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Abstract 

Two new methods have been developed and demonstrated which are particularly useful 
for modeling the large-scale and small-scale structure of aerooptical distortions, as well as 
the refractive fluid interfaces or density interfaces responsible for these distortions, at high 
compressibihty and large Reynolds numbers. The first method, termed the interfacial- 
thickness approach, enables the examination of optical-wavefront propagation in terms 
of the physical thickness of the refractive interfaces and is particularly useful for mod- 
eling the large-scale aerooptical distortions at high compressibility. At large Reynolds 
numbers and high compressibility, the interfacial thickness is highly variable. We have 
shown that this thickness plays an important role in aerooptics by expressing the optical 
path length (OPL) directly in terms of the interfacial-thickness variations. Application of 
the interfacial-thickness approach to experimental data in high-compressibility (Mc ~ 1) 
large-Reynolds-number {Re ~ 10^) shear layers reveals isolated sheet-like regions of high 
refractive-gradient magnitudes at various transverse locations in the flow, i.e. both in 
the interior and near the outer boundaries, that form highly-irregular networks. The 
observation that the high-gradient regions are spatially-isolated interfaces, and the in- 
terpretation of the OPL in terms of interfacial-thickness variations, are utilized to pro- 
pose and demonstrate a new modehng approach where the high-gradient interfaces are 
the dominant elements necessary to reproduce the large-scale optical distortions at high 
compressibility. This new modeling methodology provides the means to model the large- 
scale optical distortions in terms of the high-gradient interfaces, at high compressibility. 
The second method developed in this grant enables the characterization of the physical 
structure of aerooptical wavefronts as a function of scale, and is particularly important 
for modehng the small-scale structure of aerooptical distortions at high compressibility. 
Because turbulence-degraded optical wavefronts are physically highly anisotropic and 
exhibit distortions which span a wide range of scales at large Reynolds numbers, a tech- 
nique is needed which enables a scale-local examination of wavefronts at varying degrees 
of anisotropy. We have defined an optical-anisotropy parameter as a ratio of scaling fac- 
tors for the OPL and spatial extent of the wavefronts. This parameter, in combination 
with box-counting techniques, enables the study of the scale-local and anisotropic struc- 
ture of wavefronts. Apphcation to high-compressibility large-Reynolds-number data, and 
variation of the anisotropy parameter, shows the presence of anisotropic self-similarity in 
the wavefront OPL over a wide range of small scales. This finding is important because 
it provides a means to extrapolate the small-scale structure of aerooptical distortions 
at high compressibility to larger Reynolds numbers. In summary, we have developed 
and demonstrated two new techniques which are particularly useful for describing the 
large-scale as well as small-scale aerooptical behavior in high-compressibility flows. We 
have shown that both techniques are valuable for modeling aerooptical distortions at 
flow conditions relevant to high-speed flight. The two new techniques can also be ex- 
pected to be valuable for predicting as well as controlling aerooptical interactions at high 
compressibility. These two techniques are important for Air Force applications involving 
laser beam propagation in high-speed flight relevant for tactical fighter aircraft. 
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1. Overview of publications, presentations, personnel, and AFRL interactions 

Publications: 

The major results of the work done in this grant are two new approaches developed 
and demonstrated by the PI and his students to examine the large-scale and small-scale 
structure of aerooptical distortions and refractive fluid interfaces at high compressibility 
and large Reynolds numbers. These two approaches have been submitted as two journal 
papers currently under consideration for publication in the AIAA Journal: 

"New Interfacial-Thickness Approach in Aerooptics and Large-Scale Optical Distortions 
in High-Compressibility Turbulence," Catrakis, H. J. and Aguirre, R. C, AIAA 

Journal, submitted for publication. 

"Aerooptical-Wavefront Anisotropy and Small-Scale Structure at Large Reynolds Num- 
bers and High Compressibility," Catrakis, H. J., Aguirre, R. C, and Ruiz-Plancarte, 
J., AIAA Journal, submitted for publication. 

Presentations and refereed conference papers: 

The new interfacial-thickness approach in aerooptics and the anisotropic-characterization 
technique for aerooptical wavefronts, as well as their demonstration to experimental data 
at high compressibility and large Reynolds numbers, have been presented at two AIAA 

conferences: 

"Physical Thickness of Turbulent Fluid Interfaces: Structure, Variability, and Applica^ 
tions to Aerooptics," Aguirre, R. C, Ruiz-Plancarte, J., ^"d Catrakis, H.J   41 
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2003-0642. 

"Internal-Scale Structure of Turbulence-Degraded Optical Wavefronts," Catrakis, H. J 
and Aguirre, R. C, 3B'^ AIAA Plasmadynamics and Lasers Conference, Mam, HI, 

AIAA Paper 2002-2269. 

Personnel involved: 

In addition to the PI, one primary graduate student is involved in this work, Roberto 
C Aguirre, who is conducting his Ph.D. thesis research in aerooptics. Another graduate 
student, Jesus Ruiz-Plancarte, is also assisting with the aerooptics research as part of his 

Ph.D. thesis research. 

Haris J Catrakis Assistant Professor, University of California, Irvine 
Roberto C Aguirre Graduate Student, University of California, Irvine 
Jesus Ruiz-Plancarte Graduate Student, University of California, Irvine 
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AFRL interactions: 

The PI has initiated contact with Rudy Martinez (AFRL, Kirtland AFB, Albuquerque, 
NM)) who is a Strategic Planner in the Directed-Energy Directorate. Mr. Martinez is the 
AFRL Point-of-Contact (POC) for the PL The AFRL POC is interested in aerooptics for 
high-speed and high-maneuverability aircraft, such as tactical fighter aircraft, for example 
the Joint Strike Fighter (JSF) by Lockheed Martin. For these aerooptics appUcations, 
the Pi's two new aerooptics approaches are particularly useful. The PI has also been 
interacting with Dr. Michael Jones of Lockheed Martin (Ft. Worth, TX). The two 
new aerooptics characterization methods developed by the PI are of potential use in 
computational simulation codes and war-game simulators at AFRL and also Lockheed 

Martin. 

2. Research results 

The main research results in this grant are the two new approaches in aerooptics de- 
veloped and demonstrated by the PI. They are described in detail in the two papers 
submitted to AIAA Journal ([1] Catrakis & Aguirre 2003, and [2] Catrakis, Aguirre, & 
Ruiz-Plancarte 2003). In the present section, the two techniques are also described. 

New interfacial-thickness approach and its demonstration on the examination and mod- 
eUng of large-scale optical distortions in high-compressibility turbulence: 

In order to develop techniques for the prediction and control of aerooptical phenomena in 
turbulent flows, an improved understanding is needed of the large-scale properties and, 
for some applications, of the small-scale properties of aerooptical distortions as well as of 
the turbulent refractive fluid interfaces that generate these distortions (e.g. [3] Jumper k 
Fitzgerald 2001, and references therein). Practically, the large-scale aerooptical behav- 
ior is crucial in all apphcations involving optical beam propagation or imaging through 
turbulent shear flows, such as the flows generated by airborne vehicles. The small-scale 
behavior can also be important for those applications that require high-resolution and/or 
long-range optical imaging or beam propagation. In addition, it is important to know 
in practice the behavior of aerooptical interactions at large Reynolds numbers. Further- 
more, for high-speed flight, it is also crucial to quantify Mach-number effects on the 
aerooptical behavior (e.g. [4] Gilbert & Otten 1982, and references therein). 

The large-scale organized flow behavior is known to provide the dominant aerooptical con- 
tributions in both incompressible turbulent flows (e.g. [5] TVuman & Lee 1990; [6] Wissler 
& Roshko 1992; [7] Dimotakis, Catrakis, & Fourguette 2001) and weakly-compressible 
turbulent flows (e.g. [3] Jumper & Fitzgerald 2001). At higher flow compressibilities, 
however, the extent to which the large-scale flow behavior is organized is not well under- 
stood (e.g. [8] Smits & Dussauge 1996; [7] Dimotakis, Catrakis, & Fourguette 2001). The 
large-scale properties of aerooptical distortions at high compressibility, and the manner 
in which they are related to the fluid-interfacial behavior, are also not well understood. 

