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Abstract- The Poincaré plot is an emerging Heart Rate Vari-
ability (HRV) analysis technique, the geometry of which has
been shown to distinguish between healthy and unhealthy sub-
jects in clinical settings.  The Poincaré plot is able to display
nonlinear aspects of the interval sequence and is therefore of
interest in characterizing the nonlinear aspects of HRV.  The
problem is, how do we quantitatively characterize the geometry
of the plot to capture useful descriptors that are independent of
existing HRV measures?  In this paper, we investigate a popular
existing category of techniques and show that they measure lin-
ear aspects of the intervals which existing HRV indices already
specify. The fact that these methods appear insensitive to the
nonlinear characteristics of the intervals is an important finding
because the Poincaré plot is primarily a nonlinear technique.
Keywords: HRV, Poincaré plot, nonlinear analysis

I. INTRODUCTION

The field of heart rate variability (HRV) studies the fluc-
tuations in the intervals between heartbeats, known as RR
intervals.  The Poincaré plot, a technique taken from nonlin-
ear dynamics, portrays the nature of these fluctuations
graphically.  It is a scatter-plot of each RR interval plotted
against the next interval.  Poincaré plot analysis is an emerg-
ing quantitative-visual technique whereby the shape of the
plot is categorized into functional classes that indicate the
degree of heart failure in a subject [1, 2].  The plot provides
summary information as well as detailed beat-to-beat infor-
mation on the behavior of the heart [3].

Support is increasing for nonlinear analysis techniques and
quantitative descriptors as it has become evident that the car-
diac systems are nonlinear in their function [4].  The Poincaré
plot is becoming a popular technique due to its simple visual
interpretation and its proven clinical ability as a predictor of
disease and cardiac dysfunction [5].  The problem regarding
Poincaré plot use has been the lack of obvious quantitative
measures that characterize the salient features of the plot.
Researchers have put forward a number of techniques that
attempt to quantitatively summarize the plot’s geometric ap-
pearance.   The efforts can be summarized into 3 categories:
geometrical descriptors, scanning parameters and image dis-
tribution parameters [6].  Of these, the geometrical descrip-
tors are the most popular in the clinical and physiological
HRV literature.

In this study, we consider the geometrical Poincaré plot
descriptors.  We provide expressions that connect each de-
scriptor to existing linear measures of HRV.  This accom-
plishes two things.  Firstly, it provides insight into Poincaré
plot geometry in terms of the well-understood existing indi-
ces of HRV.  Secondly, it shows that these measures are not
independent to the existing standard linear statistics.  There-
fore, the intrinsic ability of the Poincaré plot to identify non-

linear beat-to-beat structure is not being exploited by these
techniques.

II. THE LINEAR HRV INDICES

This section describes the standard linear indices of HRV.
In this paper, the time-course of the RR intervals is denoted
by nRR , with 1..n N= .  We assume wide-sense stationarity

so the following basic properties hold: [ ] [ ]n n mE RR E RR +=
and 2 2[ ] [ ]n n mE RR E RR += .

A. Standard deviation of the RR intervals

The standard deviation of the RR intervals, denoted by
SDRR , is often employed as a measure of overall HRV.  It is
defined as the square root of the variance of the RR intervals,

22
nSDRR E RR RR = −  (1)

where the mean RR interval is denoted by [ ]nRR E RR= .

B. Standard deviation of the successive differences

The standard deviation of the successive differences of the
RR intervals, denoted by SDSD , is an important measure of
short-term HRV.  It is defined as the square root of the vari-
ance of the sequence 1n n nRR RR RR +∆ = −  (the delta-RR in-

tervals),

22
n nSDSD E RR RR = ∆ − ∆  . (2)

Note that 1[ ] [ ] 0n n nRR E RR E RR +∆ = − =  for stationary

intervals.  This means that SDSD is equivalent to the root-
mean-square of the successive differences, denoted RMSSD .

C. Autocorrelation and autocovariance

The autocorrelation function is an important measure of
HRV simply because its Fourier transform is the power
spectrum of intervals.  The autocorrelation function of the RR
intervals is defined as,

[ ]( )RR n n mm E RR RRγ += . (3)

Spectral analysis is normally performed on the mean-
removed RR intervals, and therefore the mean-removed auto-
correlation function, called the autocovariance function, is
often preferred:

( ) [( )( )]RR n n mm E RR RR RR RRφ += − − . (4)
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The autocovariance function is related to the autocorrela-
tion function for stationary intervals by the relationship

2
( ) ( )RR RRm m RRφ γ= − .  The variance of the RR intervals is

2 (0)RRSDRR φ= , and the variance of the delta-RR intervals

is ( )2 2 (0) (1)RR RRSDSD φ φ= − .  Accordingly, these indices

are linear measures of HRV.

III. THE GEOMETRICAL POINCARÉ PLOT DESCRIPTORS

The RR interval Poincaré plot typically appears as an
elongated cloud of points oriented along the line-of-identity
(see Fig. 1).  The dispersion of points perpendicular to the
line-of-identity reflects the level of short-term variability [5].
The dispersion of points along the line-of-identity is thought
to indicate the level of long-term variability.  The geometric
descriptors use statistical moments, usually directed along the
line of identity, to measure the shape of the plot.  In this sec-
tion, we relate several geometrical techniques that are popu-
lar in the literature to linear measures of HRV.

