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Abstract 
The q>reading angle of an electrospray of Formamide 
with 5-10% LiCl by mass has been measured to be 18° 
in vacuum, for conditions close to minimum stable flow. 
A single-stage einzel lens was able to re-focus the spray, 
as predicted by paraxial ray theory. In addition, a time- 
dependent 1-D numerical model of the cone-jet-spray 
structure is described, and initial results presented. 

1. Introduction 

Colloid thrusters, working on the principle of 
electrostatic extraction and acceleration of highly 
charged liquid droplets, are one of several microthruster 
technologies currently receiving attention for 
applications ranging froin main propulsion of 
microsatellites to high-precision altitude control and 
station keeping of constellation members. An 
introduction to the technology and a review of its earlier 
implementation as a mainline propulsion concept (in the 
1960's andl970's) can be found in Ref. [1]. 

At MIT, we are currently pursuing several lines of 
research on these thrusters. In this paper we report on 
our progress in the direction of a better understanding 
and control of the spray generated by a single un- 
neutralized colloid emitter. One eventual goal is the 
construction and verification of models for evaluating 
the possible interactions of these propulsive beams with 
the spacecraft. In addition, we aim at the construction of 
an improved Time-of-Flight mass spectrometer for the 
detailed study of nuxed ion-droplet sprays, which may 
play a prominent role in actual high-performance 
colloid thrusters'''. In order to increase the resolution of 
this device, ion optical concepts are needed for re- 
focusing of the spray after its space-charge induced 
initial divergence. 

Section 2 of this pqjer describes our experimental work 
and presents some data on beam spreading and 
refocusing using a custom-designed einzel lens. Section 
3 describes our on-going work on numerical modeling 
of the colloid emitter, starting with the Taylor cone and 
following through to the spreading electrospray. Only 
preliminary results are at present available, and some of 
these will be discussed. 

2.1 Experimental Apparatus 

The main experimental goal was to measure the amount 
of spreading in a typical colloid jet and to determine if 
the charged droplets can be focused by means of 
external electrostatic fields. 

The colloid emitter consisted of a single quartz needle 
with ID of 75nm and final tip ID of 30nm. Fig 1 shows 
a diagram of the system. Not shown is the syringe paaap 
which was used to inject and monitor the liquid flow 
rate (Formamide with 5-10%wt. concentration of LiCI) 
into the emitter. Capacitive effects in the transfer line, 
however, did not allow a precise determination of the 
flow rate. Nevertheless we know that its value was 
centered, within a certain margin, at around 2x10''^ 
mVs. 

The emitter is coated with a metallic film that allows 
electric contact between the liquid and a high voltage 
power supply (VE). The emitter tip was positioned at the 
center of a circular aperture of 6 nun in diameter that 
served as the grounded extractor electrode. The 
electrostatic lens was positioned next to the extractor 
and was biased negatively with respect to it (Vp) by 
using a second high voltage power si5)ply. 

The current collector (Fig. 2) is comprised of a series of 
11 concentric metallic rings, each with a width of 3mm 
(except the first one which is a circle with diameter of 
1cm) and a maximum radius of 3.5 cm. Each ring is 
electrically isolated from the rest and allows one to 
measure current at different radii with a resolution given 
by the number of rings. A sensitive amperimeter was 
used to pick-up the signal from each ring. 

Experiments were performed inside a large vacuum 
chamber equipped with a set of two cryogenic punq>s at 
pressures below IxlO"* torr. 

2.2 Beam Spreading and Lens Design 

One of the most useful techniques to characterize the 
beam of an electrospray is by the use of Time-of-Flight 
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Fig. 1: Experimental setiq) diagram 

(TOF) spectroscopy in which a beam of emitted 
particles is forced to drift towards an electrometer as the 
extractor voltage is suddenly cut. This allows one to 
measure the time it takes the jet to reach the target and 
gives therefore enough information to estimate the 
specific charge of the different particles that compose 
the beam. Specific charge and beam composition are 
very important to determine the performance of a 
thruster as the propulsive efficiency and the specific 
impulse dqiend directly on those parameters. 

Since the beam is formed by charged particles, one can 
expect it to spread under electrostatic repulsion forces. 
The amount of this spreading will depend on the beam 
composition and its dynamic characteristics. From 
previous experiences '^' , it is known that spreading 
limits the working distance for TOF to 20-30 cm. To 
solve this problem one could make use of the well 
developed theory of ion optics which has been applied 
for many years to microfabrication with liquid metal ion 
sources ' . In particular, one could make use of a 
focusing device called "einzel" or equipotential lens. In 
a lens of this type, an accelerating potential is generated 
in the path of the charged beam, followed by a 
decelerating potential which leaves the particles with 
tile same axial kinetic energy they had before entering 
the device, but provides a net focusing effect in the 
radial direction. 

