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Abstract— The encoding of information about the outside
world in the temporal activity of sensory neurons is an extremely
complex process that has eluded the understanding of the scien-
tific community for decades. The reconstruction of sensory stim-
uli from observed neuronal activity provides a basis within which
we might ascertain the nature of the sensory information encoded
by the cells. We present a decoding strategy for predicting the
sensory stimulus from the neuronal response that is based on the
mechanisms of encoding. For a class of encoding mechanisms
characterized by a linear function followed by a memoryless non-
linearity, referred to as Wiener systems, the Bayesian estimator
is derived from the transformational properties of the nonlinear-
ity. The result is a reconstruction paradigm in which the ability
to predict sensory stimuli from the neuronal response depends
heavily upon how well the encoding process has been character-
ized, and thus provides a measure of our understanding of the
underlying physiological process.
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I. I NTRODUCTION

The reconstruction of sensory inputs from recorded
neural activity has proved to be an invaluable tool in
understanding how the information about the outside
world is encoded in the sensory pathway. We and oth-
ers have shown previously that a surprising amount of
detail can be reconstructed from ensemble neural activ-
ity in sensory pathways using a relatively simple linear
reconstruction technique [1], [2], [3]. The accepted ap-
proach involves the correlation of the neural response
with the sensory stimulus in order to determine the opti-
mal “reverse-filter” that predicts the sensory input from
the neuronal activity.

Although this approach has been useful in evaluating
what and how much information is being encoded in the
neural activity, it does not directly utilize the knowledge
of the underlying encoding mechanisms and therefore
provides little or no insight in this regard. In fact, the
dominant belief is that the decoding mechanism can re-
main linear even if the encoding process is highly non-
linear in nature, although there has been no rigorous
support for this claim. Recent work in place cell encod-
ing in the hippocampus has begun to shed some light on
the utility of the encoding/decoding approach [4], [5],
but this has yet to become the mainstream perspective.

Due to the inherent nonlinearity of encoding contin-

uous sensory information with a discrete neuronal pro-
cess, no neural system is purely linear in its form. Obvi-
ously general, non-parametric nonlinear models could
be used to represent the encoding process. However,
many early sensory systems are well characterized as
a linear system followed by a static, memoryless non-
linearity. This type of cascade system has historically
been referred to as a Wiener system or LN system, and
is structurally much more simple than the correspond-
ing general Wiener series expansion that would be nec-
essary to characterize the same dynamics. The result
is that the output is representative of the neuronal firing
rate, rather than the discrete events that are observed ex-
perimentally. A common perspective is that the output
of the Wiener system is the rate of an inhomogeneous
Poisson process that results in the stochasticity of the
observed event times. Given such an encoding mech-
anism, the question then remains as to how we might
decode the sensory input from the observed neuronal
activity, and what limitations might the encoding pro-
cess place on the prediction.

II. T HE WIENER SYSTEM

The Wiener system is a class of nonlinear systems
in which a linear dynamical system is followed by a
static, memoryless nonlinearity, as shown in Figure 1.
The Wiener system has been widely utilized to describe

Fig. 1. Wiener System
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the relationship between the stimulus and the firing rate
of a neuron [6], [7], [8]. In contrast to the complex
nature of a higher order Wiener kernel representation,
the Wiener system provides a relatively simple means
for describing the inherent nonlinearity in neural en-
coding. A simple half-wave rectification achieves the
non-negative characteristics of the firing rate, and has
also been widely used as the static nonlinearity in the
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encoding process.

We can express the dynamics of the system shown
in Figure 1 asr = f (g� s+e), wherer 2 RN�1 is the
firing rate of the neuron overN time steps,s2 RN�1

is the corresponding sensory stimulus,g2 RL�1 is the
first order Wiener kernel,e2 R

N�1 is a white Gaus-
sian noise process,f (�) is the static nonlinearity, and�
represents convolution.

It has been shown previously that the linear block
of the system can be estimated asĝ= aΦ�1

ss φsr, where
Φss 2 R

L�L is the input auto-covariance Toeplitz ma-
trix, φsr 2R

L�1 is the cross- covariance between the in-
put and the output, anda2R is a scaling factor [9]. The
scaling factor is a result of the static non-linearity, and
is identically 2 when the non-linearity is a half-wave
rectification (Stanley, unpublished).

III. D ECODING FROM THEWIENER SYSTEM

Current approaches to decoding are based on tech-
niques that utilize the correlation between the stimulus
and response, normalized by the correlation structure
in the response. In this paper, we will refer to this ap-
proach as the “reverse filter” approach, since the output
is essentially treated as an input, and vice versa. Al-
though this perspective provides a tool for reconstruct-
ing sensory inputs from recorded neural activity [2],
[3], it makes no direct reference to the underlying en-
coding mechanisms.