A. Ellipse fitting technique

By far the most popular technique used to characterize the
shape of the plot numerically is the technique of fitting an
ellipse to the plot [6-9], as Fig. 1 details.  A set of axes ori-
ented with the line-of-identity is defined [9].  The axes of the
Poincaré plot are related to the new set of axes by a rotation
of / 4θ π=  radians:

1

12

cos sin

sin cos
n

n

RRx

RRx

θ θ
θ θ +

−     =     
    

(5)

In the reference system of the new axes, the dispersion of
the points around the 1x  axis is measured by the standard

deviation denoted by 1SD  [9].  This quantity measures the
width of the Poincaré cloud, and therefore indicates the level
of short-term HRV [2, 3, 5, 9].  The length of the cloud along
the line-of-identity measures the long-term HRV and is
measured by 2SD  which is the standard deviation around the

2x  axis [2, 3, 5, 9].  These measures are related to the stan-

dard HRV measures in the following manner:

( ) ( )
( )

2 1 1
1 12 2

21 1
12 2

1 n n

n n

SD Var x Var RR RR

Var RR RR SDSD

+

+

= = −

= − =
(6)

Thus, the 1SD  measure of Poincaré width is equivalent to
the standard deviation of the successive intervals, except that

it is scaled by 1/ 2 .  This means that we can relate 1SD  to
the autocovariance function:

21 (0) (1)RR RRSD φ φ= − . (7)

It may also be shown that the length of the Poincaré cloud
is related to the autocovariance function:
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Fig. 1: An example Poincaré plot, also detailing the ellipse
fitting process and the histograms derived from the plot.

22 (0) (1)RR RRSD φ φ= + . (8)

By adding equations (7) and (8) together, we obtain the re-
sult

2 2 21 2 2 (0) 2RRSD SD SDRRφ+ = = . (9)

Finally,

2 2 21
22 2SD SDRR SDSD= − . (10)

Equation (10) allows us to interpret 2SD  in terms of ex-
isting indices of HRV and can also be used to argue that

2SD  reflects the long-term HRV, however, we delay the
discussion until later.  Clearly, fitting an ellipse to the Poin-
caré plot does not generate indices that are independent of the
standard time domain HRV indices.  In fact, the width of the
Poincaré plot is a linear scaling of the most common statistic
used to measure short-term HRV, the SDSD  index.  In other
words, the width of the Poincaré plot should correlate ex-
tremely highly with other measures of short-term HRV, as
indeed it does [3].

B. Histogram techniques

Another method to quantify the shape of the Poincaré plot
is to measure the statistical properties of various projections
of the plot via histogram distributions [2, 3, 5].  Fig. 1 shows
the three main projections used.  They are:

RR interval histogram.  The histogram of the Poincaré plot
points projected onto the x-axis (or the y-axis).  This histo-
gram is usually quantified by the mean and standard devia-
tion, which correspond directly to the standard linear meas-

ures RR  and SDRR .  This view provides summary infor-
mation on the overall HRV characteristics.
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‘Width’, or delta-RR interval histogram.   The Poincaré
plot points are projected along the direction of the line-of-
identity. It is not exactly equivalent to the delta-RR interval
histogram as the abscissa has been scaled by the factor

1/ 2 .  Mathematically, it is the distribution of 1x .  There-

fore, the standard deviation of the width histogram is equal to
1SD .  This histogram provides summary information on the

short-term characteristics.
‘Length’ histogram.  The Poincaré plot points are projected

onto the line-of-identity.  The histogram is described mathe-
matically by the distribution of 2x  and the standard deviation

is therefore equivalent to 2SD .  Consequently, the length
histogram portrays the long-term characteristics of HRV.
The dispersion properties of these histograms are character-
ized by SDRR , 1SD  and 2SD .  Hence, they are linked to
the standard linear time-domain measures of HRV

C. Correlation coefficient

Some researchers have employed the correlation coeffi-
cient of the Poincaré plot to characterize its shape [10].  This
measure is:

1

2 2
1

( )( )

( ) ( )

n n

RR

n n

E RR RR RR RR
r

E RR RR E RR RR

+

+

 − − =
   − −   

. (11)

For the Poincaré plot, the correlation coefficient can be ex-
pressed in terms of the autocovariance function:

(1) / (0)RR RR RRr φ φ= . (12)

Therefore, the correlation coefficient is a linear measure,
even though it is based on the Poincaré plot which displays
nonlinear features.  None of the geometric descriptors that
have been analyzed in this section are sensitive to the nonlin-
ear features the Poincaré plot displays.