Fig. 2: Current Collector 

To calculate the beam trajectory the paraxial ray 
equation is used. In the paraxial approximation it is 
assumed that the beam particles stay relatively close to 
the base trajectory (beam axis) and that the beam profile 

has a uniform charge distribution. The force equations 
can be solved considering axially symmetric 
electrostatic fields with cylindrical geometry. These 
fields are expressed as the first order terms of the 
solution in series of Poisson's equation. What is most 
interesting about the paraxial approximation is that we 
only require knowledge of the electrostatic potential 
(Vo) at the axis of synnmetry. The paraxial ray equation 
can then be written as 

„    Vy    VT or 
2V.    4V. o   o 

(1) 

where the space charge density po is given for JV species 
in the beam as 

=_J_y—L_ (2) 

/, and (q/m)i are the current and the charge to mass ratio 
of the fth species in the beam. (A single species was 
assimied in this paper). The on-axis potential can be 
extracted after solving Laplace's equation for a given 
geometry of electrodes with the help of an elliptic 
solver. 

Fig. 3 shows the geometry of the emitter, extractor and 
the lens, superimposed to the mesh used to solve 
Laplace's equation, and the solution itself. It is clear 
how the strong negative potential in the middle region 
of the lens is effectively shielded out by the grounded 
electrodes positioned in the inlet and outlet planes. The 
next step is to extract the axial potential from this 
configuration and use it to solve (1) with the conditions 
expected during the focusing experiment. Fig. 4 shows 
the result of the calculation. This particular beam shq)e 
was obtained with a negative potential VF = 5.5 kV. The 
rest of the required parameters were extracted from the 
experimental conditions to be presented in the next 
subsection. 

23 Experimental Data 

The first series of experiments were aimed at estimating 
the amount of spreading of the charged beam. The 
results are summarized in Fig. 5, where current density 
measurements were performed at three different axial 
positions  from  the  extractor/emitter plane.  It is 
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Fig. 4: Trajectory calculation &om tiie paraxial ray equation 

interesting to note fliat for the first two measurements (L 
= 3.5 and 7 cm) a more or less imiform charge density 
profile can be observed. For the third measurement (L = 
13 cm) the profile is also almost uniform but occtq>ies 
the whole area of the detector. From the cutoff values of 
the current and the distances involved, a semi-angle of 
about 18 ' can be calculated. 

In the second experiment, the einzel lens was installed 
in the system and the current collector was positioned at 
a distance L=13 cm. Fig 6 shows the current collected 
by the innermost circle of the detector (r < 0.5 cm) as a 
function of various negative lens potentials. We observe 
fliat a maximum in current (72 nA) is obtained when VF 

is around 5.5 kV. This value of current was introduced 
in the solution of the paraxial ray equation in subsection 
2.2. The result of the calculation indicates that a beam 
"spot" of less than 0.5 cm in radius is generated at the 
distance where the detector is (Fig. 4.) 

la all cases the emitter to extractor potential was held at 
1.9 kV. This value was determined at atmospheric 
pressure by visual inspection of a stable cone at the 
needle tip and measurement of a stable current. 

2.4 Discussion 

Experimental results have indicated that focusing is 
possible for beams of charged particles emitted firom 
colloid thrusters. Nevertheless, more work is required to 

refine the results presented here. In particular, 
controllability of the flow rate is important for both the 
determination of some spray characteristics and for 
ensuring good experimental repeatability. 

Even with such uncertainties, the measurements are well 
correlated to mathematical modeling. Future work will 
include a refinement in the measurements presented 
here, including TOF spectroscopy with the help of 
electrostatic focusing. 
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Fig. 5: Current density distributions (»q)erimental) 
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Fig. 6: Electrostatic focusing (e;q>edmaital) 

