^^(^ih^d^) (30.1c) 
PN 

j^N.X.N  ^_jhlLQ^^(-ih^cl^) (30.1d) 
PN 

M^/=+\ (30. le) 

M,^/=+l (30. If) 

P^ (30.1g) 

Mff=-/-^ (30. Ih) 
PN 

Suppose the depth function in the N'th layer is of the following form: 

PN (2) = ^]i exp(+//i;v (z - z^)) + A], exp(-///^ (z - z^)) (30.2) 

The equations of continuity of pressure and the normal displacement at the N'th interface 
are of the following form: 
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0 = 
^M,'!-^-'    M,r-'YA' 1,1 1.2 

Y    2,\ '^^2,1       J 

-N-\ 

\^2,{ 

M, N.N\I' A+   \ 
1.2 

MN.N 
2.2 ; 

"■-N (30.3) 

In the case of a rigid bottom, one can express the equations of continuity and the 
boundary condition at the pressure release surface and the rigid bottom by the following set of 
linear equations: 

0 = C4 

A' = [A:,A:,AUA;,...AI,A-,) 

(30.4) 

(30.5) 

The global matrix C is the matrix whose first row is given by the following expression that 
encapsulates the boundary condition of a pressure release surface. 

C,,..2;v=(l,I.0,0,...A0) (30.6) 

The last row of the global matrix C takes on the following for and encapsulates the boundary 
condition of a rigid bottom: 

^2N.\..2N 
PN PN 

(30.7) 

The mtermediary rows of the global matrix C express the equations of continuity of pressure and 
normal displacement in the intermediary interfaces. The non-zero elements of the global matrix 
C in the intermediary rows are of the following form: 

^2n+/-H,2n+7+I  ~'^^ij 

*-'2(n+I)+/+l,2ii+7+l  ~     ■™/,y 

(30.8a) 

(30.8b) 

The global matrix C is extremely sparse and has the following quasi-diagonal form. 

C = Ml:? 
0 

0 

^1.2 

■"^ 2,2 

0 

0 

-K -^1:2 
Mi; 
Mil 

M]i 
M\\ 

0 
0 
0 

-M, 
-M 

2.2 
1.1 
2,2 
2.1 

0 
0 

0 
-M 2,2 

1.2 

■Mil    ) 

(30.9) 

In the case the bottom layer is a homogeneous half space the last row in the global matrix is of 
the following form. 

'2N.\...2N = (o,o,...,o,i) (30.10) 
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This equation encapsulates the boundary condition that the upward-going component of the 
depth function in the homogeneous half space vanishes. 

Note, terms with a negative exponential in the global matrix C may be eliminated by 
rescaling the columns of the matrix. Li this manner, the off-diagonal terms are either Order 1 or 
they are exponentially damped. The characteristic equation for the normal modes is found by 
tri-diagonalizing the global matrix C and taking the product of the remaining diagonal terms to 
obtain the determinant of the global matrix C. The normal modes are those values of the 
horizontal wavenumber for which this determinant vanishes. 

PC SWAT 7.0 solves this characteristic equation for the normal modes in the case the 
sound speed is real by using a combination of the method of bisection and Newton's Method to 
obtain the solution for the normal modes in the absence of attenuation. PC SWAT then uses 
perturbation theory of the normal modes to estimate the complex eigenvalues due to attenuation 
in the water column. The resulting normal modes have a small imaginary component 
corresponding to the attenuation of the mode. Attenuation of the normal mode in the sediment is 
handled by altering the vertical wavenumber in the sediment, which generally has a significant 
positive imaginary component. The effects of attenuation in the sediment on the horizontal 
wavenumber are ignored, since the attenuation is generally large enough that perturbation theory 
is not applicable. 

