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Abstract- EEG dipole source reconstruction requires the
assumption of a source model and of a conductive head model.
Head-modeling errors and measurement noise in the EEG
induce localization errors in the results of EEG source analysis.
In this study effects of brain lesions on EEG dipole source
localization have been investigated by computer simulation. We
present a sensitivity study quantifying the effect on source
localization accuracy of the interaction between the  uncertainty
in lesion conductivity assignment (LCA) and various levels of
signal to noise ratio (SNR) in the EEGs. An inverse dipole fitting
procedure, based on simulated noiseless EEG measurements
and with SNR 5, 10 and 15, was carried out in 5 pathological
situations, assuming an incorrect LCA ranging from a half to
twice the real value. Incorrect LCA in noiseless conditions led to
markedly wrong source reconstruction for high lesion
conductivity values (localization errors up to 1,7 cm). We
propose a method based on residual error analysis to improve
lesion conductivity estimate. This procedure can identify lesion
tissue conductivity with only a few percent error reducing the
LE to values given by noise only.*

Keywords – Electroencephalography, noise, lesion, source
localization, dipole source, conductivity.

I. INTRODUCTION

Dipole source localization using scalp recorded EEG is
used to estimate the location of sources of electrical activity
in the brain. EEG source localization estimate requires the
assumption of proper models of the EEG source and of the
head volume conductor. The accuracy with which a source
can be located is affected by a number of factors including
head-modeling errors and EEG noise. Besides geometrical
head modeling errors, the large uncertainty in determining
most of the conductivity values of the head model
compartments is one of the major factors that influences the
accuracy of EEG source localization estimate. In fact, the in-
vivo conductivity values would be needed but unfortunately
they are not measurable in living patient without surgery and
they must therefore be obtained from the wide range of
values reported in the literature. So far, many authors have
studied the effects on the EEG source-localization accuracy
of geometrical and conductivity (electrical parameters of the
model) in normal conditions (i.e. in absence of morphologic
deviations from normal heads), and only a minor attention
has been devoted to estimate source localization accuracy in
presence of a brain lesion. Brain lesions can present
conductivity values dramatically different from those of
surrounding normal tissues. Lesions create eccentric
conductive inhomogeneities in the head volume conductor
which have to be included in head models for accurate neural
source reconstruction [1]. The uncertainty in determining
tissue conductivity values is particularly large for brain
lesions, because of the poor statistics available [2]: brain
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lesion conductivity values range from 0.52 to 1.89 S/m for a
liquid lesion, and from 0.0018 to 0.0070 S/m for a calcified
lesion. In a previous work [3] we performed a sensitivity
study of the effects of lesion conductivity mispecification on
the EEG dipole localization accuracy in presence of brain
lesions. We found that Lesion Conductivity Assignment
(LCA) errors determine source localization errors. For almost
calcified lesions their parametric definition (i.e. LCA) can be
done approximately without incurring in remarkable
localization errors. Conversely, the parametric setting for
liquid-filled lesions must be accurate to avoid incurring large
source localization errors (up to 17 mm). In the same study
we proposed also a error reduction method (line intersection
technique - LIT) which allows to reduce the uncertainty in
determining lesion conductivity and therefore to reduce
dipole source localization error. Noise contributes to errors in
dipole source localization [4]. Noisy potential distributions
can be generated by adding white noise to a noiseless
potential distribution. Solving the inverse problem yields
dipole coordinates which deviate from those found in the
noiseless case. Additive noise with zero mean generates
deviations in the dipole coordinates also with zero mean
hence noise can not generate a systematic dipole location
error but rather a random location error [5].

In this study we check the LIT method for error reduction
adding noise to EEG data. We adopted a modified spherical
model of the head (eccentric-spheres model) valid also in
pathological conditions. Although spherical head models are
only an approximation to an actual head, the benefit arising
from simplified calculations justifies their use in many
situations. Since our aim was to evaluate the effect of lesion
conductivity mispecification on dipole source localization,
we could neglect the peculiar errors due to a spherical
approach versus a realistic one, simply comparing simulation
results collected with spherical models in different situations.

We show here the combined effect of noise and LCA error
on source reconstruction accuracy and show that, even a
rough implementation of LIT can reduce localization error
(LE) to the level imposed by the quality of the recording, i.e.
to the accuracy determined by EEG noise.

II. METHODOLOGY

To investigate the effects of interaction between EEG noise
and lesion conductivity mispecification on source localization
accuracy we simulated many noisy EEG scalp-potential
distributions (which we will refer to as the “measured
potentials”) in presence of a brain lesion.

A pathological head model was used to simulate many
EEG scalp-potential distributions in presence of a brain
lesion. A model consisting of four eccentric spheres was used
to give a mathematical description of the head as a volume
conductor (Fig. 1). Our model consisted of three large
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SIMULATED PATHOLOGICAL CONDITIONS
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Position Dimension Position Orientation
A Superficial Large Below Radial
B Deep Large Below Radial
C Deep Small Internal Tangential
D Superficial Large Above Radial
E Deep Large Internal Radial

By this way we tested the sensitivity of the dipole inverse
solution to various levels of error committed in LCA in
presence of various levels of noise.