3. A Dynamic Model (}X an Emitting Cone-Jet 

The structure and performance  of the individual 
emitting cone-jets which imderlay colloid thrusters (and, 
in slightly modified form, field-emission thrusters) has 
been the object of many studies by electro-spray and ion 
emission spectroscopy scientists. The seminal work was 
done by Taylor ^^, who first identified the 49.3° cone as 
die electro-capillary equilibrium shape under idealized 
conditions.   The  equilibrium  shapes   and  internal 
pressures for more general conditions were computed 
by Pantano and Ganan Calvo ^^, who used a boundary 
element method for the (axisymmetric) electrostatic 
calculations. They imposed Taylor's angle as a tip 
boundary condition (in place of the thin jet vviiich 
actually develops), and were able to determine the 
cone's volume and existence voltage as a function of 
size and internal pressure. Gaiian Calvo ^ developed an 
analytical model for the cone-jet combination with a 
few reasonable simplifications, and obtained scaling 
laws and definite predictions for jet ^ape and diameter, 
surface field distributions and emitted current. Similar, 
more detailed analytical results were presented by 
Chemey ^ recently. Both Ganan Calvo's and Chemey's 
results confirm and explain the semi-empirical laws 
obtained by Femandez de la Mora '^^ based on extensive 
e?qperimentation with many conducting fluids. 

Our current work is aimed at extending these previous 
results by constructing a flexible numerical model of the 
cone-jet combination, vsiiich can serve as the basis for 
assessing a large number of parameters and physical 
effects. The formulation is axisymmetric, and quasi-one 
dimensional, but not necessarily steady; solutions are 
sought by time-marching, which is helpful for 
understanding the numerical issues, and also yields 
information <m the dynamics of the cone-jet structure. 
Much of the formulation was initiated by V. Khayms ^', 
who pursued a steady state solution through direct 
iteration. 

3.1 Formulation 

Fig. 7 shows a schematic of a section of the liquid. The 
volume in an element such as that shaded in flie figure, 
divided by dx, is 

Vol = - 
2nR' 

cosa(l + cosa) 

and the volume flux crossing it is 

1 + cosa 

The mass conservation law is then 

dt dx 

(3) 

(4) 

(5) 

-<^. 

Fig. 7: Modeled Geometry. The shaded volume element is a 
se<iioa of a ^erical shell perpeadicular to the liquid suiface. AH 
cpantities are assumed constant OD one such shell, and n, Et are 
assumed perpendicular to its spherical boundaries. 

Similarly, the net charge in the element (per unit axial 
length), is 

Ch = 
2nRa. 
cosa 

(6) 

vibere, if the fluid is conductive, CT, = eJS^ E„ being the 
outside normal electric field. The bulk carries no net 
charge. The net charge flux, or current, contains two 
contributions, one from surface charge convection, the 
other from bulk conduction. The fluid condiKtivity, K, 
is treated as a constant, and one obtains 

I,=2JuRa,+ ^^^'] (7) 
V 1 + cosa^ 

Hence, charge conservaticm requires 



dt       dx 
(8) 

^ere possible ion emission or electron capture at the 
surface have been ignored. The x-momentum per unit 
axial distance is 

{Mom) 
cos a 

(9) 

and, including die electrical surface traction T^ = EoE^t, 
die axial momentum balance is then 

i^^l.i^pu) = -nR'^ + 2nRs,E^E, (10) 
at        OK dx 

The final mechanical equation required is a balance of 
normal forces on a surface element: 

P +—EI = cos'a—5- 
2   "       /{ d^ 

(tana = -—-) 
dz 

(11) 

^^ere die two terms on the right are the two principal 
curvatures of die liquid surface. 

The tangential field is related to the surface potential 
through 

£, =-cosa--^ 
dx 

(12) 

The relationship between ^ and the normal field 
E^ajEo is more complex, since every charge in the 
system (on the liquid as well as on the electrodes) 
influences each local potential. We use for this a 
boundary-element method similar to that in Ref.[6]. The 
contribution S^t to the potential at point /', due to the 
diarge on a surface ring at /, with axial extent Sxj is 
written as 

where 

and 

S^i = N,iEJj 

N,=±^K(m)M-^ 
Rf cosUj 

m- 4R>Rj 
(x,-Xjr+(R,+R.f 

(13) 

(14) 

(15) 

and K(m) is the complete elliptic integral of the first 
kind, hi order to simulate a grounded electrode at x = £, 
an "image ring" with an equal and opposite charge is 
also included. This amounts to replacing ■\lmK(rn) by 
■y[mK{m)- .^m^K{mi) in (14), ■^^ilere m,. is as in (15), 

butwith x-replaced by 2L—X-. 

