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Abstract— Speckle noise removal by means of digital image
processors could improve the diagnostic potential of medical
ultrasound. This paper addresses the speckle suppression
issue within the framework of wavelet analysis. As a first
step of our approach, the logarithm of the original image
is decomposed into several scales through a multiresolution
analysis employing the 2-D wavelet transform. Then, we
design a mazimum a posteriori (MIAP) estimator, which re-
lies on a recently introduced statistical representation for
the wavelet coefficients of ultrasound images [1]. We use an
alpha-stable model to develop a blind noise-removal proces-
sor that performs a non-linear operation on the data. Fi-
nally, we compare our technique to current state-of-the-art
denoising methods applied on actual ultrasound images and
we find it more effective, both in terms of speckle reduction
and signal detail preservation.

Keywords - speckle noise, wavelet transform, alpha-stable dis-
tributions, MAP estimation

I. INTRODUCTION

Nowadays, clinicians are allowed to noninvasively eval-
uate physiological processes within the human body by
means of various medical imaging modalities, such as com-
puted tomography, positron emission tomography, func-
tional magnetic resonance imaging, and ultrasonography.
Among them, ultrasound imaging is definitely the one that
offers the best price-to-performance ratio receiving thus an
added attention. However, one major issue when using
this imaging modality is the inherent presence of speckle
noise. Its occurrence is often undesirable, since it affects
the tasks of human interpretation and diagnosis. On the
other hand, its texture carries important information about
the tissue being imaged. Speckle filtering is thus a criti-
cal pre-processing step in medical ultrasound imagery, pro-
vided that the features of interest for diagnosis are not lost.

Current speckle reduction methods are based on tempo-
ral averaging [2], [3], median filtering [4], and homomor-
phic Wiener filtering [5]. However, it is recognized that
standard noise filtering methods often result in blurred im-
age features. Indeed, single-scale representations of signals,
either in time or in frequency, are often inadequate when
attempting to separate signals from noisy data.

Recently, the wavelet transform has been proposed as
a useful processing tool for signal recovery [6], [7], [8],
[9]. Current state-of-the-art wavelet-based speckle reduc-
tion and image enhancement techniques employ a combi-
nation of wavelet shrinkage by soft and hard thresholding
together with a generalized adaptive gain (GAG) for fea-
ture emphasis [8]. Also, in [9] the authors describe a com-
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bination of adaptive weighted median filtering [4] and soft
thresholding. These methods try to address the inability of
the original soft thresholding technique to balance between
speckle suppression and signal detail preservation.

In a recent work [1], we have shown that a successful
ultrasound imaging algorithm can achieve both noise re-
duction and feature preservation if it takes into considera-
tion the true statistics of the signal and noise components.
Specifically, we have shown that the subband decomposi-
tions of ultrasound images have significantly non-Gaussian
statistics that are best described by families of heavy-tailed
distributions such as the alpha-stable and consequently we
designed a Bayesian estimator that exploits these statistics.

The approach presented here is similar to the method re-
ported in [1]. The differences are that: (i) we select a differ-
ent cost function for the design of the Bayesian processor,
which gives raise to slightly different shapes of the nonlin-
earities applied to the noisy wavelet coefficients, and (ii) we
propose a new method for estimating the parameters of the
alpha-stable distribution from noisy observations, which is
based on Koutrouvelis’ [10] regression method.

II. PRELIMINARIES

Parametric Bayesian processing presupposes proper
modeling for the prior probability density function (PDF)
of the signal and noise. The statistical properties of speckle
noise were studied by Goodman [2]. He has shown that, if
the number of scatterers per resolution cell is large, a fully
developed speckle pattern can be modeled as the magni-
tude of a complex Gaussian field with independent and
identically distributed (i.i.d.) real and imaginary compo-
nents. In general, speckle noise has a spatial correlation
length on each axis which is roughly the same as the reso-
lution cell size [11]. In order to generate spatially correlated
speckle noise for use in simulations, one can lowpass filter
a complex Gaussian random field and take the magnitude
of the filtered output [12], [13].

Arsenault and April [14] have shown that when an image
intensity is logarithmically transformed, the speckle noise
is approximately Gaussian additive noise, and it tends to
a normal probability much faster than the intensity distri-
bution. Thus, by taking the logarithm of a speckle image
we get:

log I(z,y) = log S(x,y) +logn(z,y), (x,y) €Z* (1)
where by I(z,y) we denoted a noisy observation (i.e. the
recorded ultrasound image) of the two-dimensional func-
tion S(z,y) (i.e. the noise-free image that has to be recov-
ered) and by n(x,y) the corrupting multiplicative speckle
noise.
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Fig. 1. Examples of APD plots of wavelet subband coefficients cor-
responding to four different ultrasound images. In each example
the empirical APD (dotted line) is fitted with a Sa.S model (solid
line) and the “generalized” Laplacian function (dashed line).

The wavelet transform is a linear operation. Con-
sequently, after applying the dyadic wavelet transform
(DWT) to (1), we get sets of noisy wavelet coefficients writ-
ten as the sum of the transformations of the signal and of
the noise:

dj =855+ & ks (2)
where k = 0,...,2777 — 1 and —1 < j < —J refer to the
decomposition level or scale and ¢ = 1, 2, 3 refers to the
three spatial orientations (see e.g. [15]).