Since the pioneering aerooptics studies by Liepmann (1952 [9], 1952b [10]), it has been 
recognized that one of the central goals in aerooptics research is to relate the optical- 
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wavefront distortions to the fluid-mechanical behavior. The optical-wavefront distortions 
are usefully quantified by the optical path length (OPL), here denoted as A(x, t), for many 
aerooptics applications. The most relevant fluid-mechanical quantity in aerooptics is the 
refractive-index field, 

n(x,t) -  ^  > 1 . (1) 

where c(x, t) is the local speed of light which is always less than or equal to Einstein's 
universal speed of fight CQ in vacuum and independent of the frame of reference. In turbu- 
lent flows, the refractive-index field n(x, t) can be highly nonuniform particularly at large 
Reynolds numbers and at high compressibility. The propagation of optical wavefronts 
through refractive-index fields is governed by the eikonal equation, 

|VA| = n, (2) 

where, as stated above, A denotes the OPL. The eikonal equation is useful to describe 
fluid-optical interactions as long as the wavelength of Ught is smaller than the smallest 
fluid-mechanical (turbulent) scale (e.g. [9] Liepmann 1952) and as long as the optical- 
beam energies are low enough to not change the local refractive index. If these conditions 
are not satisfied, one needs to resort to wave optics using Maxwell's equations or, if the 
quantization of energy of fight plays a direct role, Feyimian's quantum-electrodynamics 
description. We note that while the eikonal equation 2 is derivable from the general 
variational principle of Fermat, which is a principle of least time of optical propagation 
in most cases, the governing equations of fluid mechanics and of turbulent flows, i.e. the 
Navier-Stokes equations, have not yet been related to any general variational principle. 

How is the OPL behavior related physically to the structure of the refractive-index field 
and in particular the refractive fluid interfaces? We have developed a framework that is 
useful to address this question by emphasizing the role of the physical thickness of the 
refractive fluid interfaces in determining the variations in the OPL. 

Our starting point is the expression used for the definition of the OPL as an integral of 
the refractive index along each light ray in geometric optics (e.g. [7] Dimotakis, Catrakis, 
&; Fourguette 2001; [3] Jumper k Fitzgerald 2001, and references therein), i.e., 

A(x,t) =   /   n{e,t)d£, (3) 

where again A denotes the OPL and £ denotes the physical distance along the propagation 
path of each light ray. The OPL integral in equation 3 corresponds to inverting the eikonal 
equation 2 for the OPL in terms of the refractive-index field. The aerooptical distortions 
correspond to the optical-path difference (OPD) given by AA(x,i) = A(x,t) - Aref(x,t), 
where Aref(x,t) = f^^ynief{x.,t)d£ is the reference OPL that would correspond to the 
undistorted wavefronts, with nref denoting a reference refractive index, e.g. correspondmg 
to freestream conditions. The optical wavefronts can be represented as isosurfaces of the 
OPL, i.e., 

A(x,t) = const., (4) 

as indicated schematically in figure 1. As long as the flow speeds are small relative to 
the speed of light, and the propagation distances are small enough for light to propagate 
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through the flow before it has evolved, it is sufficient to think of the OPL integral in 
equation 1 as involving only the spatial structure of the refractive-index field, at each 

instant in time. 

As the optical wavefronts propagate through the nonuniform refractive-index field n(x, t), 
the aerooptical interactions physically occur across the refractive fluid interfaces. These 
are the interfaces on which the refractive index n is constant. It is important to under- 
stand the role of these interfaces. While these fluid interfaces correspond to isosurfaces 
of the refractive-index field, i.e., 

n(x, t) = const., (5) 

it is crucial to recognize that the refractive-fluid interfaces will have a physical thickness 
whereas the refractive-fluid isosurfaces are geometrical objects with zero thickness. It 
is the physical thickness of the interfaces that is very important in aerooptics. We can 
introduce the local interfacial thickness hn, defined per unit n, as the inverse of the 
refractive-index gradient magnitude, i.e., 

K{K,t) ^  1^ (6) 

[11] (Catrakis k Aguirre 2002). The distance between two neighboring isosurfaces, cor- 
responding to n and n + dn, will be /i„ dn. This is shown schematically in figure 2, for 
a single interface, and in figure 3 for several neighboring interfaces. We can distinguish 
between the general case, where the gradient magnitude is nonzero, i.e. |Vn| > 0, and 
the special case of zero gradient magnitude, i.e. | Vn| = 0, which will be discussed below. 
In regions of relatively-large refractive-index gradients, the isosurfaces are closely spaced 
and the interfaces are associated with a relatively-small thickness. In regions of weak 
refractive-index gradients, the isosurfaces will be located further apart and the inter- 
faces will be relatively thicker. The interfacial thickness can be expected to be highly 
nonuniform at large Reynolds numbers. This is because of the strongly-intermittent char- 
acter of fully-developed turbulent flows which becomes more intermittent with increasing 
Reynolds number for both incompressible and compressible flows (e.g. [12] Sreenivasan 
1991, and references therein; [8] Smits & Dussauge 1996). As discussed by Jumper & 
Fitzgerald (2001 [3]), refractive-index fluctuations can arise in pure fluids, e.g. where den- 
sity fluctuations are induced by temperature variations in low-speed air flows (e.g. [13] 
Jumper & Hugo 1995) or density fluctuations in compressible air flows (e.g. [14] Fitzger- 
ald & Jumper 2000), or in mixtures of dissimilar fluids (e.g. [15] Brown & Roshko 1974; 
[7] Dimotakis, Catrakis, k Fourguette 2001). In all these different cases, the thickness of 
the refractive interfaces can be defined in the same manner, i.e. using equation 6. 

Is the interfacial thickness finite? Is it nonzero? In turbulent flows, the interfacial 
thickness can be expected to be both nonzero and finite, in general, on physical grounds. 
The thickness must be nonzero wherever the local refractive-index gradient magnitude 
|Vn(x, t)\ is finite, as indicated from equation 6. Only an infinite gradient can lead to a 
zero interfacial thickness. Physically, it is clear that for flows of real fluids, even at large 
but finite Reynolds numbers, the finite molecular diffusivities of the fluid ensure finite 
gradients and therefore finite interfacial thicknesses. A related observation, also indicated 
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A 

n(x,y;z,t) 

>'♦ 

n/U,M^ 

n,U, M 
2      2        2 

A + AA 

Figure 1: Schematic of a refractive-index field n{x,y;z,t) at high compressibility, shown 
as the gray-level image at the inset, a planar incident optical wavefront with OPL A, 
and a propagated irregular optical wavefront with OPL A -I- AA. Lg is the large-scale 
transverse extent of the flow and measures the extent of the outer edges of the refractive 
fluid interfaces. 
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n+dn 

Figure 2:   Schematic representation of a refractive interface, its interfaciaJ thickness 
hn{-x.,t), and two neighboring isosurfaces of the refractive-index field n(x,i). 

from equation 6, is that the thickness must be finite as long as the gradient magnitude is 
nonzero. If the gradient is zero, which would correspond to a region of exactly-uniform 
refractive index, the thickness would be infinite in the context of equation 6 and one 
then must interpret the (infinity-times-zero) product /i„dn as a Dirac delta function 
whose integral becomes the distance given by the extent of the uniform-index region in 
the direction of the optical-ray propagation. In summary, we can expect physically that 
the interfacial thickness must be finite as long as the gradient is finite, consistent with 
equation 6. The thickness is an interfacial property, therefore, that has to be taken into 

account. 

Since each optical ray physically propagates through refractive interfaces, one can in- 
tuitively expect that the local interfacial thickness should determine, at least in part, 
the local contribution to the OPL. Can this be seen in the OPL integral in equation 3? 
This can be done by rewriting equation 3, from the point of view of the refractive fluid 

interfaces, as 
A(x,i) =   /   n{e,t)hn,e\dn\, (7) 

Jiay 

where the integration is now performed with respect to the refractive index n, rather than 
with respect to the spatial distance €, and hn,e is the effective interfacial thickness defined 
as the component of the interfacial thickness in the direction of optical propagation, given 

by ^ 

with \Vn\e denoting the effective gradient magnitude, i.e. the magnitude of the compo- 
nent of the local refractive-index gradient in the £ direction, i.e. in the direction of the 
optical-ray propagation. The component of the refractive-index gradient in equation 7 
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Figure 3: Schematic of several refractive fluid interfaces and the variability in interfacial 

thickness. 

IS, 

|Vn|, = 
|dn| 

(9) 

as required, of course, in order for equations 2 and 6 to be consistent. Since the refractive 
index n could be locally increasing or decreasing as the light rays propagate, it is necessary 
to express the differential of n as the absolute-valued differential |dn|, in equation 8. For 
interfaces locally normal to the optical rays, the gradient component | Vn|f has magnitude 
identical to the magnitude of |Vn|. Where the interfaces are locally not perpendicular to 
the optical rays, this component will be of smaller magnitude than |Vn| and the effective 
interfacial thickness will be larger. In other words, the effective gradient is always less 
than or equal to the full gradient, i.e. 