In the case of a rigid bottom, the coefficients of the depth functions are found by solving a 
linear equation of the following form: 

V = GB (30.11) 

G = 

-M^ -M\i 0 0 0 0 
-M)^, -Ml;^ 0 0 0 0 

Mf:: < -Ki^ -M^^ 0 0 

M]:l <•! -M]^ M]:l 0 0 
0 0 Mjf M\i -M 3,3 

1,2 

(30.12) 

B— \A^ ,A^ ,...,Afj,Afj) 

V,=-(M 1,0 

V,=-(M 1,0 

+ 1\ 

-1/ 

f+l) 

K-h 

V. =0,11^12 

(30.13) 

(30.14a) 

(30.14b) 

(30.14c) 
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The matrix G is the 2(N-1) x 2(N-1) dimensional sub-matrix of the global matrix C 
obtained by eliminating the first two columns and the first and last rows. The vector F represents 
the source term due to the depth coefficients in the top layer, where one must assume the depth 
coefficients in the top layer are given by the following expression: 

(30.15) 

PC SWAT solves the above equations by using Gaussian elimination with partial 
pivoting to find the inverse of the matrix G. The coefficients of the depth fiinction in layers 
1,2,.. .N are then obtained by the following matrix multiplication: 

{A:,A;,..:,AI,A-,Y=G-'V (30.16) 

In the case of a homogeneous half space, PC SWAT forms the matrix 2(N-2) x 2(N-2) 
dimensional sub-matrix of the matrix C by eliminating the first two columns and the last two 
columns, the first row, and the last three rows. The vector B is the 2(N-2) vector containing the 
depth coefficients for layers 1,2,. ..(N-1). The depth coefficient in the homogeneous layer is 
obtained by using the propagator matrices to relate the depth coefficients in the (N-l)'th layer to 
the N'th layer. 
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31. SAMPLE CALCULATIONS 

This section describes a set of test cases of the low frequency propagation model. This 
model is described in Reference 1. 

Table 31-1 displays a comparison of the complex Green's Function for a rigid waveguide 
of depth 300 m calculated by PC SWAT and the exact normal mode solution at a frequency of 
200 Hz. The source is located at mid water column. The range to the field point is 300 m. As 
can be seen from Table 31-1, PC SWAT agrees with the exact solution to six significant figures. 

TABLE 31-1 I. COMPARISON OF E XACT AND APPRO> 
FUNCTION 

[IMAIE SOLUTION OF THE GREEN'! 

PCSWAT EXACT 

Depth, M Real imaginary Real Imaginary 

0 2.156952E-21 -1.742372E-48 O.OOOOOOE+00 O.OOOOOOE+00 

3.1 -7.601606E-06 -7.848293E-05 -7.601606E-06 -7.848293E-05 

6.2 -9.370370E-04 1.848949E-04 -9.370370E-04 1.848949E-04 

9.3 5.937188E-04 5.420785E-05 5.937188E-04 5.420785E-05 

12.4 4.005531 E-04 -2.861161E-04 4.005531 E-04 -2.861161 E-04 

15.5 -3.460245E-05 3.103788E-04 -3.460245E-05 3.103788E-04 

18.6 7.772559E-05 -1.685571 E-04 7.772559E-05 -1.685571 E-04 

21.7 -7.101162E-04 -2.997450E-04 -7.101162E-04 -2.997450E-04 

24.8 2.578272E-05 3.199933E-04 2.578272E-05 3.199933E-04 

27.9 3.287343E-04 -5.274567E-05 3.287343E-04 -5.274567E-05 

31 2.759619E-04 3.640188E-04 2.759619E-04 3.640188E-04 

34.1 -3.689313E-06 6.981516E-06 -3.689313E-06 6.981516E-06 

37.2 -2.695758E-04 -5.676645E-04 -2.695758E-04 -5.676645E-04 

40.3 1.927261 E-04 -1.785782E-04 1.927261 E-04 -1.785782E-04 

43.4 -3.423437E-04 8.770414E-05 -3.423437E-04 8.770414E-05 

46.5 -6.500707E-05 5.725958E-04 -6.500707E-05 5.725958E-04 

49.6 8.186082E-05 2.823280E-05 8.186082E-05 2.823280E-05 

52.7 -1.378475E-04 -9.820521 E-05 -1.378475E-04 -9.820521 E-05 

55.8 7.905617E-04 2.852105E-05 7.905617E-04 2.852105E-05 

58.9 7.423926E-05 -2.768488E-04 7.423926E-05 -2.768488E-04 

62 -6.218280E-04 2.453624E-05 -6.218280E-04 2.453624E-05 

65.1 8.851132E-05 -4.144703E-04 8.851132E-05 -4.144703E-04 

68.2 -1.450531 E-04 -2.095526E-05 -1.450531 E-04 -2.095526E-05 

71.3 -3.129984E-04 4.758295E-04 3.129984E-04 4.758295E-04 

74.4 1.079975E-04 2.570571 E-04 1.079975E-04 2.570571 E-04 

77.5 -2.536621 E-05 1.390918E-04 -2.536621 E-05 1.390918E-04 

80.6 2.644454E-04 -2.384132E-04 2.644454E-04 -2.384132E-04 
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TABLE 31-1. COMPARISON OF EXACT AND APPROXIMATE SOLUTION OF THE GREEN'S 
FUNCTION, CONTINUED 

