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OPTIMAL SELECTION OF TIME SERIES COEFFICIENTS FOR WRIST
MYOELECTRIC CONTROL BASED ON INTRAMUSCULAR RECORDINGS

M.C. Santa-Cruz, R. Riso, F. Sepulveda

Center for Sensory Motor Interaction, Aalborg University, Denmark

Abstract- The Davies-Bouldin cluster validation technique has
been utilized to determine the optimal time series parameters
(model, order and number of coefficients) to be used in a
myoelectric pattern recognition system based on intramuscular
recordings.

The data used in our longitudinal study were recorded
intramuscularly (4 muscle channels) from an amputee subject
over three different experimental days. During the recording
sessions, the subject performed 4 wrist movements (pronation,
supination, wrist flexion, wrist extension) in a way that was
intuitive to her. The time series coefficients obtained from the
EMG data (from AR, MA, and ARMA modeling) were used for
generating feature spaces with 4 classes (1 per movement). The
results showed that the optimal parameters didn’t differ
substantially (AR, order 4, 2 coefficients) for those obtained for
other type of movements and surface EMG recordings. The use
of the Davies-Bouldin technique during the analysis produced
important information about the separability and consistency of
the data across different days.

Keywords - Myoelectric control, EMG, intramuscular
electrodes, pattern recognition, time series, cluster validation,
Davies-Bouldin index.

|. INTRODUCTION

Multifunctional myoelectric control usually entails
cumbersome operation and time consuming training.
Throughout the vyears, different pattern recognition
techniques and EMG feature spaces have been evauated
with the purpose of solving the two above-mentioned
problems. Some of the most widely used features have been
based on time series coefficients derived from autoregressive
(AR), moving average (MA), and/or autoregressive-moving
average (ARMA) models [2,3]. The rationale for the use of
time series coefficients is based on the relationship between
coefficients and the EMG frequency content. Likewise,
frequency content is movement dependent due to changes on
the motor units populations involved in performing different
movements. Because of computational convenience [2], the
preferred model type and number of coefficients utilized
with surface EMG has been AR with order 3 or 4.
Nonetheless, some investigators [1] have claimed that time-
series modeling of EMG signals should not be considered
static or invariant because the spectral behavior of EMG data
is dependent on the specific muscle, contraction level, and
limb function. However, their efforts revealed that the best
model representing surface EMG was till AR with order 4.
Because of the differences in our study (wrist movements,
intramuscular EMG, EMG feature extraction performed at
the contraction’s onset as opposed to extraction during
sustained contraction), we believe that the results from
former studies may not be applicable to our problem. Thus,

we performed an analysis to identify the optimal time-series
parameters. With this purpose we utilized the Davies-
Bouldin cluster validation technique [4]. This crisp cluster
validation technique presents highly desirable characteristics
to solve the problem at hand: (1) it performs an evaluation
based on the geometrical characteristics of the feature space
(it identifies compact and well-separated partitions of the
feature space), and (2) it has reduced sensitivity to cluster
outliers [5]. In addition, other authors [6, 7] have
successfully applied the Davies-Bouldin index to perform
comparisons between feature spaces based on EMG data.

II. METHODOLOGY
A. Experimental protocol and pre-processing

The subject was a female (age 33) presenting a below-
elbow amputation of her left arm (non-dominant hand) and
strong phantom limb sensation. The subject never used a
prosthesis since the time of the amputation (13 years before
the experiments).

A pair of coiled wire electrodes for bipolar recording was
inserted with 2cm tip separation into each of the following
muscles: (1) Pronator Teres, (2) Supinator, (3) Flexor Carpi
Radialis, (4) Extensor Carpi Radialis. During a period of 30
days, the electrodes remained chronically implanted and,
within that period, recording sessions were performed on 12
different days. In our study we used data obtained during the
last 3 experimental sessions (i.e., the 10", 11", 12" sessions).
The subject was seated facing a computer display that
executed the animations of the movements to be evaluated
(Fig.1). For each given movement, the subject was requested
to follow the animations of the hand while contracting her
residual muscles during 4 blocks of exercises (25 trials each).
The EMG signals were amplified (between 1000 and 10000
times) and bandpass filtered (10Hz to 1kHz) before being
sampled at 2kHz. This sample rate was selected due to the
bandwidth of intramuscular recordings (1kHz).

