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PHENOMENOLOGY AND NUMERICAL ANALYSIS OF RELAXATION PROPERTIES AND FAILURE 
OF MATERIALS WITH DEFECTS UNDER DYNAMIC LOADING 

1.   INTRODUCTION 

During the last few decades the interrelation between structure and properties of solids has been the key 
problem in physics and mechanics. An extensive study of transformation of structure stimulates bridging the gap 
between general approaches of physics and mechanics of solids. This tendency provides the deeper insight into 
general laws of plasticity and failure, which can be also treated as structural transitions induced by defects. 
Real solids are complex in structure defined as a hierarchy of different scale levels. Solids under loading 
demonstrate changes on all structural levels. On analyzing, these changes have been qualified as plastic 
deformation and damage processes, realized by nucleation, evolution and interaction of defects on appropriate 
structural levels as well as by the interaction of defects between levels. Until recently, no unified multifield 
theory of solids has been developed to describe a variety, complexity and interaction of processes commonly 
observed on all levels of structure. 

To construct the model allowing for the material structure and its variation, the prime attention should 
be given to the choice of physical level of microstructure and, consequently to the type of defects. Furthermore, 
each structural level involves the results of process developed on smaller scale levels. These questions are 
discussed in Section 2 and Section 3. 

Section 4 is devoted to the development of statistical model and thermodynamics for the description of 
collective behavior of typical mesoscopic defects (microcracks, microshears) and the defmition of specific 
nonlinear form of thermodynamic potential (fi-ee energy) of materials in the presence of defects. 

The results of statistical consideration were used in Section 5 and statistically based phenomenology 
was proposed for the description of the influence of defects on the plastic relaxation and damage-failure 
transition. Continuum theory of plasticity and failure was developed as specific form of fi-ee energy expansion in 
the term of defect induced strain (defect density tensor) that allowed the derivation of kinetic equations for defect 
density tensor and the description of plastic relaxation ability and damage-failure transition in the linkage with 
the generation of collective modes in defect ensemble. It was shown the linkage of the orientation transition in 
defect ensemble with plastic strain instability and the generation of "blow-up" regimes of defect kinetics as the 
fi-acture precursor. Above mentioned scenarios of defect evolution have the presentation as specific forms of 
self-similar solutions corresponding to the solitary wave solution of the orientation transition fi-ont and the 
"blow-up" dissipative structures of damage localization kinetics. These solutions represent the set of collective 
modes in the defect ensembles with characteristic spatial and temporal scales. 

The role and the influence of these modes were studied in Section 6 with the application to the problem 
of nonlinear crack dynamics (transition fi-om the steady-state to the branching regime of crack propagation and 
the nature of fragmentation). It was shown that collective blow-up modes at the crack tip is the image of the 
daughter-cracks and represent the set of new phase variables providing qualitative new crack dynamics and 
scaling properties of materials. These theoretical results were supported by the direct experimental study of crack 
dynamics with the usage of high speed recording of stress pattern at the tip of propagating crack, the 
investigation of the scaling properties, recording the stress phase portraits (Poiacare cross-section) at the crack 
tip area, and the measurement of the correlation index due to the laser profilometry and the New View scanning 
of fracture surface roughness. 

The established self-similar nature of collective modes of defects allowed one to give in Section 7 the 
interpretation of the self-similar features of spall failure and the failure wave phenomenon as the resonance 
excitation of blow-up damage localization zone in shocked glasses and ceramics. 

Section 8 and Section 9 are devoted to the study of the structure of stress waves in the linkage with 
nonlinear properties of materials induced by defects. It is shown that plastic flow can be interpreted as 
continuous orientation transition due to the rescaling in mesodefect ensemble, when more coarse mesodefect 
substructures are involved in the orientation transition. The self-similar nature of these transitions is considered 
as the reason for the universality of viscosity (the Sakharov data) and the steady-state plastic stress front in 
shocked materials (the Barker-Grady four power law of stress-strain rate relation). Developed approach allowed 
the interpretation of stress front in shocked materials, the explanation of the strain rate dependent range of the 
Hugoniot elastic limit. 

The experimental study of mechanical properties of copper in the large range of the strain rates is 
presented in Section 10 and Section 11 in the linkage of above mentioned mechanisms of plastic flow with 
collective behavior of defect ensemble and scaling properties of collective modes. 



