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Abstract -In 1991, a novel robot named MIT-MANUS was
introduced as a test bed to study the potential of using robots
to assist in and quantify the neuro-rehabilitation of motor
function. It proved an excellent fit for the rehabilitation of
shoulder and elbow of stroke patients with results in clinical
trials showing a reduction of impairment in these joints. The
greater reduction in impairment was limited to the group of
muscles exercised. This suggests a need for additional robots
to rehabilitate other degrees of freedom. This paper outlines
the mechanical design of a robot for wrist rehabilitation.
Keywords - neurological, rehabilitation, stroke, robot, wrist.

I. INTRODUCTION

Rather than using robotics as an assistive technology, our
research focuses on the development of robotics as a tool to
enhance the productivity of clinicians in their efforts to
facilitate a disabled individual’s recovery. To that end, we
deployed and commenced extensive clinical trials of our first
robot, MIT-MANUS (see figure 1), at the Burke
Rehabilitation Hospital, White Plains, NY in 1994 [5]. MIT-
MANUS has been in daily operation for over 6 years,
delivering therapy to over 100 stroke patients. Copies have
been recently deployed at the Spaulding (Boston), Helen
Hayes (NY), Baltimore & Cleveland VA Hospitals.

Our results suggest that goal oriented exercise of a
hemiparetic limb appears to harness and promote the
neuromotor recovery following a stroke [1, 5, 6, 10, 11].

Seventy-six stroke patients exhibiting a unilateral lesion
were enrolled in the initial clinical trials. Patients were
randomly assigned to an experimental and a control group.
The experimental group received an hour per day of robot-
aided therapy exercising the shoulder and elbow. The control
group received an hour per week of “sham” robot-aided
therapy with the same video games.

Fig.1. A recovering stroke patient receiving upper extremity
robotic therapy with MIT-MANUS.

The results of the initial studies, as measured by standard
clinical instruments, showed statistically significant
difference between the experimental and control group for
shoulder and elbow (the focus of the exercise routines), but
no differences for wrist and fingers (which were not
exercised).  This result suggests a local effect with limited
generalization of the benefits to the unexercised limb or
muscle groups. If this is the case, we must extend our robot-
aids to exercise different groups of muscles and limb
segments. We are presently developing robots to work with
different muscles and limb segments, e.g., spatial motion,
wrist, fingers, legs [3, 4, 7]. In this paper, we describe the
design of a device for wrist rehabilitation.

II. SPECIFICATION FOR A NEW WRIST DEVICE

It is of paramount importance that the wrist device be easy
for the therapist and the patient to use. To prevent daily use
from becoming a chore for the patient and the therapist only
a minimum amount of time and effort must be required to
attach and remove the patient from the wrist device. The
setup target time was estimated at 2 minutes maximum.

Another key aspect is low endpoint impedance. That is,
when a patient attempts to backdrive the robot, the effective
friction, inertia and stiffness should ideally be low enough
such that it feels as if no robot is connected to the user. In
this case, the robot hardware is termed “backdrivable”. The
maximum reflected inertia for backdriveability for each wrist
degree of freedom was estimated to be 30 to 45.10-4 kg-m2.
The maximum reflected friction for backdriveability was
estimated to be 0.2 N-m. The wrist device should also have
ranges of motion of a normal wrist in everyday tasks, i.e.,
flexion/extension 70°/65°, abduction/adduction 15°/30°,
pronation/supination 90°/90°. The torque output from the
device must be capable of lifting the patient’s hand against
gravity, accelerating the inertia, and overcoming any tone.
The estimated value for flexion/extension and abduction/
adduction was 1.2 N-m and for pronation/supination
1.69 N-m [8, 12].

A. Kinematic Selection

A curved slider was found to suffice for the robot’s
pronation/supination axis. A curved rail sits between four
guide wheels, which allow it to rotate (see Figure 2).  Several
different options were considered for the remaining
kinematics. These options must allow the patient to move in
flexion/extension and abduction/adduction and also must
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allow the robot to apply torques to the patient’s hand. After
reviewing each of these kinematic options, a cardan joint
was found to be the most appropriate (see Figure 3).  A
mockup is shown in figure 4.

B. Actuator Placement and Transmission Selection

Three major sub-categories emerged from the various
actuator/transmission packages considered. The first option
placed all actuators on the ground frame (see link 1 in figure
3). The second option placed an actuator on the ground and
two actuators on link 2 (differential configuration). The last
option placed an actuator on the ground frame, an actuator
on link 2, and an actuator on link 3 (serial configuration)[9].

In comparing these options, the differential
configuration clearly held the advantage. For the same
actuators, the range of output torque was up to twice that of
the serial configration. Another advantage over the serial
configuration is that the actuators can more effectively
counterbalance each other. This is because both actuators
are placed on a single link (link 2). By symmetrically locating
the actuators about the robot’s pronation/supination axis, the
torque due to the weight of the motors is canceled.

C. Actuator Selection

We limited our search to ultimag rotary actuators, servo-
disc, DC-brushed and brushless motors. Of these, we selected
the brushless motors, which deliver high torque and runs
smoothly at low speeds, a requirement in this application
[2]. The brushless motors also allow for better heat
dissipation because the windings are on the stator.

