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stract- This paper aims to describe a hybrid technique that
mbines the feasibility of our recently developed Multiresolution
alysis of Signal Subspace Invariance Technique (MASSIT) [1]
th the Finite Element Method (FEM) analytic model developed
 [2] to obtain accurate localization scheme of neural sources in
 extracellular recording environment. The power of the
oposed method stems from the fact that robust array signal
ocessing approach is fused with the FEM analysis yielding the
sest scenario to practical experimental situations. Results from

perimental signal and noise simulated composite are
mmarized and the overall performance is evaluated.
ywords - Array processing, multichannel neural probes, source

calization.

I. INTRODUCTION

e need for accurate methods to determine neural source
cation relative to the recording micro-device in extracellular
cording of neural activity in the brain becomes inevitable.
urce localization helps to understand connectivity of small
pulations of neural cells and allows tracking of electrode
otion without losing continuous recording of individual cells.
oreover, as cell localization schemes improve, controlled
armaceutical delivery to sub-circuits of neural populations
rough special microprobe designs becomes more feasible.

Generally speaking, the amount of information to be
vealed about neural cell location is very limited because of
e tremendous challenges that face the implanted system.
ese range from the limited bandwidth of the telemetry
stem to the limited computational power that can be
pected from the implant signal processor.

The main objective of this paper is to describe a hybrid
nal processing scheme that integrates the information

vealed by our recently developed Multiresolution Analysis of
gnal Subspace Invariance Technique (MASSIT) for blind
urce identification described in [1,3] and the FEM analysis
 neural tissue-microprobe interface environment summarized
 [2]. Each of these techniques reveals different information
at can be used to localize the neural source and they can be
nsidered to complement each other. The integration of the
erall information into a single array signal processor should
 able to achieve the required goal of this work.

II. METHODOLOGY

Due to the nature of the neural signal with its well time-
calized events or “spikes”, the signal processing
ethodology should rely on time and frequency localization
aracteristics. These characteristics are strongly met by using
e Discrete Wavelet Transform (DWT) as a front-end stage of
ASSIT. The key feature in MASSIT is that it fuses the well
veloped techniques for multiresolution analysis of the signal
ith the well developed theory of array processing [4] in a
ified framework. We briefly describe below the main

approach of the technique but, for lack of space, we’ll not
attempt to provide mathematical details, which can be found in
[1,5].

This section is subdivided in three parts. First, the key idea
of MASSIT is described. Next, source separation is
accomplished based on spatial filtering using signal subspace
results from MASSIT. Finally, the approach for source
localization is linked to the FEM results of [2]. The overall
approach and preliminary results are summarized in the last
section.

A. Multiresolution Analysis of Signal Subspace Invariance
Technique (MASSIT)

The first step of the MASSIT involves performing a
Stationary Discrete Wavelet Packet Transformation (SDWPT)
[3] to the multichannel observation data matrix denoted

MxNY ℜ∈ , where M denotes the number of channels, and N
denotes the number of snapshots acquired by the array in time
interval T. Assuming there are P neural sources impinging on
the recording array, the classical model for Y is expressed as
follows:

ZSAY += (1)

where MxPA ℜ∈  denotes the mixing matrix,
PxNS ℜ∈ denotes the signal matrix to be estimated, and
MxNZ ℜ∈  denotes an iid additive noise component both

spatially and temporally correlated. The technique doesn’t
assume any restriction on the cross correlation between the
signal and noise, due to the strong background neural activity,
which represents a major component of the observed noise
process. This approach is the strongest and most realistic
among all other array processing techniques [6] due to the
nature of the neural signal environment. The obtained
transformed multichannel coefficient matrix MxN

jY ℜ∈
expresses Y in the wavelet domain in the jth subband.

In a second step, the technique performs advanced signal
processing computations involving Singular Value
Decomposition (SVD) of the spatial covariance
matrix MxMj

YR ℜ∈ of jY  [7]. From a theoretic viewpoint, the
information about the neural source’s spatial amplitude
distribution or “footprint” on the array side is contained in this
covariance matrix. The SVD allows one to assess the P
principal sources impinging on the array to obtain an estimate
of the original source data matrix S at the array interface.

