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Abstract-Biosensors play a critical role in the chronotropic
regulation of rate-adaptive electronic pacemakers. How-
ever, typical pacemaker biosensors only approximate phys-
iological function via the measurement of surrogate sig-
nals such as ventilation, and therefore can be poorly cor-
related with chronotropic requirements. Alternatively, the
electropotential input-output relationship of cardiac my-
ocytes could be exploited for long-term, reversible quan-
tification of chronotropic demand by monitoring the in-
herent rate effects of blood-borne catecholamines. Previ-
ously, we demonstrated the utility of this approach using
murine whole-heart pinnal allograft transplants. Here, we
advance this technique by utilizing pluripotent embryonic
stem cell-derived cardiac myocyte aggregates implanted in
the pinnae of syngeneic murine hosts. After one week,
in all of the aggregates that showed sustained electropo-
tential activity, there was � 70% concordance between the
myocyte-aggregate rate and endogenous heart rate over
the course of the trial, thereby demonstrating the abil-
ity of the cell-based biosensors to sense humoral signals
and track endogenous chronotropic dynamics. Improve-
ments in myocyte-aggregate electropotential competency,
along with further advancements such as catheter-based
myocyte-aggregate systems, may facilitate the incorpora-
tion of such long-term, reversible biosensors into cardiac
pacemakers or other devices that require humoral sub-
stance sensing.
Keywords - biosensor, stem cells, tissue engineering, pace-
maker

I. INTRODUCTION

One of the fundamental tasks required of implantable med-
ical devices is accurate real-time determination of relevant
functional physiological needs. For example, a cardiac pace-
maker must determine the pacing rate required to supply the
body with adequate cardiac output. Biosensors, which trans-
duce biological actions or reactions into signals amenable to
processing, are well suited for such monitoring. However, typ-
ical in vivo biosensors only approximate physiological func-
tion via the measurement of surrogate signals. Such surrogate-
signal estimation is a prime source of error; e.g., cardiac pace-
makers that use such signals often lack a high degree of dy-
namic fidelity with chronotropic requirements [1, 2].

A novel alternative approach is to use a biologically-based
system that can sense physiological signals directly, thereby

avoiding the approximation errors associated with surrogate-
signal sensing. To this end we recently reported the develop-
ment of such a tissue-based biosensor exploiting the endoge-
nous signaling pathways of excitable tissue to couple the detec-
tion of in vivo physiological inputs to a functionally-responsive
electropotential output [3]. Specifically, we studied the activ-
ity and regulation of remotely engrafted neonatal cardiac tis-
sue in a murine model system. We found that the chronotropic
dynamics of the exogenous excitable cardiac allografts were
highly correlated with the activity of the endogenous heart.
Moreover, pharmacological trials showed that the transplanted
allografts were regulated by circulating catecholamines, sug-
gesting that this approach may offer a foundation for the devel-
opment of tissue-based biosensors for the detection of a range
of blood-borne substances.

The present study was conducted to improve the functional
biosensory utility of such excitable tissue-based biosensors.
In particular, in an effort to translate such biologically-based
biosensors into actual in vivo experimental or clinical tools, we
developed sensors that utilize stem cell-derived myocyte ag-
gregates in place of whole hearts. Such syngeneic, uniformly
cultured aggregates would improve translational applicability
and molecular plasticity, and therefore improve biosensor ro-
bustness and feasibility.