PCSWAT EXACT 
}epth, M Real Imaginary Real Imaginary 

83.7 5.999015E-04 4.540631 E-04 5.999015E-04 4.540631 E-04 
86.8 -1.663070E-04 -2.418384E-04 -1.663070E-04 -2.418384E-04 
89.9 -3.274314E-05 -7.096214E-04 -3.274314E-05 -7.096214E-04 
93 3.078189E-04 2.401429E-04 3.078189E-04 2.401429E-04 

96.1 -2.750968E-04 -4.493027E-04 -2.750968E-04 -4.493027E-04 
99.2 -3.570023E-04 -2.424585E-05 -3.570023E-04 -2.424585E-05 
102.3 -3.382565E-04 5.974809E-05 -3.382565E-04 5.974809E-05 
105.4 2.291967E-05 -2.152185E-04 2.291967E-05 -2.152185E-04 
108.5 -1.661176E-04 5.873839E-04 -1.661176E-04 5.873839E-04 
111.6 -5.834619E-04 4.815931 E-05 -5.834619E-04 4.815931 E-05 
114.7 3.460832E-04 2.040280E-04 3.460832E-04 2.040280E-04 
117.8 1.763182E-04 2.856471 E-04 1.763182E-04 2.856471 E-04 
120.9 -3.589055E-04 2.928459E-04 -3.589055E-04 2.928459E-04 
124 3.807956E-04 3.962045E-04 3.807956E-04 3.962045E-04 

127.1 3.738250E-04 -3.303400E-04 3.738250E-04 -3.303400E-04 
130.2 -3.827622E-05 5.404839E-04 -3.827622E-05 5.404839E-04 
133.3 3.019754E-04 2.317492E-04 3.019754E-04 2.317492E-04 
136.4 3.601126E-04 -4.246805E-04 3.601126E-04 -4.246805E-04 
139.5 1.806243E-04 3.596155E-04 1.806243E-04 3.596155E-04 
142.6 3.077695E-04 3.466247E-05 3.077695E-04 3.466247E-05 
145.7 1.474091E-04 5.509475E-07 1.474091 E-04 5.509475E-07 
148.8 4.343452E-04 -2.044144E-04 4.343452E-04 -2.044144E-04 
151.9 2.670685E-04 9.472733E-05 2.670685E-04 9.472733E-05 
155 -6.337753E-05 3.846362E-04 -6.337753E-05 3.846362E-04 

158.1 7.366325E-04 -5.794180E-04 7.366325E-04 -5.794180E-04 
161.2 5.727772E-05 2.611416E-04 5.727772E-05 2.611416E-04 
164.3 -1.872883E-05 4.375409E-04 -1.872883E-05 4.375409E-04 
167.4 7.384581 E-04 -3.635707E-04 7.384581 E-04 -3.635707E-04 
170.5 -7.500781 E-05 2.628381 E-04 -7.500781 E-05 2.628381 E-04 
173.6 1.815121 E-04 3.189365E-04 1.815121E-04 3.189365E-04 
176.7 2.031955E-04 2.004866E-04 2.031955E-04 2.004866E-04 
179.8 9.574840E-05 1.482104E-04 9.574840E-05 1.482104E-04 
182.9 1.778534E-04 2.029185E-04 1.778534E-04 2.029185E-04 
186 -5.309431 E-04 5.078087E-04 -5.309431 E-04 5.078087E-04 

189.1 2.515085E-04 7.838585E-05 2.515085E-04 7.838585E-05 
192.2 -2.746774E-05 6.725184E-05 -2.746774E-05 6.725184E-05 
195.3 -8.236512E-04 2.094750E-04 -8.236512E-04 2.094750E-04 
198.4 1.617321 E-05 -7.181784E-05 1.617321 E-05 -7.181784E-05 
201.5 2.697329E-05 -5.519383E-05 2.697329E-05 -5.519383E-05 
204.6 -3.961550E-04 -3.287576E-04 -3.961550E-04 -3.287576E-04 
207.7 -2.016652E-04 -3.599796E-04 -2.016652E-04 -3.599796E-04 
210.8 4.106582E-04 5.658139E-05 4.106582E-04 5.658139E-05 
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TABLE 31-1. COMPARISON OF EXACT AND APPROXIMATE SOLUTION OF THE GREEN'S 
FUNCTION, CONTINUED 