The third step in the algorithm estimates the mixing matrix
A in each of the wavelet subbands from second order statistics
or by estimating the signal and noise subspaces from the output
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of the SVD stage. The last step consists of selecting certain
subbands from the full wavelet expansion that are guaranteed
to span the signal subspace. The criterion by which a
characteristic wavelet tree is selected for each source assumes
that the signal subspace remains invariant across the
multiresolution levels obtained in the wavelet domain. This is
guaranteed to be true only in subbands where the
corresponding wavelet basis functions span the signal’s
functional space. The separation of the P neural sources is
achieved using a simple search in the wavelet decomposition
tree to find nodes that best describe the signal energy based on
three components describing the signal’s energy distribution in
space, time and scale domains. These are:

1- The eigenvalue distribution across tree nodes,
2- The characteristic tree shape.
3- The eigenvector describing the signal subspace.

Details of the algorithm can be found in [5]. Fig. 1 illustrates a
schematic of the system.

It is worthy to mention that, due to the sparsity of the
neural signal on the time base, a spike detection stage usually
precedes the MASSIT stage so that the N snapshots of the
array contain only a single event. It is likely that the length N
time window may contain more than a single event belonging
to different sources. In this latter case, the MASSIT
automatically determines the number of sources P within N
using a statistical Likelihood Ratio Test (LRT) and performs
the appropriate separation [5,7]. This case is out of the scope of
this paper. It will be henceforth assumed that the analysis
described in the sequel is conducted for each detected event
separately.

B. Spatial filtering for neural source separation

Once the mixing matrix A is obtained from MASSIT, it is
feasible to obtain an estimate of the deterministic signal matrix
S without estimating the noise correlation due of the
compactness property of the transform that allows thresholding
small coefficients, an operation often referred to as denoising
[6]. Another way to estimate S can use the sparsity of the
neural signal on the time base as stated earlier allowing the
noise spatial covariance matrix MxM

Z ℜ∈R  to be estimated
from “spike free” data instants. Once this is achieved, the

minimum variance BLUE (Best Linear Unbiased Estimator
[7]) estimate of S can be obtained by using the signal subspace
estimate from MASSIT. This is be expressed as

YRAARAS -1
Z

T-1-1
Z

T )(~ = (2)

The term that pre-multiplies the observation matrix Y is just
the Pseudo inverse of the mixing matrix A that is used to
cancel out all the interference and correlated noise components
once the principal sources in Y are separated. If the noise
covariance is diagonal (spatially uncorrelated), then this is
equivalent to applying appropriate weights to every channel to
maximize the SNR. If the noise is spatially colored, then the
inverse of the noise covariance acts as a spatial filter for all
non-principal components in Y.

C. Localization of neural sources

The MASSIT relies on estimates of the signal subspace
from data measurements and makes use of them to identify the
best wavelet tree representing each source. The array manifold,
defined as all the array responses, i.e. steering vectors obtained
as the signal parameters vary over the entire parameter space
can be obtained by modeling the array geometry using FEM in
the extracellular tissue environment. The intersection of the
estimated signal subspace for each neural source and the
modeled array manifold will immediately enable the solution
to the neural source localization problem in the absence of
noise.

The study performed in [2] reveals some important results
about how the array manifold can be modeled. By modeling
the tissue media through which the signals pass from the
source to the electrode array as a homogeneous resistive
conductor with no space charge, the FEM solutions
demonstrate the distortion of the electrical field lines by the
presence of the non-conducting substrate of the array. The only
good conductors are the recording sites at which the signal
amplitude is estimated by the MASSIT stage and they are too
small to distort the field further. Since it is assumed to have a
poor interface to the tissue, the substrate interferes with the
flow of current from a source to a sink surrounding the field of
interest.
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Fig. 1: Schematic of the MASSIT: The blocks W , W-1 imply a SDWPT,  and inverse SDWPT operators respectively. There are J+1 nodes in the
wavelet packet tree (node 0 being the root level, i.e., the time domain signal, and J = 2L+1-2, where L is the number of resolution levels, i.e., tree depth).
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This phenomenon can be interpreted as an amplification of
the observed signal particularly when the cell is directly over
the substrate.  Consequently, the signal’s amplitude cannot be
assumed to attenuate according to a simple 1/r or 1/r2 roll-off.
This implies that there exists a point spread function for the
source on the substrate that depends on the altitude and shift
from the substrate center. In otherwords, the “footprint” of the
cell on the array can be deconvolved to a point in space. Fig.(2)
illustrates the point spread function hypothesis of the source
relative to its position from the substrate center at different
altitudes in two dimensional space.