The comparative analysis of conventionally used phenomenological models (Follansbee-MTS Model 
and Bodner-Partom Model) and developed model is carried out in Section 12 and Section 13. It is shown the 
limited applicability of MTS and Bodner- Partom Models for the description of transient effects (transition from 
the Hugoniot to the plastic front, elastic precursor decay, plastic instability and localization) in dynamically and 
shock loaded materials. 

2. MESODEFECT PROPERTIES 

2.1. Dislocation Substructures 

It is well-known, that the dislocation density increases due to the plastic deformation and the 
consequent changes of dislocation substructures are observed. These phenomena occur under the active loadmg, 
fatigue, creep, dynamic and shock wave loading. The consequent structure evolution has not the arbitrary but 
regular character. Despite the variety of the deformed materials the limited types of the dislocation substructures 
are observed. As it was shown in [1] the transitions in dislocation substructures have general scenario for 
polycrystalline materials and monocrystals. The succession in this transition is the property of the dislocation 
interaction and the temperature. Some times, the transition from one type of dislocation substructure to another 
leads to sharp changes in mechanical properties of metals and alloys. The main mechanisms of the dislocation 
friction (viscoplastic material responses) and the deformation hardening have the relationship to the 
reconstruction of dislocation substructures. 

Each type of dislocation substructures exists in the corresponding range of the dislocation density and it 
is important that these ranges are stable for large classes of materials. The reason of such universality is related 
to the inherent property of dislocation ensembles as the essentially non-equilibrium system which reveals self- 
similarity features in the sense of characteristic nonlinear responses. This imiversality m the behavior of 
dislocation systems appears in the experiments as the low sensitivity of the evolution of dislocation structures to 
the external stress, but the high sensitivity to structural stresses induced by dislocation interaction. 
The increase of the dislocation density is accompanied by the decrease of the distance between the dislocations 
and the stresses of the dislocation interaction generated on the corresponding dislocation substructures. The 
collective properties in dislocation ensembles begin to play the leading role in these transitions and the 
substructure formation. 
The driving force of the reconstruction of dislocation ensembles is the tendency to reach the relative minimimi of 
total energy due to the creation of dislocation substructures [2]. The energy of the dislocation substructure 
includes two parts: the own dislocation energy and the energy of the dislocation interaction. The reconstruction 
of the dislocation substructure leads to the change of both parts. As the consequence, the energy of new formed 
dislocation substructure is less than the energy of the preceding substructure. 
The main part in the energy of the dislocation substructure belongs to the own dislocation energy [2] 

AU-^^f. ,2.1) 

where p is the dislocation density in the dislocation substructure, b is the Burgers vector, G is the shear elastic 

modulus, 16 is the radius of the dislocation nucleus, L is the screening radius of the elastic field created by the 
dislocations. The last scale plays the important role in the evolution of dislocation substructures: the increase of 
the dislocation density leads to the decrease of the L -scale in the order of the substructure succession. The 
typical dislocation substructures that are experimentally observed are chaotic, tangle, walls of the cells, sub- 
boundaries of strip substructures. The value of L is close to the grain size of chaotic substructures and has the 
order of the width of cell walls or high density dislocation area in strip substructures. 

Under the transition to miss-oriented substructures the dislocation charges arise, that leads to the 
decrease of the energy of these substructures due to the ttim of charge signs in their spatial distribution and, 
simultaneously, to the refinement of substructure parameters. 

Such character of the formation of dislocation substructures reflects the self-organizing tendency of 
reconstruction in the dislocation ensemble. The existence of critical dislocation density corresponding to the 
creation of dislocation substructures was discussed in [1]. Typical values of critical dislocation density are 
presented in Table 1 for the copper alloys. 
As usual, the appearance of the local fluctuation of dislocation density proceeds to the fransformation of one 
substructure to another. The growth of these fluctuations leads to the change of the distribution fimction for the 
dislocation density caused by the second mode generation. These regularities of the evolution of defect 
substructures allow one to consider these substructures as the independent subsystem for the materials during the 
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deformation. In this case the list of government parameters, like temperature and stress, can be added by the 
order parameters related to the dislocation substructures. 