\Vn\e = |Vn| |cos^|  < \Vn\, (10) 

and the effective interfacial thickness is always greater than or equal to the full interfacial 

thickness, i.e. 

hn,e = 
1 

\Vn\e 
= hn |sec^| > K (11) 

where the angle 9, taken as -n < 9 < n, quantifies the interfacial orientation relative 
to the optical-propagation direction. These are important considerations as they can be 
used to develop a modehng approach based on the interfacial thickness, described below. 
As long as the refractive-index gradient magnitude is not zero, i.e. as long as |Vn| > 0, 
we can define 9 as the angle between the refractive-index gradient vector and the local 
optical-ray propagation vector. The refractive-index gradient vector is always normal to 
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the local refractive interface. Combining equations 11 and 7, and writing again equation 7 
for clarity, we see that the OPL integral of equation 3 can be expressed directly in terms 
of the interfacial-thickness variations along the optical propagation path as, 

A(x,i) =   f   n{£,t) hn\sece\ |dn| =   /   n{£,t) K,i |dnl, (12) 
Jray •'ray 

where the first integral is in terms of the thickness K and relative orientation 6 of the re- 
fractive interfaces, and the second integral is in terms of the effective interfacial thickness 
hni- As mentioned above, in the context of the interfacial thickness in equation 5, these 
integrals require that |Vn| ^ 0. In those regions where |Vn| = 0, i.e. in regions of uni- 
form refractive index, the (infinity-time-zero) product /i^dn must be interpreted again as 
a Dirac delta function whose integral is the distance, say M, corresponding to the extent 
of the uniform-index region in the optical-propagation direction, so that the contribution 
to the OPL integral becomes AA = nM. We note that, in uniform-index regions, the 
interfacial orientation 0 has no meaning and is not needed. In those instances where the 
fluid interface happens to be locally tangent to the optical-propagation direction, i.e. if 
Q ^ ±7r/2, the term [sec^l will be infinite but in such cases the refractive index will 
locally be uniform since the interface will be aligned with the optical-propagation direc- 
tion, i.e. \dn\ = 0 in such cases. In those cases, therefore, the contribution to the OPL 
integral will again be AA = n A^ with M identified as the length of the interface that is 
tangential to the optical-propagation direction. We should also note that, in general, one 
may also need to take into account other possibilities such as total internal reflection or 
the development of caustics. These possibilities depend on the magnitudes of refractive 
gradients, and relative interfacial orientations, encountered in practice. 

In summary, the proposed interfacial-thickness approach is based on relating the OPL to 
the interfacial-thickness variations. Whereas the integral in equation 3 is conducted over 
space, the integrals in equations 7 and 12 are expressed as integrals over the refractive 
index and are useful to determine the manner in which the refractive interfaces physically 
contribute to the OPL. In addition to the local refractive index n, equation 11 shows 
that the OPL variations arise from the variability in the interfacial thickness /i„ and the 
fluctuations in the interfacial orientation 9, or the variations in the effective interfacial 
thickness hn,t. Knowledge of the variability in the effective interfacial thickness, and its 
relation to the flow dynamics, can be expected therefore to provide physical insight into 
the relation between the OPL behavior and the interfacial structure. 

We have decided to demonstrate the use of the interfacial-thickness approach on turbulent 
high-compressibihty fluid interfaces. We have chosen to examine the applicability of the 
proposed approach to high-compressibility fluid interfaces in order to develop a large-scale 
aerooptics modeling methodology useful for high-compressibility flow conditions. There 
are available large-scale aerooptics modeling methods that have successfuUy addressed 
weakly-compressible flows (e.g. [3] Jumper & Fitzgerald 2001) and incompressible flows 
(e.g. [5] Truman k Lee 1990; [16] Chew & Christiansen 1991; [7] Dimotakis, Catrakis, 
& Fourguette 2001). These methods are essentially based on the Brown-Roshko large- 
scale organized-structure approach ([15] Brown & Roshko 1974) with direct extensions 
to weakly-compressible flows, and will be discussed briefly below. It is known, how- 
ever, that high-compressibihty turbulent flows exhibit significant differences compared 

10 
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to weakly-compressible or incompressible flows (e.g. [17] Papamoschou & Roshko 1988; 
[18] Papamoschou 1991; [19] Clemens & Mungal 1995). A more general approach is 
desirable, to be able to address aerooptical effects across the full range of compressibili- 
ties, and it is toward this goal that the interfacial-thickness approach can be particularly 

useful. 

Figure 4a shows an example of a two-dimensional spatial streamwise slice of the refractive- 
index field in a shear layer between optically-different gases, with convective Mach num- 
ber Mc ~ 1 and Reynolds number Re ~ 10^ based on the large-scale extent Ls of the 
flow ([7] Dimotakis, Catrakis, & Fourguette 2001). Also shown is an example of a low- 
compressibility (Mc ~ 0.2) shear-layer image in figure 4b, for comparison. These flow 
images span the entire large-scale transverse extent of the flow and, although not fully 
resolved, they capture a relatively-wide range of scales (~ 500 : 1) which permits a 
study of the large-scale behavior. It should be noted that the refractive-index field in 
figure 4a reflects effects of both compressibility and mixing, as a result of the use of 
optically-different gases, and may not directly represent the density-field behavior, as 
has been discussed by Jumper k Fitzgerald (2001 [3]). The data in figure 4a, however, 
make possible an examination of the interfacial-thickness approach at high levels of com- 
pressibility. Density-field variations, in turbulent compressible flows, can be expected to 
exhibit features attributable to vortical structures at various scales, compression-wave 
regions (e.g. shocklets), and expansion-wave regions. The refractive-index field in fig- 
ure 4a reflects these flow mechanisms, albeit indirectly, and provides the opportunity to 
examine the role of high-compressibiUty fluid interfaces and in particular their physical 
thickness in generating the aerooptical distortions. 

The interfacial-thickness fields, /i„, corresponding to the refractive-index fields, n of fig- 
ures 4a and b, are shown in figures 5a and b. The interfacial thickness was computed by 
first evaluating the refractive-index gradient magnitude | Vn| and subsequently computing 
its inverse ([20] Aguirre, Catrakis, & Ruiz-Plancarte 2003), according to the interfacial- 
thickness definition in equation 6. The local refractive-gradient magnitudes, and inter- 
facial thicknesses, are necessarily under-/over-estimated respectively because the images 
are not fully resolved. The computed gradients and thicknesses are essentially coarse- 
grained values at the image-resolution scale. However, these values permit the reiative 
spatial variations to be examined and this is what is needed in the present context. Since 
the refractive-index data of figures 5a and b are from two-dimensional sHces of the flow, 
only two of the three spatial refractive-index derivatives necessary to evaluate the full 
gradient magnitude can be computed. The interfacial-thickness fields in figures 5a and b 
thus corresponds to the in-plane refractive-index gradient magnitude. We note, however, 
that only the component of the full gradient, or interfacial thickness, along the optical-ray 
propagation direction is needed, as is evident in equations 9, 10, and 11. In other words, 
even if the full gradient were available, one would compute the component of it in the 
optical-propagation direction and this would be equivalent to using the in-plane compo- 
nent in addition to the in-plane interfacial orientation, for optical wavefronts propagating 
in the plane of the flow shown in figures 5a and b, or figures 4a and b. In figures 5a and 
b, the in-plane gradient magnitudes are shown such that darker regions denote higher 
values of the gradient magnitude. Since the in-plane interfacial thickness is the inverse 
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Figure 4: (a) (Top) Refractive-index field in a streamwise slice of a high-compressibility 
(Mc ~ 1) large-Reynolds-number {Re ~ 10^) shear layer between optically-different gases 
[7]. (b) (Bottom) Low-compressibility (Mc ~ 0.2) shear-layer refractive field [7]. 
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Figure 5: (a) (Top) Interfacial-thickness field h^ at high compressibiUty correspond- 
ing to the refractive-index field of figure 4. Darker regions denote thinner interfaces, 
i.e. the dark regions correspond to the high-gradient interfaces, (b) (Bottom) Low- 
compressibihty interfacial-thickness field. 
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of the in-plane gradient magnitude, the darker regions denote locally-thin high-gradient 
interfaces. Also evident in figures 5a and b are the variations in the interfacial orien- 
tation. Depending on the direction of optical beam propagation, the relative interfacial 
orientation 9 will be different along the beam-propagation path. Figures 5a and b indi- 
cate, however, that the interfacial orientation is sufficiently irregular that, at least locally, 
there is a wide distribution of interfacial directions. It is important to recall the meaning 
of equations 10 and 11, i.e. that interfaces of a given thickness will have an effective 
thickness that is always greater than or equal to it for any optical-beam propagation 
direction. In other words, a given gradient magnitude will result in an effective gradient 
magnitude that is always smaller than or equal to it, irrespective of the optical-beam 
propagation direction. If one identifies, therefore, the regions of high-gradient interfaces 
in the flow, then there can be no effective gradient magnitudes that are higher yet. 