Alternatively, knowledge of the encoding strategy
can instead lead us to questions concerning the decod-
ing of sensory stimuli from neural activity based on the
nature of the encoding process. The decoding prob-
lem involves the estimation of the inputs from the
recorded neuronal response,given the encoding strat-
egy. For the Wiener systems described above, this as-
sumes prior identification of the linear stage utilizing
an independent data set, although the basic premise de-
scribed here applies to more general model structures.
Within a Bayesian framework, we pose this problem as:

ŝMMSE = Efsjrg (1)

The optimal estimator, that minimizes the Bayesian
mean-square error (MMSE), is the expected value of the
stimulus conditioned on the response. Embedded in the
conditional density is the underlying encoding mecha-
nism, determined independently. For jointly Gaussian
processes, the problem reduces to a well known rela-
tionship. In the problem presented here, we will restrict
the inputsand noisee to Gaussian white processes, but
s andr will not be jointly Gaussian due to the effect of
the static nonlinearity. We can, however, determine the
conditional densityp(sjr). In the general case, in order

to determineEfsjrg, we must perform the following
integration:

Efsjrg =

Z ∞

�∞
sp(sjr)ds (2)

wherep(sjr) is the conditional density. We can write
the conditional density as:

p(sjr) =
p(r js)p(s)

p(r)
(3)

Given the stimuluss, the responses at different times
are independent, giving:

p(r js) = ∏
k

p(r[k]js) (4)

As shown in the appendix, for half-wave rectification
we can write:

p(r[k]js) =
1p

2πσ2
e

e
�

(r[k]�x̂[k])2

2σ2
e U(r[k])

+
δ(r[k])p

2πσ2
e

Z 0

�∞
e
�

(x�x̂[k])2

2σ2
e dx (5)

where:

x̂[k] =

L�1

∑
m=0

g[m]s[k�m]

U(r[k]) is the unit step function, resulting in 1 for
r[k] > 0, zero else, andδ(�) is the Dirac delta function.
The density of the stimulus isp(s) � N (0;σ2

s I), com-
pleting the numerator of Equation 3. The denomina-
tor is simply a scaling term, and can be obtained from
the integration of the numerator overs. The Bayesian
estimator can then be obtained from the integration in
Equation 2. However, the estimation then requires an
N-dimensional integration, which is impractical for any
non-trivial data length.

An alternative to theMMSE estimator is the maxi-
mum a posteriori (MAP) estimator, which instead in-
volves a maximization of the conditional density:

sMAP = argmax
s

p(sjr) = argmax
s

p(r js)p(s) (6)

which now is anN-dimensional optimization problem,
and therefore becomes tractable for relatively small
data sets, whereas the correspondingN-dimensional in-
tegration is not feasible. For largerN, the data sets can
be segmented for computational efficiency. Numeri-
cal searches were implemented using a gradient search
method (quasi-newton).

So we now have two alternate methods by which
we may reconstruct, or decode, sensory inputs from
recorded neuronal responses: the reverse filter ap-
proach and the BayesianMAP approach. In subsequent
analyses, we will compare the two techniques.
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IV. RESULTS

First consider a static case, where the linear systemg
is a scalar value, or equivalently proportional to an im-
pulse function. For the example shown here, the gain of
the static linearity is positive. The output of the linear
stage is then passed through a half-wave rectification,
giving r = f (gs+ e). Figure 2 shows the results from
this simple case. We can see that for the case when

Fig. 2. Wiener System with Static Linearity
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Results from reverse filter andMAP estimator for static Wiener sys-
tem. The left two panels show the actual (thin) and reconstructed
(thick) stimuli for the reverse filter approach (top) and theMAP ap-
proach (bottom). Scatter plots are shown on the right of actual stim-
ulus value versus the predicted value from the two techniques.

the stimulus is positive, the two estimates are nearly
identical. The difference in the two estimates is evi-
dent when the stimulus is negative. The reverse filter
approach provides an estimate of zero, while theMAP

estimator yields a value that is slightly negative. Run-
ning many such examples revealed that theMAP esti-
mator provided a significantly better prediction of the
stimulus than that obtained from the reverse filter, as
shown in Figure 3. In these plots, data points above

Fig. 3. Summary Statistics for Static Case
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Left plot shows the mean square error of the reconstruction for the
reverse filter approach versus that for theMAP approach for the static
Wiener system for several different simulations. Right plot shows
the same for the correlation between actual and estimated stimulus.

the line indicate that the measure associated with the
MAP estimator is greater and vice versa. So, for ex-
ample, in Figure 3, theMAP estimator provides smaller
prediction error and larger correlation.