D.  Short- and long-term variability

The relationships identified so far give clear mathematical
insight into what the length and width of the Poincaré plot
depict.  The length and width of the Poincaré plot have been
suggested as indicative of the levels of long- and short-term
variability.  It is reasonably clear that the standard deviation
of the delta-RR intervals, as measured by SDSD , RMSSD
or 1SD , is a measure of short-term HRV.  In fact, this state-
ment can be made even more precise: these indices are meas-
ures of the variability over a single beat.  The standard devia-
tion of the RR intervals, as measured by SDRR , is often em-
ployed as a measure of long-term HRV.  However, there is a
problem with this interpretation because this quantity meas-
ures all the variability, long-term and short-term.

For example, take a set of RR intervals that has variability
only over a single beat.  Such a sequence can be described as
alternating between two values, e.g., a, b, a, b, etc.  It is clear
that the sequence contains variability only over a single beat:
every second beat is equivalent.  If SDRR  is taken to be an
index of long-term variability, a contradiction arises because

SDRR  is not zero.  We propose that Poincaré plot length is a
more consistent and appealing measure of long-term vari-
ability as the length of the Poincaré plot is zero for an alter-
nating sequence indicating zero long-term variability, as Fig.
2a shows.

With these ideas in hindsight, we can now explain the sig-
nificance of equations (9) and (10).  Equation  (9) states that
the sum of the short-term and the long-term variability is the
total variability.  Equation (10) affirms that the long-term
variability is the total variability minus the contribution due
to short-term variability.

IV. GENERALIZATIONS OF THE POINCARÉ PLOT

 Two different types of scatter-plots encountered in the lit-
erature can be considered simple generalizations of the Poin-
caré plot.

A. Lagged Poincaré plots

Instead of plotting nRR  against 1nRR + , some researchers

have investigated plotting nRR  against n mRR +  where m  is

allowed to vary from 1 to some small positive value.  In gen-
eral, the plot is still clustered around the line-of-identity.
However, the length and width of the plot are altered as the
lag is increased.  It is possible to show the width and length
measures 1SD  and 2SD  can be generalized for lag m :

2

2

1( ) (0) ( )

2( ) (0) ( )

RR RR

RR RR

SD m m

SD m m

φ φ
φ φ

= −

= +
(13)

The length and width of the lag- m  Poincaré plot is related
to the covariance function at lag m .  Note also that:

( )2 21
2( ) 2( ) 1( )RR m SD m SD mφ = − (14)

This result is very interesting, as it states that the set of
lagged Poincaré plot length and widths are a complete de-
scription of the autocovariance function, and hence, also the
power spectrum of the intervals.  Equation (14) also provides
us with a geometrical relationship between the autocovari-
ance function and the Poincaré plot’s shape.  If ( ) 0RR mφ =
then 1 2SD SD=  and the length and width of the plot are
equal.  If ( ) 0RR mφ >  then 1 2SD SD<  and the plot is longer

than it is wide, i.e. dominated by short-term activity and vice
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Fig. 2: a) Poincaré plot of alternating sequence.  b) Diagram
of a third-order Poincaré plot.
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versa for long-term variability.  This is similar to the concept
of a scatter plot’s correlation coefficient sign.  In fact the
series of correlation coefficients of the lagged Poincaré plots
are simply a scaled version of the autocovariance function:

( ) ( ) / (0)RR RR RRr m mφ φ= (15)

B. Higher-order Poincaré plots

The standard Poincaré plot is a scatter-plot of the pairs

1( , )n nRR RR + , and is considered to be of first order.  The sec-

ond order Poincaré plot is a three-dimensional scatter-plot of
the triples 1 2( , , )n n nRR RR RR+ + .  There are three orthogonal

views of the three-dimensional shape of this plot, each being
a view along one of the axis.  These views result in two-
dimensional projections of the three-dimensional cloud onto
each of the coordinate planes 1( , )n nRR RR + , 1 2( , )n nRR RR+ +

and 2( , )n nRR RR + .  The first two views are equivalent to the

standard Poincaré plot and the third is the lag-2 Poincaré plot
as Fig. 2b shows.   This idea can be extended into higher di-
mensions, with the projections of the plot onto coordinate
planes being lagged Poincaré plots.  So, an order m  Poincaré
plot is geometrically described by the set of lagged Poincaré
plots up to and including lag m .  The results for lagged
Poincaré plots carry over to higher-order Poincaré plots.

V. CONCLUSION

We have shown that the so-called geometric techniques
that characterize the geometry of a Poincaré plot are related
to linear indices of HRV.  In addition, we provide arguments
supporting the claim that the width of the Poincaré plot corre-
sponds to the level of short-term HRV, while the length of
the plot corresponds to the level of long-term variability.

The methods of quantifying the Poincaré plot that we have
investigated herein are not capable of depicting the additional
beat-to-beat variability information shown on a Poincaré plot.
However, the additional information is likely to be of consid-
erable value.  The fact that that the length and width of a
Poincaré plot corresponds so conveniently to standard time
domain statistics is a very nice feature.  However, simply
treating the Poincaré plot as a tool for graphically represent-
ing these statistics is to ignore some of its potential capabili-
ties.  Therefore, we recommend nongeometric techniques,
such as scanning parameters [7, 11] and image distribution
measures [12], be investigated for a full appraisal of the
clinical capabilities of the Poincaré plot.
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