Four significant observations can be made, at high compressibility, on the basis of figure 5a 
and other interfacial-thickness fields at the same flow conditions: 

(a) the high-gradient regions occupy a relatively-small part of the turbulent shear-How 
region, 

(b) the high-gradient regions are sheet-like and can be thought of as high-gradient in- 
terfaces, 

(c) the high-gradient interfaces exist at various transverse locations in the shear-Bow 
region, and 

(d) the refractive-index gradient magnitude exhibits variations along the high-gradient 
interfaces. 

It is important to note that these observations refer to the instantaneous spatial structure 
of the interfacial-thickness field, and this is practically very relevant for aerooptics since it 
is the instantaneous flow structure that needs to be understood, modeled, and controlled. 
The ensemble-averaged behavior can be expected to be quite different, in particular 
simpler with less irregular ensemble-averaged interfaces, and we hope that this will be 
addressed in future studies, in order to compare the average behavior to the instantaneous 
behavior examined here. 

Observation (a) refers to the fact that the high-gradient regions are spatially relatively 
isolated, as is evident in figure 5a. In other words, large parts of the instantaneous Bow 
region have relatively low refractive-gradient magnitudes. The high-gradient regions 
appear to occupy only a small fraction of the fiow region. This is consistent with compu- 
tational results at low Reynolds numbers in studies by Samtaney, Pullin, k Kosovic (2001 
[21]) who found that regions of high gradient magnitudes in isotropic and homogeneous 
turbulence occupy a relatively-small fraction of the flow. 

Observation (b) indicates, further, that the high-gradient regions are not only spatially 
isolated but are sheet-like, i.e. these regions are confined to thin layers in the turbulent- 
flow region.   These high-gradient regions can be thought of physically, therefore, as 
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locally-thin interfaces. Sheet-like structure, in three-dimensional space, is consistent 
with the string-like structure evident in the two-dimensional spatial images or slices such 
as figure 5a. 

Observation (c) is particularly important because it illustrates a major qualitative dif- 
ference between high-compressibility flows and weakly-compressible flows. The data 
indicate that the high-gradient interfaces, although spatially isolated and occupying a 
relatively small fraction of the flow region, are present at severai different transverse 
locations in the instantaneous How structure, as is evident in the high-compressibility 
interfacial-thickness field of figure 5a and in direct contrast to the low-compressibility 
interfacial-thickness field of figure 5b. Whereas at low compressibility, the high-gradient 
interfaces are mostly confined to the instantaneous outer edges of the flow, it is clear that 
at high compressibiUty the high-gradient interfaces can be found both in the interior and 
near the outer boundaries in instantaneous realizations of the flow. This is in sharp con- 
trast with the behavior in low-compressibiUty turbulent shear flows ([5] Truman k Lee 
1990; [7] Dimotakis, Catrakis, & Fourguette 2001), cf. the interfacial-thickness behavior 
in figure 5b, where isolated high-gradient regions are not found in the interior of the flow, 
as a result of large-scale organized structures which conflne such interfaces mostly to the 
outer parts of the shear region. At the high-compressibility flow conditions examined 
presently in figure 5a, the high-gradient interfaces are clearly not confined to the outer 
boundaries of the flow and are not excluded from the interior of the flow. 

Observation (d) is also important because it indicates that, on the high-gradient inter- 
faces, the refractive-index gradient is not constant, i.e. it fluctuates along these interfaces. 
This must be taken into account if one wishes to model the aerooptical effects of these 
interfaces, and this will be addressed in the proposed modeling approach below. We note 
that the variabOity of the thickness along the high-gradient interfaces is attributable to 
both intermittency effects associated with the large Reynolds number and the presence 
of compact shocklets associated with the high compressibility of the flow. 

These observations, and the dramatic difference between the high-compressibiUty behav- 
ior and the low-compressibility behavior, are illustrated also in figures 6a and b. The 
observation, at high compressibility, that the high-gradient regions are spatially isolated 
even though they occupy several transverse locations in the flow, and the interpretation of 
the optical wavefront phase in terms of the interfacial thickness variations, indicate that 
these isolated regions are the dominant elements for the large-scale optical distortions 
at high compressibility. While the low-gradient regions are of wide transverse extent, 
and therefore do contribute to the OPL integral, it is the structure of the high-gradient 
(locally-thin) interfaces that can form the basis of a description that captures the large- 
scale optical distortions, as explained in the modeUng approach we have proposed which 
is described below. 

The observations of the instantaneous structure of the interfacial-thickness field and the 
interpretation of the OPL in terms of the interfacial-thickness variations can be used 
to develop a modeling methodology that is useful for capturing the large-scale optical 
distortions at high compressibility. Before describing the proposed modeling approach, 
it is helpful to recall the previous work in incompressible and weakly-compressible shear 
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Figure 6: (a) (Top) Schematic of network of spatially-isolated high-gradient interfaces at 
high compressibility. Darker regions denote higher gradients or locally-thinner interfaces, 
(b) Schematic of high-gradient interfaces at low compressibility. 
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layers that has been successful in modeling the large-scale aerooptical distortions. In 
the case of incompressible shear layers of dissimilar gases, the Brown-Roshko vortical 
structures ([15] Brown & Roshko 1974) generate large-scale regions of nearly-uniform 
refractive index and this enables the use of the outer interfaces to model the large-scale 
optical distortions ([7] Dimotakis, Catrakis, k Fourguette 2001). In the case of weakly- 
compressible shear layers, there are large-scale regions of reduced density and pressure in 
the flow as shown by Fitzgerald & Jumper (2000 [14]). These large-scale reduced-density 
regions are essentially weakly-compressible analogues of the Brown-Roshko structures. 
Jumper & Fitzgerald (2001 [3]) have developed a model based on these large-scale low- 
density regions, or density "wells", and have shown that it is able to reproduce well the 
large-scale optical distortions at low compressibility. 

It is known, however, from various investigations of high-compressibility flows, that there 
is a strong qualitative difference between the structure of weakly-compressible flows and 
high-compressibiUty flows (e.g. [22] Bogdanoff 1983; [17] Papamoschou & Roshko 1988; 
[18] Papamoschou 1991; [23] Samimy k Elliott 1990; [24] Samimy, Reeder, k Elliott 1992; 
[19] Clemens k Mungal 1995). For shear layers, in addition to the well-known reduction 
in the growth rate there is a major difference in the organization of the flow and in 
particular in the internal structure of the flow as the compressibility level is increase. 
In particular, accepting the convective Mach number Mc as an appropriate measure of 

compressibility, 
M, = ^^l^^ , (13) 

01-1-02 

where Ui,2 and 01,2 denote the freestream speeds and sound speeds, respectively, there is 
evidence that the'flow behavior transitions and changes dramatically at convective Mach 
numbers above a certain value ([19] Clemens k Mungal 1995). Specifically, in the range 

Me   >   0.6, (14) 

which corresponds to high compressibility according to most avaflable data, the turbulent 
flow structure and fluid interfaces appear to be substantially more irregular, and in a 
fundamentally-different way, compared to the behavior at low compressibility. 

Comparison of the images in figures 5a and b, example, indicates that high-compressibility 
shear layers exhibit multiple regions spanning different transverse locations where the 
refractive-index gradients are relatively weak. At the boundaries between these multiple 
regions, the high-gradient interfaces reside. As discussed above, these high-gradient in- 
terfaces appear to form a highly-irregular network in the flow. Is there a way to model 
the interfacial-thickness field at high compressibility in order to reproduce the aeroopti- 
cal distortions? In particular, how can the large-scale optical distortions be modeled at 
high compressibility and which part of the interfacial-thickness structure is necessary to 
capture the large-scale optical distortions? 