Table 1. Types of transition in dislocation substructures [1] 

Type of Transition <Pc> lO"^", cm-^ 

Chaotic substructure -> tangles 0.2 

Tangles -^orientated cells 0.2 - 0.5 

orientated cells-^ disorientated cells 0.4-0.6 

pile-ups -^ homogeneous net substructure 0.2-0.3 

disorientated cells -> net substructure strips 0.5-2 

disorientated cells -> strips 

strips -> substructure with continuous disorientation 

3.0 

3-4 

It supports the view on the significance of collective effects in the dislocation ensemble and more 
pronounced sensitivity of the structural transformation to the current value of the dislocation density, but not to 
the current external stress. 

These data support also the assumption concerning the essential influence of the dislocation density, as 
the independent variable, on the qualitative changes in the material structure and mechanical responses. The 
stages of deformation curves, the hardening parameter have the linkage with the transformations in the 
substructures. 

2.2. Microcrack (Microshear) Ensemble 

Of all structural levels of sub-dislocation defects, the level of microcracks and microshear may be 
considered as the representative for developed stage of plastic deformation and failure. The rest of defects (point 
defects, dislocations, dislocation pile-ups) have the smaller values of intrinsic elastic fields and energies in the 
comparison with microcracks and microshears. Moreover, the nucleation and growth of these defects (that are 
closest to the macroscopic level) are some final acts of the previous rearrangement of the dislocation 
substructures, when all the defects take part in the present local volume of the material. 

The density of these defects reaches 10^^-10^'' cm'^, but each mesoscopic defect consists of a dislocation 
ensemble and exhibits the properties of this ensemble. Scenarios of the evolution of ensembles of these 
mesoscopic defects show features of non-equilibrium kinetic transitions, and experimental data obtained in a 
wide range stress mtensities and rates of strain confirm the universality of structural evolution and its effect on 
relaxation properties and failure. 

The typical sizes and concentration for the microcrack ensemble ia different materials are represented in 
Table 2 [3]. 



Table 2 

Material I, jum 
X-ray Microscopy 

n, cm^ 
X-ray                          Microscopy 

Aluminum 0.14 0.2 10" — 
Nikel 0.08 0.1 10'^ 2 10" 
Gold, silver ~ 0.2 ~ 2 10" 
Copper, zinc — 0.25 — 5 10" 
Beryllium 0.12 — 5 10'^ — 
Steel 30CrMCN2A ~ 0.1 — — 
NaCl 2 1-3 lO'-lO" 10* 
Polyetylene ~ 0.015 — 610'^ 
Polypropylene ~ 0.02 ~ 7 10" 
PMMA ~ 0.02 ~ 410'^ 

The important features of the quasi-brittle fracture were established for the understanding of various 
stages of failure: damage, damage localization, crack nucleation and propagation. It was shown that microcracks 
have the dislocation nature and represent the hollow nuclei of the dislocation pile-ups. The model representation 
of microcrack as dislocation pile-up [4] allowed the estimation of the own microcrack energy [3,5] 

^In-^ S2, (2.2) 

where  B = nb is the total Burgers vector;  s = B So  is the penny-shape microcrack volimie;  So  is the 

microcrack base; ^o = %'(? is the volume of the defect nuclei, ro is the characteristic size of the dislocation 

hollow (defect nuclei); R is the characteristic scale of the elastic field produced by microcrack. The estimation 
given in [3,4] showed that the power of the dislocation pile-up is close to n « 20. 
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Figure 2.1. Distribution of microcracks and microshears in dimension and dimensionless coordinates: n is the 

microcrack concentration, I is characteristic size; n^f^^l^Q are scaling parameters [6]. 
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Two reasons are important for the dislocation representation of microcracks. The first one is the 
determination of the microcrack energy as the energy of the dislocation pile-up. The second reason is the 
determination of microscopic parameters for the microcracks as the consequence of the symmetry change of 
displacement field due to the microcrack nucleation and growth. Study of the microcrack (microshear) size 
distribution for the different spatial scales revealed the self-sunilarity of the mesodefect pattern, Fig. 2.1 [6]. The 
statistical self-similarity reflects the invariant form of the distribution fimction for the mesodefects of different 
structural levels. This fact has important consequence for the development of the statistical multifield theory of 
the evolution of the defect ensemble. 