We computed the mean absolute localization error and the
maximum absolute localization error.

In the source reconstruction procedure a residual error
estimate function ρ is minimized; ρ is defined as [7]:
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where Vmi is the measured (simulated) EEG potential and
Vci is the one produced by the reconstructed source at the ith
electrode position. In a previous paper we found that in
noiseless conditions the relation between conductivity (σ)
misassignment and the corresponding minimal ρ values could
be approximated by a second order polynomial function. A
closer inspection of the ρ distribution revealed two different
linear trends for σs above or below the real σ. We found that
fitting separately the two distributions the real σ (actually
unknown) can be estimated as the abscissa of the intersection
of these two lines.

We apply the line intersection method with noisy EEG
potentials selecting two sets of minimal ρ data with the
following criterion: the 5 samples of the lesion conductivity
space from –50% to –10% were used for fitting the first line;
the samples from +10% to +100% (10 values) provided data
for fitting the second line; we avoid to include in both data
sets the correct conductivity value.

III. RESULTS

We start showing the effect of noise (only) on source
reconstruction accuracy. The localization errors due to the
different levels of noise are shown in table 1. Although just
one sample of noise has been considered and thus errors
might vary, the huge difference between cases clearly
indicates that sensitivity of noise depends upon SNR ratio
(see case B) and, even more important, LE depends on source
type, source-lesion and source electrodes relative positions.
Sources reconstructed in case D, in which the sources were
interposed between lesion and electrodes, exhibited a huge
and constant LE, the intensity errors (IE) reached the 400%
of actual values. For the other examples shown here IE was
bound to less than 60%. Case C is an example of tangential
source for which the effect of noise results minimal. The
values shown in Table II are minimal absolute errors
achievable applying the LIT to the four data sets, thus they
constitute the reference for the error reduction method
efficacy. Considering also lesion conductivity assignment
errors source reconstruction became even less accurate.

Scalp: R = 8.0 cm; σ=0.35 S/m

Skull: R=7.5 cm; σ=0.022 S/m

tangential



3 of 4

TABLE II
ABSOLUTE LE (mm) WITH CORRECT LCA

Case SNR=5 SNR=10 SNR=15 SNR=∞∞∞∞
A 1.3 1.4 1.5 0.0
B 22.1 2.6 3.3 0.0
C 0.0 0.1 0.0 0.0
D 34.3 34.2 34.2 0.0
E 1.2 0.7 2.9 0.0

Table III summarized the obtained mean and maximum
localization errors. In order to isolate the LCA contribution to
LE on noisy data, for each SNR value, we evaluated also the
difference between mean and baseline and the difference
between maximum and baseline LE errors; data are shown in
Table IV. In this contest the baselines are those LE values
found with or without noise and with the correct LCA (see
Table II). Comparing data in Table II and IV we observed
that LCA could determine errors as large as noise or of one
order of magnitude smaller. Fig. 2, shows an example (case
A) of LE values for different levels of SNR and LCA errors.
As can be seen in Fig. 2, in some cases, the sensitivity of LE
to LCA diminishes as noise increases (curves became flatter).

Source estimation algorithm minimized ρ. This parameter
gives an indication of similarity between the scalp potential
generated by the actual and reconstructed sources. Both LCA
errors and noise determine potential dissimilarity thus ρ
increases. As can be seen in Fig. 3 the main effect of noise
was a translation of ρ curves (ρ vs. LCA error) towards
higher values. LCA error determines rather characteristic
distribution of LE values, the curvature of the LE profile is
reduced by noise (see Fig. 3 and 4). By applying the LIT
method for error reduction we estimated lesion conductivity.
From this estimate we could quantify the residual localization
error (RLE) after LIT error reduction. These data are shown
in Table V. In the same table, to quantify LIT efficacy, is
shown also the difference between the RLE and the reference
(baseline: LE values in Table II): the smaller these
differences the better the performance.

TABLE III
MEAN AND MAXIMUM ABSOLUTE LE (mm) WITH WRONG LCA

Case error SNR=5 SNR=10 SNR=15 SNR=∞∞∞∞
A Mean 2.9 2.3 6.4 8.1

Max 5.4 5.5 9.4 17.3
B Mean 21.4 7.0 5.2 7.5

Max 25.0 9.9 12.3 13.5
C Mean 0.6 0.7 1.0 0.9

Max 1.6 1.6 2.3 2.0
D Mean 34.9 36.0 34.9 1.7

Max 37.9 43.8 38.1 4.2
E Mean 1.8 1.5 3.3 1.3

Max 2.9 2.5 5.3 3.1

TABLE IV
LE DUE TO LCA ERROR: MEAN AND MAXIMUM LCA EFFECT.