II. METHODOLOGY

A. Embryonic Stem Cell-Derived Cardiac Myocyte Transplant
Model

Cardiac cell-based in vivo biosensors were developed with
embryonic stem cell-derived cardiac myocytes in the place of
whole neonatal cardiac tissue used in our previous study [3].
Spontaneously beating cardiac myocytes were derived from
E9 murine pluripotent embryonic stem cells (American Tissue
Culture Company, Rockville, MD) as previously described [4–
6]. Briefly, embryonic stem cells were cultivated on a feeder-
layer of primary mouse embryonic fibroblasts in DMEM cul-
ture medium supplemented with non-essential amino acids,
L-glutamine, 	 -mercaptoethanol, 20% fetal calf serum, and
100 IU leukemia inhibiting factor (LIF). Droplets of cells (ap-
proximately 
��� cells) in 30 � L of culture media without LIF
were pipetted onto the lids of 3cm bacteriological petri dishes
filled with phosphate-buffered saline (PBS) and cultivated for
two days (at ����� C and 5% CO � ). The resulting aggregates
were transferred from the hanging drops into 6cm dishes, fur-
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ther cultivated for five days, and then transferred to 12-well
plates. Spontaneous chronotropic myocyte aggregates formed
between 5 and 10 days after transfer and were subsequently
employed in the murine pinnal transplant model. Specifically,
the mice were pre-treated with platelet-derived growth factor
(PDGF) (20 ng in 20 � L PBS). The following day, myocyte
aggregates were physically dissociated and suspended in PBS
(approximately ����
��� cells in 20 � L). These suspensions
were transferred into the pinnal transplant pocket, which was
then sealed via gentle pressure with forceps. Data acquisition
for chronotropic activity assessment was performed 3-7 days
post-transplantation as described below.

B. Electrocardiograms

Between 3 and 7 days post-transplantation, electrocardio-
gram (ECG) activity of the endogenous hearts and exogenous
myocyte-aggregates were measured following intraperitoneal
(IP) anesthetization with avertin. ECGs were acquired for ap-
proximately 60 min via an A-M Systems Model 1700 four-
channel differential AC amplifier. Signals were bandpass fil-
tered between 3.0 and 100.0 Hz, notch-filtered at 60.0 Hz,
amplified 1000X, and sampled at 500 Hz by a National In-
struments AT-MIO-16E-10 data acquisition board on a 266
MHz Intel Pentium-II computer running Real-Time Linux
[7]. Transplant chronotropic activity was defined by two
criteria. ”Sustained” activity was characterized by consis-
tent, monomorphic, periodic waveforms that continued for at
least 200 seconds. ”Sporadic” activity was characterized by
a range of activity including short-lived, irregular, multimor-
phic activity, regular activity lasting less than 200 seconds, and
slow, scattered monomorphic waveforms that recurred multi-
ple times throughout the recording period.

C. Quantitative Rate Analysis

Post-acquisition automatic (with manual correction as
needed) ECG excitation annotation was performed using cus-
tom Linux C++ software. Excitations were defined as the R-
waves for the endogenous hearts and the aggregate action po-
tentials for the myocyte aggregates. Mean inter-excitation in-
tervals ��� were computed every two seconds so that the dy-
namics of the endogenous and exogenous signals, which have
different inherent rates, could be compared quantitatively at
synchronized time slices.

D. Endogenous-Exogenous Cardiac Chronotropic Correlation

Recordings from the exogenous and endogenous tissue were
analyzed for “relative” (the ability of the exogenous my-
ocyte aggregate to sense increasing and decreasing endogenous
heart-rate trends) and “absolute” (the ability to sense absolute
heart rate; i.e., one-to-one correspondence) chronotropic track-
ing. Discrete data sets of at least 200 s were fit (using Matlab
5.3.1) to a continuous-time polynomial function �������! as pre-
viously described [3]. The concordance of the endogenous and
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Fig. 1: Representative example of the mean inter-excitation intervals "#" ver-
sus time for the endogenous heart (a) and the ES-cardiac myocyte transplant
(b) of a mouse pre-treated with PDGF. The insets in panels (a) and (b) show
segments of the endogenous and ES-cardiac myocyte electrocardiograms, re-
spectively. The insets show that excitations were in the negative-voltage di-
rection for both recordings in this trial. First order derivatives versus time$ "%"'&)(�*�+ $ ( of the polynomial fits of the RR dynamics (c) demonstrated an
80% concordance in sign for the trial, and therefore a high degree of “relative”
sensing ability.

exogenous signals was computed as the fraction of the time
that their derivatives ,����-���! /.0,�� [computed analytically from
the fitted polynomial function �����1�! ] had the same sign. A
concordance of �2�435�6� was employed as a measure of the abil-
ity of the exogenous myocyte aggregates to track the increases
and decreases in endogenous rate. Absolute chronotropic cor-
relation was measured by the correlation coefficient computed
between each exogenous and corresponding endogenous ���
time series [3].