For computational efficiency, we segmented the data into
separated files that contained at least 4 triadls. We ran an
onset-detection agorithm on the trials contained in these
files until we obtained the following: (session 10) 51 onsets
per movement, (session 11) 52 onsets per movement,
(session 12) 50 onsets per movement, which we considered
sufficient to perform our analysis. The algorithm applied to
perform onset detection was based on a thresholding
technique that evaluated the spatial as well as tempora
characteristics of the EMG data to perform a decision (see
[8] for more details). For each given movement, after an
onset was detected, a segment of 200ms was collected from
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each muscle channel and successively stored in an “onset”
matrix (4 columns, 1 per muscle channel).
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Fig.1 Experimental setup

B.  Time series analysis using Davies-Bouldin cluster
validation technique

(1) Individual analysis: Initially, we performed an
individua anaysis on the data obtained from each
experimental day. For a given wrist movement, and
following each onset detection, we calculated the time series
coefficients for each of the muscles. These were the
columns in an “onset” matrix. We generated the feature
spaces separately for the AR, MA, and ARMA models. For
each model type we repeated the feature extraction while
uniformly increasing the order and number of coefficients.
The Davies Bouldin indices (DBIs) were calculated for each
of the resulting feature spaces, as follows:
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where R;; is the cluster to cluster similarity, S the dispersion
of the i™ clugter, M; is the Minkowski distance between the
centroids of clusters i™ and " and R=max(R;) i j. In our
analysis we utilized g=2 and p=2. Thus, S became the
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Euclidean distance between the points of a cluster to the
centroid of the cluster and Mj; the Euclidean distance
between centroids.

For each given model and each experimental day, the
resulting DBIs were stored on matrices sized 10x10 (rows=
increasing order of model; columns=increasing number of
coefficients). The limit of order 10 for each model type was
chosen to maintain the evaluation within the working limits
of modern DSP processors. In addition, the use of up to 10
coefficients allowed us to evauate trends in the results. In
the case of the ARMA model, the total number of
coefficients was 20 in order to allow a uniform contribution
of both types of coefficients and to obtain results that could
be compared with those obtained with the AR and MA
models.

(2) Combined analysis: In order to determine which
configuration behaved in an optimal way during the three
experimental days, we pooled al the onsets utilized during
the individual analysis in a single set. Subsequently, we
proceeded to evaluate the feature spaces for each given
model and a uniformly increasing model order and number
of coefficients. Again, the resulting DBIs were stored in
10x10 matrices.

We were able to obtain only minimal improvements on
class separability following significant increases on the order
of model and number of coefficients. Because larger orders
and number of coefficients are computationally more
expensive, we used a tolerance value to determine which was
the optimal configuration from a computational as well as a
class separation viewpoint. This tolerance value was
calculated from each DBI matrix as the increase of 5% over
the minimum DBI index (i.e.,, tolerance vaue = 1.05 X
(minimum DBI)). We chose the value of 5% because we felt
that an increase in 5% over the minimum DBI will not
greatly degrade class separability, but it will significantly
improve the performance of the resulting system. Thus, for
each given DBI matrix, once the minimum DBI value was
found, we used the tolerance to find the configuration with
the smallest order and number of coefficients that had a DBI
below the tolerance value.

I1l. RESULTS
A. Individual analysis

The smallest DBIs were continuously obtained with AR
models (Table 1). In this case, the indices ranged from 1.155
to 3.304. In the case of MA and ARMA, the indexes ranged
from 6.631 to 23.678, and from 7.206 to 23.951,
respectively. From these values we can observe that the
DBIs obtained by the feature spaces based on AR model
didn't overlap with those obtained by MA and ARMA
models.