PCSWAT EX/ VCT 

Depth, M Real Imaginary Real Imaginary 

213.9 1.827767E-04 -2.275882E-04 1.827767E-04 -2.275882E-04 

217 9.763994E-05 -3.040782E-04 9.763994E-05 -3.040782E-04 

220.1 3.429965E-04 2.782708E-04 3.429965E-04 2.782708E-04 

223.2 -8.857475E-05 4.557982E-04 -8.857475E-05 4.557982E-04 

226.3 3.194940E-04 1.128602E-04 3.194940E-04 1.128602E-04 

229.4 -2.846170E-04 -1.218884E-04 -2.846170E-04 -1.218884E-04 

232.5 -6.002076E-04 3.137906E-04 -6.002676E-04 3.137906E-04 

235.6 1.232101E-04 3.605080E-05 1.232101 E-04 3.605080E-05 

238.7 -1.108531E-04 -6.004108E-04 -1.108531 E-04 -6.004108E-04 

241.8 2.773905E-04 -6.520506E-05 2.773905E-04 -6.520506E-05 

244.9 -1.062994E-04 -1.729520E-04 -1.062994E-04 -1.729520E-04 

248 1.828837E-04 1.295178E-04 1.828837E-04 1.295178E-04 

251.1 6.021326E-04 6.909265E-04 6.021326E-04 6.909265E-04 

254.2 -5.457961 E-04 -3.855391 E-04 -5.457961 E-04 -3.855391 E-04 

257.3 -1.582388E-04 -1.412799E-05 -1.582388E-04 -1.412799E-05 

260.4 -2.968068E-04 3.720943E-04 -2.968068E-04 3.720943E-04 

263.5 -1.973936E-05 -5.479777E-04 -1.973936E-05 -5.479777E-04 

266.6 6.874971 E-04 -5.917463E-05 6.874971 E-04 -5.917463E-05 

269.7 -1.082978E-04 1.171910E-05 -1.082978E-04 1.171910E-05 

272.8 -7.321751E-05 -1.322922E-06 -7.321751 E-05 -1.322922E-06 

275.9 -2.318374E-04 6.503385E-04 -2.318374E-04 6.503385E-04 

279 5.030232E-05 -4.674538E-05 5.030232E-05 -4.674538E-05 

282.1 4.462274E-05 -5.669501 E-04 4.462274E-05 -5.669501 E-04 

285.2 -1.375995E-04 -1.844840E-04 -1.375995E-04 .1.844840E-04 

288.3 3.717545E-04 9.333937E-05 3.717545E-04 9.333937E-05 

291.4 -3.635994E-04 4.157779E-04 -3.635994E-04 4.157779E-04 

294.5 2.495043E-04 2.992173E-04 2.495043E-04 2.992173E-04 

297.6 9.235150E-05 -3.025371 E-04 9.235150E-05 -3.025371 E-04 

Figure 31.1 presents a comparison of the coherent transmission loss between the high 
frequency and low frequency models in PC SWAT 7. The waveguide is 100 m deep with a rigid 
bottom and pressure release surface. The source and receiver are both located at a depth of 50 m. 
The frequency of the projector is 1000 Hz. Table 31-2 contains the sound velocity profile for the 
waveguide. In the case of the high frequency model a user-defined surface and reflection loss 
of 0 decibels is used. 

TABLE 31-2. SOUND VELOCITY PROFILE OF TEST CASE 

Depth (m) Sound Speed (m/s) 
0 1500 
50 1460 
100 1500 
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FIGURE 31.1 COMPARISON OF TRANSMISSION LOSS FOR HIGH FREQUENCY AND LOW 
FREQUENCY PROPAGATION MODELS 

Note, the incoherent transmission loss for the high frequency and low frequency 
propagation models are not directly comparable, since each ray frajectory in the high frequency 
model represents a coherent sum of normal modes. 
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