The signal components of the wavelet decomposition
in various scales are modeled as symmetric alpha-stable
(SaS) processes. The Sa.S distribution is best defined by
its characteristic function:

p(w) = exp(jéw — y|w|), (3)
where « is the characteristic exponent, taking values 0 <
a <2, (—00 <4 < o0) is the location parameter, and ~y
(v > 0) is the dispersion of the distribution.

The SaS model is suitable for describing signals that
have highly non-Gaussian statistics and its parameters can
be estimated from noisy observations. For an experimental
proof of the appropriateness of the use of SaS models in
the context of ultrasound images we refer the reader to [1].
For the purpose of this paper we only show in Fig. 1 sev-
eral examples of amplitude probability density (APD) plots
corresponding to subband representations of different ul-
trasound images. Each data set is modeled using both
the SaS family and the “generalized” Laplacian density
function [7], [15]. The plots prove that the class of SaS
distributions is superior because it provides a better fit to
both the mode and the tails of the empirical density of the
actual data.

III. DESIGN OF A MAP PROCESSOR FOR SPECKLE
MITIGATION

Motivated by the above considerations, we model the
signal component of the wavelet coefficients using a two-
parameter SaS distribution!, while we use a zero-mean
Gaussian model for the noise component. Also, we consider
the signal and noise components to be independent.

In a Bayesian framework, referring to (2), d; x, sk, and
&, are considered as samples of the random variables d,
s, and &, respectively. Our goal is to find the Bayes risk
estimator § that minimizes the conditional risk, which is
the loss averaged over the conditional distribution of s,
given the noisy observation, d:

§(d) = argmin / Lis,3(d) Pya(s [y ds — (4)

Selecting the uniform cost function:
. 0, forl|s—3§| < e
Lls,s(d)] = { 1, othirwise| (5)
the MAP estimator can be easily derived as being:
$(d) = argmax Py|4(s |d) (6)
It is important to underline atéthis point that under the loss
function in (5), expression (4) is well defined for all Sa.S
random variables (with characteristic exponent « taking
values in the whole range 0 < a < 2).
Bayes’ theorem gives the a posteriori PDF of s based on
the measured data:
Pys(d]s) Ps(s)

P)s|cl(S |d) - Pd(d) ) (7)
where Pg(s) is the prior PDF of the signal component of
the measurements and Py, s(d|s) is the likelihood function.
Substituting (7) in (6), we get:

5(d) = arg max Pys(d]s) Ps(s) = arg max Pe(d — s)Ps(s)
= argmax Pe(€) Py (s) (8)

Fig. 2 depicts the numerically computed MAP input-
output curves for five different values of the signal char-
acteristic exponent, «, namely, @« = 2 (Gaussian data),
a = 1.95 (slightly non-Gaussian data), « = 1.5, a = 1,
and a = 0.5 (considerably heavy-tailed data). Apart from
the case a = 2, all curves correspond to a nonlinear “cor-
ing” operation, i.e., large-amplitude observations are es-
sentially preserved while small-amplitude values are sup-
pressed. This is expected since small measurement values
are assumed to come from signal values close to zero. On
inspecting Fig. 2 it can be observed that for a given ratio
v/, the amount of shrinkage decreases as « decreases. The
intuitive explanation for this behavior is that the smaller
the value of «, the heavier the tails of the signal PDF and
the greater the probability that the measured value is due
to the signal.

In order to be able to construct the MAP processor
in (8), first one should estimate the parameters of the prior
distributions of the signal and noise components of the
measurements. Then, the parameters are used to “build”
the two prior PDFs P¢(€) and Ps(s) and the nonlinear (in
general) input-output relationship §(d). To achieve this, we

Due to the properties of the DWT, the location parameter is in
this case § = 0.
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Fig. 2. MAP processor input-output curves for alpha-stable signal
(0.5 < o < 2) and Gaussian noise prior distributions. The dash-
dotted line indicates the identity function.

observe that the PDF of the measured coefficients (d) is the
convolution between the PDFs of the signal (s) and noise
components (£). Consequently, the associated characteris-
tic function of the measurements is given by the product
of the characteristic functions of the signal and noise:

Da(w) = oxp (—slw|™) -exp (- |wl?)  (9)
At this point, instead of directly fitting the Fourier trans-
form of the empirical PDF of the measured coefficients with
the function ®4(w) as we did in [1], we observe that (9) im-
plies:
log[—(log | ®4(w)|* + 0?w?)] = log(27s) + as log|w| (10)
First, we estimate the level of noise o as in [6], then
we find the parameters a; and - by regressing y =
log[—(log |®4(w)|? + 0?w?)] on w = log |w| in the model
Y = b+ awg + € (11)
where p = log(27), €, denotes an error term, and (wg, k =
1,..., K) is an appropriate set of real numbers. We should
note here that Koutrouvelis [10] used a similar approach to
estimate the parameters of alpha-stable distributions. He
proved that its regression method gives very good results
in terms of consistency, bias, and efficiency.