A more detailed study of the indices revealed that above
acertain order and number of coefficients, the feature spaces
with a larger number of coefficients also presented larger



DBI values (Fig. 2). This behavior was observed for orders
larger than 4 and number of coefficients larger than 1. In
addition, we noted that for increasing orders of the model,
the DBI indices attained larger values (Fig. 3). This behavior
presented small fluctuations, but it become more and more
evident as a larger number of coefficients was utilized. This
behavior was observed, depending on the experimental day,
for orders larger than 3, 4, or 5, and number of coefficients
larger than or equal to 1 and larger than 2.
Finally, when we applied the tolerance criteriato the AR

model, we obtained the optimal configuration as follows:

day 10: order 4 and 2 coefficients (DBI=1.210).
day 11: order 4 and 2 coefficients (DBI=1.785).
day 12: order 4 and 2 coefficients (DBI=1.512).

TABLE I
Wrist movements: means and standard deviations of the DBI values
obtained in each experimental day for each of the models: AR, MA; ARMA.

day10 dayll dayl12
AR mean 1.322 1.951 1.68
std 0.21 0.225 0.277
MA mean 10.544 11.678 12.21
std 2.65 2.735 3.063
ARMA mean 10.19 11.343 10.507
std 2.348 2.606 1.995
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Fig.2 Experimental day 10: Dependence of the DBIs with the number of

coefficients.
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Fig.3 Experimental day 10: Dependence of the DBIs with the order of
model. Note, the configurations with DBI slightly smaller that the one
presented by the optimal configuration (order 2, 4 coefficients).

B. Combined analysis

Once again the feature spaces based on the AR model
produced the smallest DBI values (Table Il). This time the
values ranged from 1.6297 to 3.399. Note, that the spread of
the data and the mean and standard deviations don't differ to
alarge extend from the results obtained during the individual
analysis. The range of values derived from the MA and
ARMA models was from 13.844 to 31.797 and 14.283 to
31.139, respectively.

TABLEII
Wrist movements: means and standard deviations of the DBI values
obtained from the pooled coefficients obtained during all the experimental
days. Results obtained for AR, MA, and ARMA models.

AR MA ARMA
wrist mean 1.851 18.081 17.979
std 0.343 4.325 3.901

We noted once more that the DBIs obtained from the
feature spaces based on the AR model didn't overlap with
those derived from the MA or ARMA models. Subsequently,
we applied the tolerance criteria to the AR model and found
that the optimal DBM value was order 4 and 2 coefficients
(DBM=1.662). Note that this configuration is the same for
all the experimental days during the individual analyses.

Furthermore, we observed the same relationship between
the number of coefficients and the DBIs that was already
observed during the individua analysis. In this case, the
relationship appeared for orders larger than 4 and number of
coefficients larger than 1. We also noticed that when the
order of the model increased, the DBIs increased as well.
This behavior was observed for orders larger than 3 and a
number of coefficients larger than 2.

1V. DISCUSSION

The use of an AR model has been favored by the results
from both individual and combined analyses. Additionaly,
the results (model type, order, and number of coefficients)



were consistent with those obtained by other investigators
using surface EMG data and more standard methods of time-
series identification [1, 2]. The reasons for this likeness
between the results obtained with surface EMG recordings
and intramuscular EMG might be due to the low recruitment
level produced at the onset of the muscle contraction.
Because the units with lower conduction velocity (lower
frequency components) are recruited first, the spectra of
intramuscular recordings at the onset of the contraction
might be similar to the spectra of surface EMG recordings
during sustained contraction.

We also noted that the model type, order, and number of
coefficients that provided an optimal class separation was the
same for the individual and combined analysis: order 4 and 2
coefficients. Additionally, in both cases (individual and
combined analysis) the spread of the DBI indices and the
mean and standard deviation values were comparable. These
facts indicate that the distribution of samples in the different
feature spaces was rather consistent across different days.
This result is important when we consider the use of this
feature space in a pattern recognition system since, in this
case, it would be possible to obtain a consistent performance
of the system across different days.

V. CONCLUSION

The Davies-Bouldin cluster validation technique has
permitted us to determine the optimal configuration (model
type, order, and number of coefficients) from a pattern
recognition standpoint. We have obtained results
comparable to those from surface EMG studies athough we
recorded intramuscularly, and the type of movements and
muscles were different from previous studies. The analysis
of DBIs from the different feature spaces generated
important information about the separability and consistency
of the data across different experimental days. Also, the DBI
values permitted us to evaluate the comparative separability
of AR versus the MA, and ARMA models. Best results
overall were obtained with an AR model of order 4 and 2
coefficients.
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