With the dynamic case, we first consider an entirely
linear system, wherer = g � s+ e. Again, we see that
the MAP estimator provides significantly better results

than those obtained from the reverse filter method, as
shown in Figure 4. For the linear case, we were able

Fig. 4. Linear Dynamical System
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Reverse Filter Correlation
Results from reverse filter andMAP estimator for dynamic linear
system. The left two panels show the actual (thin) and reconstructed
(thick) stimuli for the reverse filter approach (top) and theMAP ap-
proach (bottom). The right plots show the corresponding scatter
plots of estimation error (top) and correlation (bottom) for the re-
verse filter estimate versus theMAP estimate.

to compute both theMMSE estimator and theMAP es-
timator for comparison, and found that they were not
significantly different.

Finally, the results from the dynamic Wiener system
are shown in Figure 5. In this case, the response is the

Fig. 5. Dynamical Wiener System
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Reverse Filter Correlation
Results from reverse filter andMAP estimator for dynamic Wiener
system. The two panels on the left show the actual (thin) and re-
constructed (thick) stimuli for the reverse filter approach (top) and
theMAP approach (middle). The right plots show the corresponding
scatter plots of estimation error (top) and correlation (bottom) for
the reverse filter estimate versus theMAP estimate.

half-wave rectified output of the linear system, and is
writtenr = f (g� s+e). Again we see that theMAP ap-
proach tends to outperform the reverse filter approach,
although the effect is not so dramatic here. As a con-
firmation that the gradient search method was indeed
providing a more optimal solution in theMAP sense,
the cost function given in 6 was evaluated at both the
MAP estimate fors and the reverse filter estimate fors
(data not shown). TheMAP estimate always provided a
significantly largerp(rjs).
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V. DISCUSSION

We have shown that knowledge of the mechanisms
by which neurons encode sensory information can sig-
nificantly enhance the process of decoding the sensory
stimulus from the recorded neuronal activity. The re-
verse filter approach, in which the correlation structure
between response and stimulus is used to predict the
stimulus from the neuronal response, assumes indepen-
dence between the response and the stimulus prediction
error, although this is not generally the case.

The Bayesian estimator, as an alternate approach, is
based on the underlying conditional density functions
between stimulus and response. The difference be-
tween the reverse filter approach and the Bayesian ap-
proach is perhaps most clearly outlined with the static
case with the half-wave rectification discussed previ-
ously. The reverse filter approach provides a clean esti-
mate of the corresponding stimulus for positive values
of response, but when the response is rectified to zero,
the predicted stimulus is also zero. TheMAP estima-
tor, however, provides a negative offset for a rectified
response, essentially relying on the fact that we know
something about the distribution of the stimulus even
when the response is rectified, and yields the best esti-
mate in the sense of maximizing the posterier density.
The same heuristic argument holds for the dynamic
case, providing us with an improved reconstruction of
the sensory stimulus from the recorded response.

The methodology presented here holds for more gen-
eral types of nonlinearities, although the transformation
of density functions is case dependent. The assumption
of a Gaussian white noise stimulus can be relaxed for
a more general treatment of the problem, although the
assumption of additive Gaussian white noise is critical
for our current derivation. The result of this work is
a step towards recovery of information loss due to the
inherent rectifying properties in neuronal encoding.
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APPENDIX

Consider a random variabler that is a nonlinear func-
tion f (�) of a random variablex, which is the sum
of random variables scaled by a known parameterg
with an additive noise terme, given by r = f (x) =
f (gs + e). The scalingg 2 R is assumed known, as
are the densitiesps(s) andpe(e). The stimuluss is as-
sumed zero-mean Gaussian� N (0;σ2

s ), as is the noise
e � N (0;σ2

e). The outputr is observed. The best esti-
mate ofs, given the observation ofr, is:

ŝ = Efsjrg=
Z ∞

�∞
sp(sjr)ds (7)

wherep(sjr) is the conditional density of the stimulus
given the response. The conditional density can be ex-
pressed as:

p(sjr) =
p(rjs)p(s)

p(r)
=

p(rjs)p(s)R
p(rjs)p(s)ds

Given the stimuluss, the density ofx can be written as:

pxjs(x) =
1p

2πσ2
e

exp

�
�
(x�gs)2

2σ2
e

�

If the static nonlinearity is a half-wave rectification,
then the density of the response given the stimulus be-
comes [10], [11]:

p(rjs) = px(r)U(r)+Px(0)δ(r)

=
1p

2πσ2
e

exp

�
�
(r�gs)2

2σ2
e

�
U(r)

+δ(r)
Z 0

�∞

1p
2πσ2

e

exp

�
�
(x�gs)2

2σ2
e

�
dx

whereU(r) is the unit step function, which is 1 forr >
0, and 0 else, andPx(x) is the cumulative distribution
function forx. The effect of the half-wave rectification
is to concentrate the density for negative values of input
to the nonlinearity at 0 in the density of the output of
the nonlinearity. The estimate in Equation 7 can then
be evaluated numerically using the conditional density
p(rjs) described above.
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