Our proposed modeling approach, at high compressibUity, is based on the crucial ob- 
servation above that the high-gradient interfaces, although located at various transverse 
locations, are spatially isolated, cf. figures 5a and 6a. Because the high-gradient inter- 
faces occupy a relatively-small fraction of the total turbulent-flow region, we can develop a 
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modeling approach with these interfaces as the dominant elements. A gradient-magnitude 
threshold is first chosen in order to identify the high-gradient interfaces. We note that 
it is crucial to retain the high-gradient interfaces. It may appear, at first sight, that 
these high-gradient interfaces could be neglected since they only occupy a small fraction 
of the turbulent-flow region. On the contrary, the high-gradient interfaces contribute 
significantly to the OPL integral because, even though the thickness hn,i is relatively 
small, the differential |dn| is relatively large across such interfaces. Significantly, there 
is no way to avoid including these high-gradient interfaces in the modehng approach. 
Fortunately, however, it is precisely because these interfaces are spatially isolated that it 
is feasible to approximate the regions in between these interfaces as zero-gradient regions, 
i.e. as uniform-index regions. This raises the important question of how to propagate the 
beam, in the model, through these regions. For comparison, in the Dimotakis, Catrakis, 
& Fourguette (2001 [7]) modeling approach, the refractive index in the large-scale regions 
bounded by the outer interfaces is modeled on the basis of the value predicted from the 
large-scale entrainment. For the present case of high compressibility, however, there are 
multiple regions through which the beam must be propagated. We propose that the way 
to do this is to use the gradient information along the high-gradient interfaces to update 
the refractive index as the OPL integral is computed across these interfaces. The Joca- 
tions of the high-gradient interfaces provide the length scales needed to propagate the 
beam through the regions in between the interfaces. The proposed modeling approach 
can be summarized therefore in four steps: 

(a) tiie high-gradient interfaces are Grst identified, including their spatial location and 

gradient values, 

(b) the optical beam is propagated across the high-gradient interfaces by updating the 
OPL integral using the gradient values at these interfaces, 

(c) the regions in between the high-gradient interfaces are modeled as zero-gradient 

regions, and, 

(d) the value of the refractive index in each zero-gradient region, between the high- 
gradient interfaces, is computed using the gradient value on the interface which the 
beam propagates across as it enters each zero-gradient region. 

A schematic illustrating the basic idea of this model is shown in figure 7 for the high- 
compressibihty case. The multiple regions in the interior of the flow are denoted as B 
through G. We emphasize that it is important, and necessary, to retain both the ioca- 
tion of and gradient values along the high-gradient interfaces in the proposed modeling 

approach. 

The utility of this approach can be demonstrated with the high-compressibility interfacial- 
thickness data. Figure 8 shows a modeled interfacial-thickness field where ~ 50% of the 
refractive-gradient magnitudes have been set to zero, compared to the original field in 
figure 5a. The OPL integral was computed using this modeled interfacial-thickness field 
by foUowing the above four steps. The comparison between the full aerooptical-wavefront 
OPL (solid curve) and the modeled OPL (dashed curve) in shown in figure 9.   Good 
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Figure 7: The labeled regions in the interior of the flow, i.e. regions B through G, 
correspond to the low-gradient regions at high compressibility. In the proposed modeling 
approach, the high-gradient interfaces, or boundaries between the low-gradient regions, 
are treated as the dominant elements necessary to model the large-scale optical distortions 

at high compressibility. 

'U 

Figure 8:  Modeled interfacial-thickness field, with ~ 50% of the gradient magnitudes 
neglected, at high compressibility, cf. figure 5a. 
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agreement is evident in terms of the large-scale OPL variations. This shows that the 
proposed modeling approach can be used to reproduce the large-scale optical distortions 
at high compressibility, in a shear layer, using the high-gradient information. Instead 
of the full interfacial-thickness field, information on the high-gradient interfaces only 
appears to be sufficient to model the large-scale aerooptical distortions. The location 
of the high-gradient interfaces and the value of the gradient across (or of the thickness 
of) these interfaces is enough to capture the dominant contributions that generate the 
large-scale aerooptical distortions. The optical wavefronts are propagated through the 
high-gradient (locally-thin) interfaces and the gradient value across these interfaces is 
used to compute the difference in the optical path length, while in the low-gradient 
regions between the high-gradient interfaces the wavefronts are propagated neglecting 
the presence of the low gradients, i.e. as if those regions are zero-gradient regions. The 
high-gradient interfaces, in this example, are identified in an absolute sense, i.e. by 
thresholding the entire instantaneous gradient field. A further refinement, potentially, 
could be envisaged by retaining those interfaces that have high gradients relative to 
their neighboring interfaces. The proposed modeling approach offers a reduction in the 
amount of flow information needed to capture the large-scale aerooptical distortions at 
high compressibility. 

In summary, the new interfacial-thickness approach has been proposed to examine optical- 
wavefront propagation through turbulent flows in terms of the variability in the physical 
thickness of the refractive fluid interfaces. The interfacial thickness is given by the in- 
verse of the refractive-index gradient magnitude. As long as the gradient magnitude 
is finite, the interfacial thickness is also finite. The thickness can be highly variable 
at large Reynolds numbers and high compressibility. The interfacial thickness plays an 
important role in aerooptics as indicated by expressing directly the optical path length 
(OPL) in terms of the interfacial-thickness variations. Demonstration of this approach on 
refractive-field data in shear layers at high compressibility (Mc ~ 1) and large Reynolds 
number {Re ~ 10^) reveals that regions of high refractive-gradient magnitudes are lo- 
cated at various transverse locations in the flow, i.e. both in the interior and near the 
outer boundaries, and form highly-irregular networks. Significantly, the high-gradient re- 
gions are found to be spatially isolated, i.e. occupy a relatively-small fraction of the shear 
layer. This observation, coupled with the interpretation of the OPL in terms of interfacial- 
thickness variations, are utilized to propose and demonstrate a new modeling approach 
where the high-gradient interfaces are the dominant elements necessary to reproduce the 
large-scale optical distortions at high compressibility. Both the location of and the gra- 
dient values along the high-gradient interfaces are utilized in this modeling approach. A 
reduction of ~ 50% in the amount of interfacial information needed is shown to repro- 
duce well the large-scale optical distortions at high compressibility. The present results 
suggest applicabifity of the proposed approach to other high-compressibility flows, by 
modeling the large-scale optical distortions in terms of the structure of the high-gradient 
interfaces. The proposed approach can be expected to be useful in studies of the dy- 
namics of aerooptical interactions at high compressibility (e.g. [25] Thurow, Samimy, 
Lempert, Harris, Widiker, k Duncan 2003), in computational modeling and simulations 
of aerooptical interactions in high-speed flows (e.g. [26] Jones & Bender 2001), as well as 
in efforts to extend fluid-mechanical techniques that control or regularize aerooptical in- 
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Figure 9: Comparison, at high compressibiUty, between the full wavefront OPL (solid 
curve) using the complete interfacial-thickness field (figure 5a), and the modeled OPL 
(dashed curve) using the high-gradient interfaces with ~ 50% of the gradient magnitudes 
neglected (figure 8). The spatial and OPL coordinates are normalized based on the 
large-scale fllow extent Ls- The large-scale optical distortions are reproducible, even with 
a ~ 50% reduction in interfacial information, demonstrating the use of the proposed 
interfacial-thickness modeling approach at high compressibility. 
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to fully-developed turbulence (e.g. [30] Dimotakis 2000), i.e. 

Re > 10^ (15) 

As long as the turbulent flow is fully developed, satisfying the criterion in equation 15, the 
range of scales exhibited by the refractive field n(x,t) increases with increasing Reynolds 

number as, 
Re'/\ (16) 

A. 

'>min An 
for gas-phase flows, where A:„i„ is the smallest scale or Kolmogorov scale and A„,ax is 
the largest scale identified as the extent of the flow region through which the wavefronts 
propagate or alternatively as the extent of large-scale shear in the flow. The 3/4 exponent 
in equation 16 arises from the role of the energy dissipation rate and the viscosity m gas- 
phase flows in imposing a limit for the smallest flow scales ([34] Kolmogorov 1941; cf. 
also [35] Taylor 1935, and [36] Richardson 1922). An important aspect of large-Reynolds- 
number flows and refractive-index fields is that there is a wide range of scales bounded 

from above by A^ax and from below by Amin, 

Amin  <   A  <  A„.ax, (1"^) 

where similarity properties (e.g. [34] Kolmogorov 1941), including possibly self-similarity 
(e.g. [12] Sreenivasan 1991), are present. Such properties are important because they can 
be expected to provide the means to extrapolate the aerooptical behavior to the large 
Reynolds numbers encountered in practice, in both incompressible and compressible flows 

(e.g. [8] Smits & Dussauge 1996). 