In order to select from the many available brushless
motors, the reflected output impedances for each axis of
rotation were compared. The following brushless motors
were deemed acceptable (< 0.5 kg): Parker series SM160A
and SM161A, Pittman series 34x1,2 and 44x1,2,3, and the
Kollmorgen series 512, 513, 711-714 actuators.

Figure 5 shows a sample of how the actuators were
compared. In this case, we are comparing the added inertia
in abduction/adduction and flexion/extension due to the
motor. The abscissa shows the reduction ratio required for
each motor to achieve the specified maximum output torque
of 1.2 N-m. The ordinate shows the added inertia in both
flexion/extension and abduction/adduction. This number was
found by taking 2.I

m
.R2, where I

m
 is the inertia of the given

motor armature, R is the reduction ratio and the factor of 2
is due to the fact that both motors on link 2 will be backdriven.
In a similar fashion, we estimated the added friction in
abduction/adduction and flexion/extension. A similar
approach yielded estimates for pronation/supination.

We opted for the Kollmorgen’s RBE 711 motors for
the abduction/adduction and flexion/extension actuators
and the RBE 712 motors for pronation/supination.
Because the flexion/extension and abduction/adduction

  

Fig.2. Curved Slider

Fig.3. Cardan Joint Kinematics

Fig.4. Mockup in Flexion/Extension, Abduction/
Adduction, and Pronation/Supination



Fig. 5. Added Inertial Impedance in Flexion/Extension
and Abduction/Adduction

motors will be in close proximity to the patient, a finite
element analysis was performed to ensure that motor
temperature would not rise to uncomfortable levels.

D. SENSOR SELECTION

The determining factor in selecting the type of position
feedback device was its size, servo-amplifier compatibility,
and insensitivity to noise. The smallest system found was an
incremental encoder from Gurley Precision, the R119. It is
a high-resolution mini-encoder with 10,240 cycles per rev.
Its size was well suited for the wrist device allowing for its
placement inside of the transmission housing.

III. HARDWARE OVERVIEW

To illustrate the proposed device, we will use Pro/EngineerTM

solid models. Figure 6 shows the solid model and the
complete device. Figure 7 illustrates how the patient’s hand,
wrist and upper forearm will be held on the device via a
series of velcro straps: two straps over the back of the palm,
a single strap over the proximal or middle phalanges, two
straps to the wrist connection piece, and a strap over the
forearm. Also shown is a protrusion, which prevents the hand
from slipping around the handle. Figure 8 shows the
transmission from the abduction/adduction and flexion/
extension actuators to the arm. To increase visibility, a section
of the transmission housing has been removed in the close
up view. The gears are also darkened to distinguish them
from other components. Two spur gear trains are used to
transmit torque from the actuators to the differential. The
three bevel gears of the differential, the spider gear and the
two end bevel gears, are represented by their pitch cones.

The two spur gear trains consist of four gears. These
gears include the motor pinion gear (gear A), two
intermediate gears which are rigidly attached and rotate
together (gears B and C), and the endgear of the differential
(gear D). The intermediate gears were added to keep the
differential endgears and the rest of the transmission small.

The total reduction in one train from the actuator pinion to
the differential endgear is 8:1.

Fig. 6. Complete Wrist Device

Fig. 7. Connection to the Patient



Fig 8. Transmission System for Abduction/Adduction &
Flexion/Extension.

The two stops shown in figure 8 prevent over rotation
of the patient in abduction and adduction. These stops also
prevent the robot arm and handle components from
contacting other components. They limit the range of motion
to 30° in adduction and 20° in abduction. Although not
shown, similar stops restrict rotation in flexion and extension.
These stops limit rotation in flexion/extension to 60° in each
direction.The final design is below specification by 10° in
flexion and 5° in extension.

The axis for pronation and supination makes use of two
geared 180°-slide rings. Each slide ring has opposing “V”
shaped edges, which roll between four guide wheels with
“V” shaped grooves. The lower two guide wheels are
eccentric allowing adjustment in the preload of the wheels
against the slide rings. The upper guide wheels are concentric
and cannot be adjusted. Two stops limit the rotation of the
wrist to 76° in pronation and 76° in supination, which is
slightly below our target requirements of 90°.

IV. CONCLUSION

Clinical results to date suggest that robot-aided neuro-
rehabilitation can have a positive influence on neuro-
recovery following a stroke. Our pioneering clinical results
are consistent with a prominent theme of current
neuroscience research into the sequelae of brain injury, which
posits that activity-dependent plasticity underlies neuro-
recovery. Furthermore, our results with more than 100 stroke
patients open up a number of opportunities. We envision the
rehabilitation clinic of the future as gyms of “rehabilitators”
working with different limb segments, muscle groups, and
functional tasks. At this gym, the therapist tailors an exercise
routine to the particular patient’s needs to optimize recovery,
increasing the clinic’s productivity by overseeing several
patients at the same time. The productivity of the overall
rehabilitation system may further be improved by the
objective and precise measurements afforded by robotics,
with the potential to automate the assessment and
documentation of recovery. We also envision further

improvements by extending treatment with robot-aids at
patients’ homes.

From the realm of science fiction to the substance of
humbling reality, the novel module for wrist rehabilitation
is another marker along the trail. It follows the same design
guidelines of MIT-MANUS, which includes back-drivability.
Our experience has shown that it is an important feature of
any successful interactive robot-aid. On final note, while very
little technology presently exists to support the recovery
phase of rehabilitation, we believe the landscape will change
quickly in the near future.
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