The localization of the neural source is contingent upon
estimating this point spread function and coupling it with the
signal subspace estimated at the array.

The problem can thus be envisioned as two fold:
1- On the probe computational side, the spatial covariance

matrix can be partitioned to subtract out common signal
profiles of correlated sources, keeping only the
independent uncorrelated part of each source to be
localized.

2- On the brain side, the probe geometry is translated into
gain functions that equalize the disturbance of the field at
the recording sites.

By carefully examining the profiles in Fig.2-b, less
skewness and higher peaks near the substrate center
characterize low altitude sources. High altitude sources have
broader, skewed and have lower peaks near the center. Since
skewness is a function of the site position on the substrate,
each probe geometry has an associated gain pattern that has to
be included in the computations of the signal subspace to
provide the localization information.

III. RESULTS

The proposed method was implemented on a simulated data
set extracted from experimental data. A total of P = 4 neural
sources were detected across a subarray of 4 channels on a 2D
array arranged as shown in Fig.3.

Template waveforms were obtained by averaging multiple
realizations of these sources across time [8]. The spike
waveforms are shown in Fig. 4 for each channel of the
subarray. Experimental noise from spike-free data was
extracted from the same subarray data.

For predetermined signal to noise ratios, the extracted noise
was scaled and the template waveforms were added to the
scaled noise at time intervals obtained from Poisson processes
of known parameters. The simulation is thus the closest

Fig. 2: (a) Approximate cell model in 3 different positions X, Y and Z
above a 1D substrate with 4 sites. Altitudes above substrate are 0.05,

0.1 and 0.15 respectively. The substrate width is 0.2, and site spacing is
0.06. The origin is assumed at the substrate center. The source radius is

0.02 and the zero equipotential surface is at radius 1 from the origin.
For clarity, the schematic is not to scale. (b) FEM solution for signal

strength at X (red) , Y (green), and Z (blue) as function of the substrate
shift from the origin.
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Fig. 3: 2D- 16 channel probe used for the data acquisition.  Results for a
subarray of channels 6,7, 10 and 11 were the neural activity is highest are

shown in Fig. 4.

Fig.4.: Template waveforms for 4 neural sources detected across the
subarray of channels 6, 7, 10 and 11 of Fig. 3.
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scenario to a real experimental data set with the difference that
event occurrence times were known before to the noise
addition. This enabled to assess accurate performance of the
technique under different SNRs. The simulated data set was
processed with the MASSIT and the signal subspace estimate
of each source is shown in Fig.5 for SNR = 12.5 dB.

The array manifold for the 2D probe geometry of Fig.3 can
be obtained using a 3D FEM similar to the linear array
illustrated in Fig.2-a. Studies are underway to integrate the
FEM method in 3 dimensions with histological findings. The
output is directly applied to the signal solution obtained from
MASSIT to adjust for the substrate presence in the
extracellular field. The parameter vector to be estimated
consists of the shift, depth and altitude from the substrate
center in the x, y and z directions, respectively. The array
manifold for variable parameter vectors is calculated. Each
parameter vector generated 4 profiles corresponding to the 4
sites similar to each altitude in Fig.2-b. The closest
intersection, in a mean square sense, with the estimated signal
subspace from MASSIT enables immediately to obtain the
parameter vector describing the localization information from
the assumed origin (substrate center).

VI. CONCLUSION

We have presented a new methodology for solving the
localization problem of neural sources in extracellular
recordings. The method relies on a two-stage process where

estimates of the array response are derived from a robust array
processing algorithm that estimates the neural source’s
footprint at the substrate. The neural signal is estimated using a
linear unbiased estimator that has minimum variance. The next
stage applies gain functions derived from FEM modeling of the
substrate geometry to correct for the disturbance of the field
caused by the presence of the nonconductive substrate.  The
outcome is used to estimate the neural cell location relative to
the recording probe.

 Current work is aimed to implement FEM models for each
probe geometry and verify the consistency of the technique
with different array manifolds. Meanwhile, histological
methods involving staining techniques are being conducted in
our lab to accurately determine the probe location after retract
to verify the accuracy of the technique in locating sources in
the proximity of the probe trace.
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