III. RESULTS

The majority (30/37) of the myocyte-aggregate transplants
demonstrated spontaneous or sustained electropotential activ-
ity after one week. Moreover, 6/30 of the electrically viable
cellular transplants demonstrated sustained depolarizations.
Importantly, all of the sustained-activity myocyte aggregates
acted as relative biosensors of the endogenous chronotropic dy-
namics (i.e., with 78�9�435�6� ). Figure 1 shows one such relative
tracking example. Furthermore, as shown in the example of
Figure 2, the myocyte aggregates showed a high degree of ab-
solute tracking; for the 6 sustained-activity aggregates, the cor-
relation coefficients between the myocyte-aggregate ��� and
the endogenous ��� were 7;:<�43 =��?>@�A3B
C� (mean > standard
deviation). Such absolute sensing ability suggests that signals
from such biosensors could be employed as direct indicators of
endogenous heart rate.
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Fig. 2: Representative example of ES-cardiac myocyte-aggregate "%" versus
endogenous "%" in a mouse pre-treated with PDGF. For this trial, the corre-
lation coefficient DFE9G�H I � , indicating a high degree of “absolute” tracking
ability.

IV. DISCUSSION

In this study we have extended the development of a new
class of biologically-based biosensors that exploit the elec-
tropotential input-output relationship of cardiac myocytes for
long-term, reversible quantification of blood-borne substances.
Specifically, we have demonstrated the ability of transplanted
pluripotent embryonic stem cell-derived cardiac myocyte ag-
gregates to function as effective sensors of endogenous heart-
rate dynamics.

One potential application of such biologically-based biosen-
sors is to serve as the chronotropic sensing element for im-
plantable cardiac pacemakers. By utilizing the inherent ability
of cardiac myocytes to regulate chronotropy by setting elec-
tronic pacing rate according to sensed humoral signals, such
a pacemaker would avoid the approximation errors associated
with the surrogate-signal rate estimates utilized by current rate-
adaptive pacemakers.

We project that the utility of this approach will extend be-
yond that of chronotropic regulation biosensing. Molecular
engineering may offer a means for the detection of physiolog-
ical and pathophysiological signals that do not routinely alter
cardiac chronotropy. Indeed, excitable-cell biosensor systems
could lead to the development of long-term, physiologically-
tuned, functionally integrated bioprocessing interfacing with a
range of external or implantable devices to facilitate the rapid
initiation of appropriate actions.

We recognize that furthering the feasibility of cardiac
myocyte-based biosensors will require that the cardiac my-
ocytes be derived from syngeneic sources of stem cells such
as the bone marrow. Recent murine studies have demonstrated
that cardiac myocytes can be derived from bone marrow cells
[8]. This approach may allow for the potential clinical trans-
lation of cell-based chronotropic biosensor systems. Further
advances in in vivo biosensors might employ such cells on sil-
icon chips or other defined biocompatible materials [9–11].

In short, the employment of genetically plastic stem-cell

technology to detect blood-borne signals should facilitate the
development and potential clinical translation of this approach
for the direct biological detection of physiological and patho-
physiological signals. This may one day lead to the incorpora-
tion of such long-term, reversible biosensors into cardiac pace-
makers or other devices that require humoral substance sens-
ing.
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O. Gryshchenko, M. M. Böhm-Pinger, H. Sauer, Q. Liu,
and J. Hescheler, “Action potential propagation failures in
long-term recordings from embryonic stem cell-derived
cardiomyocytes in tissue culture,” Pflügers Arch. - Eur. J.
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