Case Error SNR=5 SNR=10 SNR=15 SNR=∞∞∞∞
A Mean-baseline 1.6 0.9 4.9 8.1

Max-baseline 4.1 4.1 7.9 17.3
B Mean-baseline 0.7 4.4 1.9 7.5

Max-baseline 2.9 7.2 9.0 13.5
C Mean-baseline 0.6 0.7 1.0 0.9

Max-baseline 1.6 1.6 2.3 2.0
D Mean-baseline 0.7 1.9 0.6 1.7

Max-baseline 3.7 9.6 3.9 4.2
E Mean-baseline 0.6 0.8 0.4 1.3

Max-baseline 1.7 1.8 2.4 3.1

The benefit (the LE reduction), is better described by the
difference between residual error and mean or maximum
localization errors (See Table VI). In this way we can
quantify RLE relative to an expected error, either in mean or
in maximum terms.

-20

-15

-10

-5

0

5

-60 -30 0 30 60 90 120
lesion conductivity assignment error, LCAE (%)

lo
ca

lis
at

io
n 

er
ro

r, 
LE

 (m
m

)

5

10

15

∞

Fig 2. Localization errors (LE) for different SNRs (see legend) and for
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TABLE V
EFFICACY OF LIT ON CONDUCTIVITY ESTIMATE AND RLE DUE

TO RESIDUAL CONDUCTIVITY ERROR.
Case SNR=5 SNR=10 SNR=15 SNR=∞

A residual LCA error % 11 3 6 -2
RLE-baseline (mm) 0.1 0.0 0.4 0.0

B residual LCA error % -12 -4 8 10
RLE-baseline (mm) 0.6 0.0 0.4 2.2

C residual LCA error % 3 4 9 5
RLE-baseline (mm) 0.0 0.0 0.2 0.0

D residual LCA error % 7 7 9 14
RLE-baseline (mm) 0.4 0.2 0.9 0.4

E residual LCA error % -33 -8 -10 -13
RLE-baseline (mm) -0.8 -0.3 -0.6 0.3

Negative values in table VI indicate a residual error after
conductivity estimate smaller than the mean or the maximum
error expected for that condition. Comparing data shown in
Tables IV and VI it is possible to observe that LE reduction
can be almost complete, although in 3 conditions positive
numbers appear. This means that the RLE is larger than the
mean error due to LCA errors. This was true for mean errors
only and for mean errors less of 1.7 mm.

IV. DISCUSSION

We selected the five conditions presented here on the base
of the previous study [3] in which we proposed and
quantified the efficacy of the reduction method (LIT) of
localization errors due to LCA.

In absence of noise, case A was characterized by the
largest LE error and, at the same time, the error reduction
technique was very effective. Case B had also a large error
but the residual error was larger than in case A, i.e. the LIT
was less effective. Case C was the one for which the
application of LIT did not determine LE reduction, but
absolute LE values were anyway within few millimeters. D
provided an example of large reduction of LE although the
initial maximum localization error was only about 4 mm.
Finally, E was the case of internal source for which LCA
estimation was not so good but the LE reduction optimal.

The implementation of LIT in this study was somehow
suboptimal, since the two sets had different number of
elements and, more important, one of them could contain
wrong samples. This implementation does not provide the
best lesion conductivity estimate [3] but, for seek of a test,
was a conservative approach to LIT robustness and
performances. The 33% of conductivity estimate error found
in case D can be explained considering this suboptimal
implementation.

TABLE VI
MEAN AND MAXIMUM ERROR REDUCTION AFTER LIT.

Case SNR=5 SNR=10 SNR=15 SNR=∞
A RLE-mean (mm) -1.5 -0.9 -4.4 -8.1

RLE-max (mm) -4.0 -4.1 -7.5 -17.3
B RLE-mean (mm) -0.1 -4.4 -1.5 -5.3

RLE-max (mm) -2.3 -7.3 -8.6 -11.3
C RLE-mean (mm) -0.6 -0.7 -0.8 -0.9

RLE-max (mm) -1.6 -1.6 -2.2 -2.0
D RLE-mean (mm) -0.3 -1.7 0.3 -1.3

RLE-max (mm) -3.2 -9.4 -3.0 -3.8
E RLE-mean (mm) 0.2 -0.4 0.2 -0.9

RLE-max (mm) -0.9 -1.5 -1.8 -2.8

The LIT allowed an estimation of lesion conductivity with
an accuracy sufficient to keep the additional (residual) LE
error due to LCA misassignment within 1 mm with noisy data
and 2.2 mm without noise. The accuracy of source
localization is then dependent on SNR, i.e. on the noise
reduction achievable during recording and data processing.
Interestingly, it seems that the noise can reduce the sensitivity
of source localization procedure to LCA error. LIT allowed to
always find smaller LE than maximum absolute LE due to
LCA errors.

Cuffin [8] reported that noise and modeling errors
determine source LE of similar entity; we analyzed a peculiar
type of parametric model error, which, indeed, could induce
LE comparable with noise. However, we demonstrated that
LE due to the parametric error is avoidable even with EEG
noise. It is known that a linear relation exists between noise
level and LE, however this relation shows up only in mean
terms. We considered only one noise distribution, therefore it
is not surprising that noise level and LE are not well
correlated. Moreover, has been proved that noise effect
depends on electrodes number and placement, thus a direct
comparison of our results with previous works is difficult.
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