The full matrix  N^ is then partitioned into blocks 

representing potential on Uquid points due to charges on 
hquid elements (Nff), potential at liquid points due to 

diarges on the metal siq>ply tube (Ng,), etc. We then 
have the matrix equations 

''=N„Ej+N.EJ '« 
(I>' = N„EJ+N„E: 

(16) 

(17) 

^ere £',£' are numerical vectors collecting all 
normal fields on the hquid and on the tube, respectively. 
Inqiosing a known tube potential V, and eliminating E' 
between (16) and (17) leads to 

<l>' =N,N„-W + (N,,-N„N„-%)E„' (18) 

Mliich is the desired (global) relationship between 
normal fields and potentials on the Uquid surface. The 
numerically intensive matrix inversion 7V„"' needs to be 
done only once for a given geometry, but the matrices 
Nff,Nif,N,f have to be updated as the Uquid shape 
evolves. 

3J2 Numerical Implementation 

A fixed 1-D grid is generated, with highest resolution 
near the expected cone tip and near the tube mouth, 
where a field singularity is expected due to the sharp 
change of surface slope. For initialization of variables, 
as weU as for selection of appropriate grid spacing, the 
dimensionless results of Ref [7] have been used. Spatial 
derivatives are approximated to 2°^ order on the unevoi 
grid, and a first-order Euler step is used for tenq>oral 
updating of (FoO, {Ch) and (MOOT), using Eqs. (5), (8) 
and (10), respectively. After the iqidates, the primary 
variables (R,a,u,EJ are extracted from the updated 
quantities,/; is calculated from (11), and Eq. (18) is 
used to calculate the new potential distribution. E, dien 

follows from (12), and a new iq)dating cycle can begin. 

The time step At used for iqxlating needs to be smaller 
than both, die charge relaxation time T^^J = £QIK and 
the smallest passage time through one grid cell, 
^ite. = (^i /"lOmiD- ^°^ liquids of high ccmductivity, (K > 

1 Si/m), TR^, is less dian about 10"" s, well below Tg^^, 
and short enough that complete simulation through a 
few microseconds may be impractical. For these 
situations, a modified procedure is necessary, in which 
the cone region is assumed electrically (not 
mechanically) relaxed all the time (i.e. /^(j,/) = /(/)), 
but the jet region current is allowed to evolve 
dynamically. The level of current I(t) is then determined 
ly the value of /^ at the cone-jet transition. This has not 

yet been inq)lemented Instead, work has concentrated 



on cases with lower conductivity (^<0.01 Si/m), for 
which an extensive data base exists Refs. [23]. 

3.4 Jet Instability and Spray Dynamics 

Si/m, 2 = 7.84x10"" m'/s, F'=2000V. The time after 
simulation start is I = 5.5xl0"'s, and j!: = 1.2x10"'m 
corresponds to about 3-4 jet diameters downstream of 
the cone's neck. 

Even in the absence of charge, the jet would pinch itself 
into droplets at some downstream distance, following 
growth of the Rayleigh-Taylor instability. The presence 
of charge can only accentuate this tendency. For purely 
convected surface charges, a linearized stability analysis 
presented in Ref.[10] obtained die dispersicm relation 

ffl^ = l-x' + K 
xlo(x) 

hix) 
(19) 

^ere /is the surface tension, R^ is the local mean 

radius, x — WJ^, k being the wavenumber, /^ and /j are 
modified Bessel finctions, and 

■ PXYgf 
4^07 \m) 

(20) 

is a measure of the state of charge, \^ich is of order 
unity m electrospray jets. Negative values of CO inq>ly 
tihe existence of an exponential growth mode. Eq. (19) is 
plotted in Fig. 8. The case /^ = 0 is the classical result 
of Raylei^ and Taylor, with peak growth at x = 0.7, 
leading to an eventual radius of the pinched droplets 
Rj) = 1.89/?y„. For F^ ~ 1, somewhat smaller droplets 
are indicated ( JJp s 1.6 -1 JRj^ ), but ako faster growdi 
of the instability. Also of interest for our simulation, all 
wavelengflis are seen to be unstable, although only 
weakly so for the longer ones (small x). 
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Fig. 8: Digieisicn relaticn 

hi the jet simulation, the axial grid spacing Ax is of the 
order of the jet radius at the neck, although it is later 
allowed to grow much larger. It is tfierefore possible to 
capture the growth of the jet instability and the jet 
pinching near the neck. Fig. 9 shows an example, 
corresponding to a Formamide cone-jet with ;fir=0.01 

I I 1 I 1  
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Fig. 9: Numerical precEctioo ofjetpindiing 

Using 7= 0.05N/m, p = 113(Mcg/m^ and (from Fig. 8) a 
maximum normalized (-®^) of 0.5, the exponential 
time constant for growth is predicted to be 7x W)*s, 
and the most unstable wavelength to be 3^m. Fig. 9 
^ows pinching in about 8 time constants (a reasonable 
result), and rou^ly confirms the 3pjn wavelength. 