In order to characterize aerooptical distortions over the wide range of scales associated 
with large values of the Reynolds number (cf. equations 15-17), techniques axe needed 
that enable the description of optical-wavefront structure as a function of scale. Most pre- 
vious studies of the flow behavior and/or of the optical-wavefront behavior have focused 
on spectral descriptions (e.g. [7] Dimotakis, Catrakis, & Fourguette 2001) or equivalent^ 
on descriptions based on second-order structure functions (e.g. [37] Andrews & Phillips 
1998). Spectral descriptions characterize the behavior in Fourier space, however, and 
do not uniquely identify the geometrical structure of the turbulent flow or optical wave- 
fronts. This is because power spectra provide no phase information. The description of 
the geometrical structure of turbulent flows in physical space is a relatively-recent devel- 
opment (e.g. [12] Sreenivasan 1991; [29] Catrakis, Aguirre, & Ruiz-Plancarte 2002) and is 
based on box-counting techniques. A generalized version of the box-counting technique, 
that can characterize anisotropic surfaces such as optical wavefronts, will be proposed 
and described below. The issue of optical-wavefront anisotropy is first addressed as it is 
a crucial physical aspect of wavefront structure and an important ingredient of the new 
box-counting technique described below. 

At the level of description of geometrical optics, the governing equation for the propa- 
gation of optical wavefronts is the eikonal equation for the optical path length (OPL) 
A(x,t) or, equivalently, the integral for the OPL in terms of the refractive index along 

the optical propagation path, i.e. 

|VA1 = n,    or,    A(x,t) = j   n{e,t) d£ = £ n(^,i)/i^ [dnj, (18) 
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where the first integral is over the physical distance i along the propagation path. In 
the second integral, the OPL is expressed directly in terms of the effective refractive- 
interface thickness K,t = l/|Vn|, ([1] Catrakis & Aguirre 2003). The optical wavefronts 

are isosurfaces of the OPL, i.e. 

A(x,t) = const., (19) 

and in turbulent flows, especially at large Reynolds numbers, the OPL isosurfaces can 
be highly irregular. In the present work, our objective is to characterize the physical 
structure of the optical wavefronts as a function of scale. 

The first issue that needs to be addressed is that, physically, aerooptical wavefronts are 
highly-anisotropic surfaces. This is because optical wavefronts span spatial dimensions 
as well as the OPL dimension, and these can be of very different extent physically. 
This is especially so because the refractive-index variations, e.g. as quantified by the 
root-mean-square magnitude, are relatively small when compared to unity for gas-phase 
flows. Consequently, as the integrals in equation 4 suggest, the OPL variations are much 
smaller than the spatial transverse extent (i.e. aperture) of any optical beam in practice. 

In other words, 
|An|,„s < 1,    and,    |AA|,„s < |A^|, (20) 

where |An|rms and |AA|rms denote respectively the root-mean-square magnitudes of the 
refractive-index variations and of the OPL variations of the distorted wavefront, and 
\M\ denotes a measure of the total optical-propagation path which is |A^| ~ U, i.e. 
comparable to the large-scale extent Ls of the flow, as far as the aerooptical interactions 
are concerned. This strong anisotropy of aerooptical wavefronts refers to their physical, 
unnormalized structure. One may normalize the OPL so that the effective degree of 
anisotropy can change. By also scaling the spatial coordinates, one can examine the 
wavefronts at varying degrees of anisotropy, as will be shown below. 

A schematic of a planar wavefront incident to a three-dimensional optically-active turbulent- 
flow region and the irregular wavefront emerging from the flow in three dimensions is 
shoAvn in figure 10. The distorted wavefront is highly irregular and highly anisotropic. 
Taking a; and y as the spatial directions perpendicular to the incident-wavefront propa- 
gation direction, the OPL is in this case a function of x and y as well as time, i.e. 

A(x,y,i), (21) 

where, for simplicity of notation in what follows below, x and y are the spatial coordinates 
normalized by the large-scale transverse extent L5 of the flow (cf. figure 10) and A is the 
OPL normalized by (An),ef Ls with (A„)ref denoting the reference (freestream) refractive- 
index difference. To be able to vary the anisotropy of the OPL, which will be needed 
below, we propose the use of scahng factors (stretching factors) for both the OPL and 

the spatial coordinates, i.e. 
aA A(ax x,ayy,t), (22) 

where (XA is a scaling factor for the OPL and {a^.^J are scaUng factors for the spatial 
coordinates normal to the incident-wavefront propagation direction. These scaling factors 
can each be greater than or less than unity.   Two examples are shown in figure 11 
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where different values of OA are employed for the same wavefront or OPL isosurface. 
We note, with regard to equation 22, that only two wavefront-anisotropy parameters are 
needed (only the ratios matter) and, therefore, we define a (vector) wavefront-anisotropy 

parameter given by 

cc^l^M, (23) 
in terms of the ratios of the OPL scaling factor to each of the spatial-coordinate scaling 
factors. For a wavefront in 2-D space, e.g. in figures 3a and b, only one scaling factor is 

needed, e.g. a = aA/a^. 

The proposed wavefront-anisotropy parameter a enables the variation of the effective 
anisotropy of aerooptical wavefronts which can be used to examine their structure as a 
function of scale as will be shown below. We note that the above parameter can be used 
in the study of the isosurfaces of the OPL function as well as in the study of the OPL 
field itself. In general, the OPL isosurfaces will be different from the OPL field itself. 
However, for wavefronts emerging from the turbulent shear-flow region, and propagating 
in an ambient/freestream fluid of uniform refractive index, the wavefronts propagate at 
constant speed and, to the extent that bending of individual Ught rays can be ignored, 
i.e. in the weak aerooptical regime, the optical wavefronts are equivalent to the OPL-field 

profiles. 

To investigate the physical structure of optical wavefronts, a useful approach is to conduct 
box counting which enables an examination of the manner in which the wavefronts' 
geometrical features vary with scale ([38] Catrakis et al. 2001; [11] Catrakis k Aguirre 
2002). For each wavefront, a bounding box or rectangle is identified and partitioned 
successively into smaller boxes. The number of boxes containing the wavefront is counted 
at each box scale A. This coverage count, denoted as Nd{X) in d dimensions, can be used 
to quantify the geometric structure as a function of scale. At the largest scale A^ax, the 
coverage count is unity, i.e. iVd(A„,ax) = 1. We sometimes also denote the largest scale 
as S, i.e. the bounding-box scale. One can normalize the coverage count by the total 
number of boxes available at each scale A and this is known as the coverage fraction, 

Fa{\) =  (^X Na{X), (24) 

where 0 < Fd{\) < 1 and the limiting values correspond to the smallest and largest scales, 
respectively. The physical meaning of the coverage fraction is that it is the geometric 
probability of finding a part of the wavefront in a A-scale box. A larger value of Fd(A), 
at a given scale, indicates a more irregular wavefront structure at that scale. 

Highly-anisotropic behavior can be expected for aerooptical wavefronts, as argued above, 
and, because of this, the scale A must be treated as a vector in general, as was proposed 
for turbulent fluid interfaces in general by Catrakis (2000 [39]), i.e. 

A = {AA, AX, Xy} , (25) 

with the box scale A in the general case denoting the magnitude of A which we take as 

A = {XAKXyf, (26) 
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Figure 10: Schematic of a planar optical wavefront (top) incident to a three-dimensional 
refractive-index field in a large-Reynolds-number turbulent compressible flow (middle), 
and the emerging highly-irregular aerooptical wavefront (bottom). 
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(a^> 1) 

K<1) 

Figure 11: Illustration of varying the effective anisotropy of an optical wavefront in 3- 
D using the proposed anisotropy parameter a, cf. equations 22 and 23. The same 
wavefront is shown with a relatively-large value of Q:A (top) and a relatively-small value 
of aji (bottom). 
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Figure 12: Example of a wavefront in 2-D. The same wavefront is shown at two different 
values of the anisotropy parameter, which is a scalar-valued parameter in 2-D and is 
a = aja^ for this example, such that the large-scale size of the bounding box is the 
same for each case, i.e. (OA a^Y^"^ is the same. 
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in 3-D, for example, where AA denotes the extent of each box in the OPL direction and 
{Aa;, Aj,} denote the spatial extents of each box in the {x,y} directions. The advantage 
of a scale magnitude defined as in equation 26 is that A^ can be identified as a volume 
occupied by each A-scale box. 

The most important quantity that the box-counting technique produces is the coverage 
dimension Dd{X) as a function of the scale magnitude A. The coverage dimension can be 
computed as the fractional increase in the coverage count per unit fractional decrease in 
scale, or equivalently the logarithmic derivative of the coverage count w^ith scale, i.e. 

and can be interpreted as a fractional (fractal) dimension whose departure from the 
topological dimension dt of the wavefronts quantifies how complex the wavefront structure 
is. The coverage dimension must be in the range 

dt < Dd{X) < d, (28) 

for optical wavefronts. In particular, at the smallest scales and largest scales respectively 
the coverage dimension reaches those limits, i.e. 