IV. RESULTS

In this section, we show simulation results obtained by
processing one ultrasound image, randomly chosen from
our database. The original image is shown in Fig. 3(a) and
it represents an ultrasound scan of a fetal chest.

In order to obtain speckle images, we degraded the orig-
inal test image by multiplying it with unit-mean random
fields, as explained in Section II. We controlled the cor-
relation length of the speckle by appropriately setting the
size of the kernel used to introduce correlation to the un-
derlying Gaussian noise. In practice uncorrelatedness of
the noise could be achieved by decimating the image to
the theoretical resolution limit of the imaging device [13].
Thus, a short-term correlation obtained with a kernel of

size three was sufficient to model reality. We considered
three different levels of simulated speckle noise.

We compared the results of our approach with the clas-
sical median filter, and wavelet shrinkage denoising using
soft thresholding. The soft thresholding scheme was devel-
oped using Daubechies’ Symmlet 8 mother wavelet as sug-
gested in [8], while for our algorithm we used the Symmlet 4
wavelet. The maximum number of wavelet decompositions
we used was five. In order to minimize the effect of pseudo-
Gibbs phenomena, we have embedded both wavelet-based
methods into the cycle spinning algorithm [16].

In order to quantify the achieved performance improve-
ment, two measures were computed based on the original
and the denoised data. For quantitative evaluation, we
used the signal-to-mean-square-error (S/MSE) ratio, de-
fined as:

K K
S/MSE = 10log,o(>_S7/> (Si—=8:)%)  (12)
i=1 i=1
This measure corresponds to the classical SNR in the case
of additive noise. Remember that in ultrasound imaging,
we are interested in suppressing speckle noise while at the
same time preserving the edges of the original image that
often constitute features of interest for diagnosis. For this
reason, we also considered a qualitative measure for edge
preservation [9]:
. I'(AS — AS,AS — AS)
VJI(AS — A5, AS — AS) - T(AS - A5, A5 — AS)
(13)
where AS and AS are the high-pass filtered versions of S
and S respectively, obtained with a 3 x 3-pixel standard
approximation of the Laplacian operator, and

K
[(S1,8) =Y 51, - Sa,.
=1

The correlation measure, 3, should be close to unity for an
optimal effect of edge preservation. The results are summa-
rized in Tables I and II respectively. It can be seen that our
proposed Bayesian approach exhibits the best performance
according to both metrics.

(14)

TABLE 1
QUANTITATIVE IMAGE ENHANCEMENT MEASURES OBTAINED USING
THREE DENOISING METHODS. THE TABULATED S/MSE METRIC IS
GIVEN IN dB.

Noisy image 5.63 9.67 | 16.68

Median Filtering 11.07 | 14.24 | 17.97

Soft Thresholding 10.95 | 14.70 | 18.38

Bayesian Denoising 11.66 | 15.48 | 19.93
TABLE II

QUALITATIVE IMAGE ENHANCEMENT MEASURES OBTAINED USING
THREE DENOISING METHODS. VALUES OF ﬂ CLOSE TO UNITY DENOTE
OPTIMAL EDGE PRESERVATION PERFORMANCE.

Noisy image 0.2577 | 0.3930 | 0.6933
Median Filtering 0.1989 | 0.4230 | 0.5310
Soft Thresholding 0.2806 | 0.4985 | 0.7391
Bayesian Denoising 0.3814 | 0.5203 | 0.7957
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Results of various speckle suppressing methods. (a) Orig-

Fig. 3.
inal image. (b) Image degraded with simulated speckle noise
(S/MSE = 9.67dB). (c) Median filtering. (d) Translation-
invariant soft thresholding. (e) Bayesian denoising.

In Fig. 3 we show for visual comparison a representative
result from the processing of our test image. Although it
achieves a good speckle suppression performance, the me-
dian filter looses many of the signal details and the resulting
image is blurred (Fig. 3(c)). On the other hand, the image
processed by soft thresholding is oversmoothed (Fig. 3(d)).
It seems that the Bayesian processor performs like a feature
detector, retaining the features that are clearly distinguish-
able in the speckled data but cutting out anything which
is assumed to be constituted by noise (Fig. 3(d)).

V. DISCUSSION

We introduced a novel technique for speckle noise re-
moval using nonlinear processing of wavelet coeflicients.
The proposed processor is based on solid statistical theory,
and it does not depend on the use of any ad hoc parameter.

Our algorithm was tested and found to be more effective
than thresholding methods, which do not allow for an exact

matching of the signal and noise distributions at differ-
ent scales and orientations. The method proposed in Sec-
tion III for choosing the “coring” nonlinearity could be thus
considered as a principled way of shrinking noisy data, rely-
ing on the true statistics of the signal and noise wavelet co-
efficient. For example, the curve corresponding to o = 0.5
in Fig. 2 mimics quite accurately the flavor of a hard thresh-
olding operator.

Finally, we note that our algorithm could be easily
adapted for the purpose of denoising other types of biomed-
ical images where the noise can be (eventually after an
appropriate transformation) modeled as additive Gaussian
and signal-independent.
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