A detailed computation of the jet breaki^ process is 
however, beyond the scope of this quasi-one-D model. 
In order to continue capturing the electrostatic effect of 
die jet cm the cone, we need to replace the jet equations 
by a set of "spray" equations beyond the breakup point 
For this, a time-dependent variation of the Paraxial Ray 
method will be used, although this is yet to be 
inqjlemented. The spray flux is assumed uniform iq> its 
edge (consistent with our experimental results else^iiere 
in this paper), and the e?q)ansion yields a radial field at 
r=Rdi 

£ = *?e+ M 

2 dx^    {qlm)27tRe„ 
(21) 

where M is the mass contained in unit length of the 
spray (and it obeys a conservation equation 
^^OW^Q)^ and q/m is the locked-in charge-to- 

mass ratio, carried over from the jet. The velocity 
components u(axial) and v(radial) obey 

du du    q ^ 

dt dx m 

dv dv q „ 

ot dx tn 

and die spray radius then evolves according to 

dR dR 

dt dx 

(22) 

(23) 

(24) 
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Fig. 10: Preliminary numerical results. Dotted line, r = 0. 
Continuous line, f = 1.3 us 

With some uncertainty, arising from the details of the 
breaki^ process, fliese equations will allow conq>iitati(Hi 
of the spread of non-neutralized electrospray plumes, 
and will find use in the design and analysis of TOF 
ejqjeriments, as planned in our laboratory. 

3,5 Some Preliminary Results 

Fig. 10 shows a sample of results pertaining to a cone- 
jet of Formamide, with a conductivity X=0.001Si/m, at 
a flow rate g=7.84xl0"" mVs, wAich is a few times the 
minimum stable flow for that conductivity ''''. This 
conductivity level is also what can be obtained in 
concentrated Glycerol solutions, as in the first 
generation of colloid thrusters '''. The delivery tube, at 
F=2000Volt, has a radius of 10 ^m with a sharp, 
diamfered lip, and is assumed placed 1mm away from a 
grounded collector plane. Shown are profiles of liquid 

radius R, velocity a, local ciirrent !„ pressure p, normal 
electric field E„ and potential <p. For each of fliese, we 
show the initial profiles assumed, and those confuted 
after about 1.3xlO~*s. This time is about 1/8 what it 
would take to "fill" a Taylor wme of the assimied size, 
at the assumed flow rate, so that convergence is still 
incon^lete. The time step used was 2xl0""5, about 
1/500 of the fluid's relaxation time; increasing this to 
2 X 10~"'s resulted in strong numerical oscillations near 
the tube exit 

Several observation can be made: Firstly, at 1.3 jls, the 
local current /, has relaxed to a near-constant value of 
8x10"^ A, several times higher than the expected 
steady-state value, based on the empirical data of [4], 
which was used in the initialization (and is visible in the 
parts of the jet not yet affected). This level exhibits a 
slow decay rate over time, as the extent of the relaxed 
zone spreads forward. It should be noted that the 



flattening of the /^ profile was already evident at times 
of the order of lxlO"*s, i.e., the relaxation time at the 
diosen conductivity. 

The peak normal field is about 0.2-0.3 V/nm, and occurs 
near the fixmt of the spreading relaxation zone. Because 
of its high value, the liquid pressure is seen to change 
fi-om its initial distribution (near zero in the cone, 
positive in the jet) to between 1 and 2 atm. negative. 
This might inq)ly liquid breakiq), although metastability 
may hold it togetiier during this transient. The potential 
is nearly constant in the cone, falling by some 200 Volt 
near the tip, and more rapidly beyond it The cone itself 
has been elongating, from some 9 \ua initially 
(following the assumed Taylor angle), to some 20 pjn at 
die 1.3 (IS time point 

We note finally that the jet has not yet ^own signs of 
pindiing in this simulation, \^iiereas for ^=0.01 Si/m, 
pinching was ^own (Fig. 9) at about 0.5 fis. This is to 
be expected from the ]^ dependence of the instability 
gFOwtii time (Eq. 19), and the variation of J? at minimum 
flowasK-^(Ref.4). 

4. Conclnsroiis 

The ability to reverse the electrostatic spreading of a 
non-neutralized colloidal jet has been experimentally 
demonstrated, which opens the way for improved 
diagnostic instrumentation. A new method for 
numerical simulation of the cone-jet dynamics has been 
developed, and preliminary results are encouraging. 
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