Dd{X) -^ dt   Bs   X-^Xrain,        and,        Dd{X) -^ d   as   X-^X^^.        (29) 

For optical wavefronts in 3-D, as indicated in figure 10, these limiting values become 
dt = 2 and d = 3 respectively. For wavefronts in 2-D, cf. figure 12, these values become 
dt = l and d = 2 respectively. It is also helpful to think of the relative coverage dimension 
of the wavefronts, i.e. the coverage dimension relative to the topological dimension, which 
is given by Dd{X) - dt in general, or £>2(A) - 1 in 2-D for example. This is useful for 
comparing wavefront structure in different dimensions, e.g. in 3-D vs. 2-D, because the 
values of the relative coverage dimension must range from 0 to 1 independent of whether 
the wavefront is in a 3-D or 2-D region of the flow, cf. equation 29. Recalling that at 
large Reynolds numbers one may expect similarity properties over a wide range of scales 
(cf. equation 17), another important use of the coverage dimension is that it can reveal 
such similarity properties, including the presence of self-similarity. 

If the coverage dimension Dd{X) is a constant over a wide range of scales, then this 
would mean that the wavefront physically has scale-independent structure in that range 
of scales and then the wavefront could be modeled using this self-similarity. Specifically, 
for self-similar behavior the coverage dimension would be Dd{X) = Dd = const, and 
the structure of the wavefront could be extrapolated to higher Reynolds numbers (cf. 
equation 16) using 

N,{X) ~  (^^y , (30) 

over a wide range of scales Ai„i„ < A <C A„,ax (equation 17). The value of Dd would 
reflect the complexity of the wavefront structure that statistically repeats itself over a 

range of scales. 
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If, however, the coverage dimension is found to be a continuous function of scale through- 
out the range of scales, then the coverage count would no longer be a power law but 
instead would behave as 

Ar,(A) = exp{/;-"fl.(A')f}, (31) 

as can be readily seen by inverting equation 10. Such scale-dependent behavior, where 
for example the coverage dimension could be increasing with increasing scale over a range 
of scales, would mean that the complexity of the wavefront varies with scale. This would 
mean that more complicated, scale-dependent models would be needed to extrapolate 
the small-scale structure of optical wavefronts to larger Reynolds numbers. We note, 
however, that scale-dependent behavior on the basis of Dci{X) alone may not necessarily 
imply lack of self-similarity. Recent work has indicated that other scale-local measures 
may be needed to discern self-similar behavior in those cases where DdiX) appears to be 
scale dependent ([29] Catrakis, Aguirre, & Ruiz-Plancarte 2002). 

As emphasized above, aerooptical wavefronts can be expected to exhibit a strong anisotropy. 
A more general box-counting approach therefore is needed, to be useful for aerooptics, 
where one can examine the box-counting behavior of the wavefronts allowing for the 
possibiHty that they may be scale independent, i.e. self-similar, in an anisotropic man- 
ner. Self-similar anisotropic behavior is often also called self-affine behavior. Self-afEne 
objects have structure which is scale independent but in a manner that depends on the 
direction. In other words, self-affine objects are anisotropically scale-independent objects 
whereas self-similar objects are isotropically scale independent. 

We propose an anisotropic extension of the box-counting technique whereby the anisotropy 
parameter a introduced above becomes a parameter in the coverage count and conse- 
quently in the coverage fraction as well as in the coverage dimension, i.e. 

iV,(A;a),    and,    F,{X;cx),        with,        DdiX;a) = Il^A       '       ^^^^ 

The introduction of the anisotropy parameter a in the coverage quantities makes possible 
a practical examination of anisotropic structure. We note that an equivalent way to 
proceed would be to treat the scale A as a vector A (cf. equation 25) and then to define 
the coverage dimension through an extension of equation 27. This, however, would lead 
to coverage-dimension vectors expressed as partial derivatives of the coverage count. The 
proposed approach, i.e. using the quantities in equation 32, offers instead a much simpler 
way to characterize the anisotropic structure of aerooptical wavefronts, with a coverage 
dimension that is scalar valued rather than vector valued. 

As an example in 2-D, figures 13a and b show the same optical wavefront at two different 
values of the anisotropy parameter a with the boxes necessary to cover the wavefront in 
each case for several different scales. The corresponding coverage results are shown in 
figures 14a, b, and c. Note that the choice of the values of the anisotropy parameter, in 
figures 13a and b, is such that they both have the same scale magnitudes, i.e. the value of 
("A axY^^ is the same for both examples. This was done so that any effects of the largest 
scales are removed in order to focus on the small-scale structures. Significantly, we see 
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that for the same optical wavefront examined under different levels of anisotropy, different 
behavior is evident at the small scales in figure 14c. This is an important observation 
because it illustrates that this technique is sensitive to the presence of anisotropy at 
small scales and, therefore, one can expect to be able to use it to examine aerooptical 
wavefronts at large Reynolds numbers as will be done below. It is also important to 
appreciate that the above ideas can be expected to be useful to examine not only the 
ensemble-averaged structure of the wavefronts but also the instantaneous structure of 
the wavefronts. The latter is particularly important in practical aerooptics applications. 

We have demonstrated the use of the proposed anisotropic box-counting technique for 
the characterization of the small-scale structure of aerooptical distortions. We are par- 
ticularly interested in the behavior at large Reynolds numbers and high compressibihty 
because this is a flow regime of practical interest in a number of aerooptics apphcations 
in high-speed flight, and also because previous work suggests that high-compressibility 
turbulent flows exhibit important differences at least at the large scales when compared 
to incompressible or weakly-compressible turbulent flows (e.g. [23] Samimy & Elliot 
1990; [18] Papamoschou 1991). Less is known about the effect of compressibility on the 
small-scale behavior at large Reynolds numbers. Computational results are available 
on compressible turbulent flows (e.g. [40] Porter, Woodward, & Pouquet 1998) but are 
presently restricted to low Reynolds numbers. On the theoretical side, there are proposals 
of similarity and self-similarity properties at large Reynolds numbers (e.g. Sreenivasan 
1991) that have been put forth for incompressible turbulence. However, it is presently not 
clear to what extent such incompressible-turbulence properties are applicable at higher 
compressibilities. 

To examine the applicability of the technique proposed above, we employed recent 
wavefront data derived from experimental studies of aerooptical distortions in high- 
compressibility shear layers between different gases ([7] Dimotakis, Catrakis, & Four- 
guette 2001). In those studies, a large-scale Reynolds number of Re ~ 10^ and a con- 
vective Mach number of Mc ~ 1 were achieved and the OPL profiles corresponding to 
wavefronts emerging normal to the shear layers were derived by Fourier filtering the 
refractive-index field. Two examples of the OPL profiles at these flow conditions are 
shown in figures 15a and b. The optical-wavefront distortions correspond to the aeroop- 
tical interactions in a two-dimensional plane transverse to the shear layer. At the large 
Reynolds number of these shear layers, there is a wide range of scales (cf. equation 16). 
Although the wavefront data in figures 6a and b are not fully resolved, the resolution is 
sufficient to capture a large fraction of the full range of scales. This fraction of the range 
of scales is estimated to be ~ 500 : 1 based on the camera pixel resolution which was 
employed to record the fiow images from which the OPL profiles were derived. Keeping 
in mind that similarity properties are not expected throughout the entire range of scales 
smaller than the large scale, but rather in a fraction of those scales (cf. equation 3), these 
data can be expected to be useful to examine the presence of similarity or self-similarity 
in the wavefront structure. 

For the shear-layer data, the OPL profiles are functions of the streamwise coordinate x 
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Figure 13: Illustration of the box-counting technique for the wavefront example in fig- 
ure 12a. Coverage boxes are shown at different scales. The coverage boxes are the boxes 
needed to completely contain the wavefront at each scale. 
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Figure 14: Illustration of the box-counting technique for the wavefront example in fig- 
ure 12b. 
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Figure 15: Coverage count (left), coverage fraction (middle), and coverage dimension 
(right) for the wavefront example in figures 12a and b. The dashed curves correspond to 
figure 12a, and the solid curves correspond to figure 12b. 
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normalized by the transverse extent L of the large-scale shear in this flow, i.e. 

A(f). (33) 

The incident wavefronts are assumed to be planar (linear in the plane of the flow studied) 
so that the coverage dimension is 

D2{\) = 1, (34) 

prior to propagation of the wavefronts through the shear layer. For the propagated and 
distorted wavefronts, the relevant anisotropic wavefront parameter in this case is 

a^^, (35) 

(cf. equations 22-23), corresponding to the two-parameter stretched-wavefront profile 

given by 

aAA(axf). (36) 

As pointed out above, the two parameters UA and a^ are equivalent to the single param- 
eter a = OLKJO-X- One parameter is sufficient, for wavefronts in 2-D space, to permit an 
examination of the wavefront structure at different levels of anisotropy. 

Box counting was performed on the high-compressibiUty shear-layer wavefront profiles 
for several different values of the anisotropy parameter a, over the range 0.3 < a < 3. 
For each value of a, the wavefront was stretched and subsequently partitioned into boxes 
(tiles in 2-D) so that the box count was computed as a function of scale, i.e. 

Ar2(A;Q), (37) 

where the subscript 2 denotes that these data are in spatially in two dimensions. From 
the coverage count, we computed the coverage fraction and the coverage dimension as a 
function of scale, i.e. 

j.,(A;„) =  (_A.)\,(A;a),    and,    Z).(A;a) = -"'"^^^ff"'. (38) 

Two important observations were made: 

(a) the small-scale wavefront behavior depends strongly on the anisotropy parameter a, 

and 

(b) there exists a particular value of the anisotropy parameter a = a* for which the 
small-scale wavefront structure is found to be scale independent over a range of 

scales. 

The first observation confirms the idea above that aerooptical wavefronts are highly 
anisotropic and shows that the technique described above is capable of detecting the 
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Figure 16: Examples of measurements of optical-wavefront profiles, A(x), in large- 
Reynolds-number {Re ~ 10^) high-compressibility (Mc ~ 1) shear layers, derived from 
two-dimensional flow-imaging experiments described in [7]. The wavefront profiles cor- 
respond to aerooptical interactions in two-dimensional spatial streamwise slices of the 

flow. 36 
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dependence of the small-scale structure on this anisotropy. The second observation, i.e. 
that there is scale independence over a range of scales for a particular value a*, which 
is found to be a* ~ 0.9 for the present data, is particularly important. The results are 
shown in figures 16a, b, and c, that depict respectively the coverage count iV2(A;a*), 
coverage fraction F2(A;a*), and the relative coverage dimension D2{\;a*) - 1 for the 
critical value of the anisotropy parameter. For values of a smaller than or greater than 
a*, qualitatively-different behavior was observed. Specifically, 

(a) for a<a*, the wavefront structure is scale dependent with relatively-smaller values 
of the coverage dimension at intermediate scales, 

(b) there exists a particular value of the anisotropy parameter a = a* for which the 
small-scale wavefront structure is found to be scale independent over a range of 

intermediate scales. 

(c) for a> a*, the wavefront structure is scale dependent with relatively-larger values 
of the coverage dimension at intermediate scales. 

The significance of the observed behavior at a = a* is that this shows the presence of an 
intermediate range of scales 

Amin   <   A   <   Amax, (39) 

in which the wavefront is self-similar, i.e. 

D2{X;a*) ~ const. ~ 1.3, (40) 

in a range of small scales. This can be used to extrapolate the behavior to even higher 
Reynolds numbers at high compressibihty, at least in shear layers, using 

N2{X;a*) ~  (^y'   , (41) 

(cf. equation 16). The uncertainty in the coverage dimension is estimated to be ±0.025. 
Prom figure 16c, we see that the self-similar behavior is evident in the measurements 
over a range of scales that span approximately one decade. Even though the Reynolds 
number associated with the shear layer is large, i.e. Re ~ 10^, and corresponds to a full 
range of flow scales given by A„,ax/Ami„ = -Re^/^ ~ 3 x 10^ the range of scales over which 
similarity is expected is smaller. A conservative estimate, for example ([30] Dimotakis 
2000), is the ratio of the Taylor scale AT to the Kolmogorov scale AK which grows slowly 
with Reynolds number, specifically AT/AK ~ i?e^/^ ~ 10. This estimate, at least of the 
extent of the range of self-similar scales, is closer to the presently-observed behavior (cf. 
figure 7c). Higher-resolution measurements would be needed to discern this issue further, 
i.e. whether the range of scales exhibiting self-similar behavior extends to smaller scales 
yet. We note that the critical value a* of the anisotropy parameter might depend to 
some extent on the Reynolds number and/or Mach number, and possibly on the flow 
boundary conditions. However, as long as the Reynolds number is large, i.e. meets the 
criterion for fully-developed turbulence, one can expect that the small-scale structure 
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of the wavefronts and the critical value of the anisotropy parameter will be at most 
weakly dependent on these flow parameters. This is because the small-scale structure at 
large Reynolds numbers is at most weakly sensitive to the large-scale behavior (e.g. [12] 

Sreenivasan 1991, and references therein). 

The present finding of scale independence of the small-scale optical-wavefront structure 
over a range of scales at high compressibility provides experimental evidence that self- 
similarity is present in aerooptical interactions at high-compressibility flow conditions^ 
Computational studies of compressible flows at low Reynolds numbers have indicated 
inertial-range scaling based on power spectra (e.g. [40] Porter, Woodward, k Pouquet 
1998) and this supports the present finding of self-similarity, although spectral behavior 
alone cannot be related uniquely to the physical structure of the fluid interfaces. The 
present finding of self-similar behavior in the physical structure of the distorted aeroop- 
tical wavefronts indicates that turbulent fluid interfaces at high compressibility possess 
self-similarity properties. Self-similar behavior of the fluid interfaces would be sufficient 
to explain the observed self-similar aerooptical behavior, with anisotropy inherent in the 

wavefront OPL. 

Quantification and modehng of the physical structure of optical wavefronts, in real space 
as opposed to Fourier space, requires tools such as the technique presently demonstrated. 
For wavefronts propagating through spatially three-dimensional regions of turbulent 
flows, one can expect that the coverage dimension in that case will be 

Ds = D2-\-l, (42) 

as long as there is self-similarity in a range of scales, in analogy with similar suggestions 
for turbulent interfaces ([12] Sreenivasan 1991) under the assumption of mterfacial self- 
similarity In the high-compressibiUty shear layer, therefore, one can expect that 

Ds ~ 2.3, (43) 

cf equation 40. We also note that the values D2 ^ 1.3 and D^ ~ 2.3 can be expected to 
be the same at even larger Reynolds numbers. This is because these values are expected 
to be Reynolds-number independent as long as the flow is fully developed, which it is in 
the present case. The present results demonstrate that optical-wavefront self-similanty 
can be detected using the proposed approach. Two important practical consequences are 
that one can now extrapolate the physical wavefront structure to even higher Reynolds 
numbers, using equation 41 throughout the wider range of self-similar scales associated 
with higher Reynolds numbers, and that the wavefront coverage dimension values of 
D2 ^ 1.3 and D3 ~ 2.3 presently detected at a Reynolds number of Re ~ 10 can be 
expected to be valid at higher Reynolds numbers yet. 

The proposed method of anisotropic box counting provides a means useful for the char- 
acterization of the physical structure of aerooptical wavefronts as a function of scale. 
The optical-wavefront anisotropy parameter, defined as a ratio of scaling factors for 
the optical path length (OPL) and spatial extent of the wavefronts, combined with an 
anisotropic generalization of box counting enables a scale-local examination of wavefronts 
at varying degrees of anisotropy This is particularly useful for the study of aeroopti- 
cal wavefronts at large Reynolds numbers where the distortions span a wide range of 
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Figure 17- Ensemble-averaged results for optical-wavefront profiles in large-Reynolds- 
number (Re ~ 10«) high-compressibility {M. ~ 1) shear layers, cf. figures 6a b, and c: 
(a) (left) coverage function N^iX^a*), (b) (middle) coverage fraction F2(A;a ), and (c) 
right) relative coverage dimension D,{X;a*)-l. The value of a* for the results shown is 

a* ~ 0.9. The plateau in (c) shows clearly the presence of self-similarity of the wavefront 
structure over a range of scales spanning approximately one decade. 
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scales and are anisotropic. Demonstration of this technique to experimental data in 
large-Reynolds-number {Re ~ 10^) high-compressibility (Mc ~ 1) turbulent shear layers 
shows the presence of anisotropic self-similarity in the wavefront structure over a range 
of small scales. This finding is particularly important because it provides a means to 
extrapolate the small-scale structure of aerooptical distortions at high compressibility 
to larger Reynolds numbers. This can be expected to be particularly useful in efforts 
to develop computational models and simulations of aerooptical interactions at large 
Reynolds numbers and high compressibility (e.g. [26] Jones & Bender 2001), because 
the present self-similarity model of the wavefront distortions provides a key ingredient to 
construct effective sub-grid-scale aerooptics models in large-eddy aerooptics simulations. 
Such aerooptical properties for high-compressibility flows can be expected to be especially 
valuable in applications involving high-resolution and/or long-range optical imaging and 
beam propagation at high-speed flight. 
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