3. ORDER PARAMETERS OF CONTINUUM WITH DEFECTS 

3.1. Some Results of Gage Field Theory 

The gage theory is presently widely used for analysis of structural and physical properties of materials 
with defects, being very help&l in developing continuum models of such media. The reasons for this are the 
follows. Nucleation and growth of defects changes the diffeomorphic structure of displacement fields. Using the 
formalism of gage field theory (the Yang-Mills formalism [7]), these changes can be introduced as the 
localization of the corresponding symmetry group of the distortion tensor and considered as additional internal 
coordinates that are kinematically allowed. 

The structure of the so-called gage fields must correspond to the type of defects. The basis for the 
application of gage theory to the problem considered is the establishment of the internal symmetry group for the 
medium with defects. Most mechanical models of deformed continuum are invariant with the respect to the 
uniform groups of translations, T(3) , and rotations, SO(3) . This means that the Lagrangian of the system is 
invariant imder the transformation 

where x and ^ are the current and initial coordinates, g(^,t) and i(^,Oare the rotation and translation 
operators, respectively. 

The differentiation operator is invariant with the respect to the transformations T(3) and iS'0(3), and is 
given by the covariant derivative 

Df,x = d^x + Tf,x + /3f,, 

where F^ and ^^ are the differential operators related to the rotation and translation [7]. 

For a medium with defects, the homogeneity of transformation 50(3) and T(3) is violated. In this 
case, the operators T^ and /?,, correspond also to local rotations and translations related to the defects. The 

internal symmetry group of such a mediimi corresponds to the so-called semi-direct product S0(3) T(3). The 

elements F^ and ^^ of this group, which are functions of coordinates and time, are called the gage fields. 
Another important result of applying gage theory to the medium with defects is that we can construct a 

Lagrangian of the mediimi with defects. Using the minimum expansion, we can write the Lagrangian of the 
system with two additional variables F^ and fi^ [7] 

L = -\Qg^^^}a,^,, -^C2gfk9Xv0,,, (3.1) 

where 

a^V    =   8^P^   -  dyPy   + T^Py   - TyP^    +  e^yX 

are the so-called intensities of the gage fields related to the local rotations and translations due to the presence of 
defects; g,7t are the components of the metrical tensor. 



The phenomenological parameters Q and C2 in the Lagrangian L are the constants of dislocation 
interaction. Expression (3.1) for the Lagrangian will fiiture be used in our analysis of the statistical properties of 
the ensembles of defects. 

3.2. Microscopic and Macroscopic Variables for Microcracks (Microshears) Ensemble 

Structural parameters associated with microcracks and microshears were introduced [3] as the 
derivative of the dislocation density tensor. These defects are described by symmetric tensors of the form 

Sik = sViVt (3.2) 

in the case of microcracks and 

s,k = l/2s{Vih+liV,) (3.3) 

for microshears. Here v is unit vector normal to the base of a microcrack or slip plane of a microscopic shear; 

/ is a imit vector in the direction of shear; s is the volume of a microcrack or the shear intensity for a 
microscopic shear. 

The change of the diffeomorphic structure of the displacement field due to these defects has also 
important consequences fi-om point of view of the symmetry change of the system "solid with defects". This 
symmetry aspect can be used to model arbitrary defects both in crystallme and amorphous materials without the 
assumption concerning the dislocation nature of the defects that originally is the property of crystalline materials. 

The average of the "microscopic" tensor Sn, gives the macroscopic tensor of the microcrack or 
microshear density 

Piic = n{sii,), (3.4) I 

that coincides with the deformation caused by the defects, n is the defect concentration. 

4. STATISTICAL MODEL OF CONTINUUM WITH DEFECTS 

4.1. Effective Field Method 

The effective field method is fi-equently used to refer to any auxiliary field (real or virtual) introduced 
into a theoretical model in order to construct a simplified way of taking into account the effect of complicated 
factors like mterparticle interactions, which are either too difficult to evaluate rigiriously or are even not yet clear 
in detail. 

In our consderation the reference to the «effective field method» means that we use the concept of an 
auxiliary external multicomponent field, constructed in such a way that in addition of the corresponding term to 
the Hamiltonian of the system under consideration makes it state an equilibriiun one at any given instant in time. 
This simple idea has proved itself as a useful approximation or the treatment of a number of problems. 

The effective field method was reintroduced in [8] into statistical physics a fiuitfiil physical idea put 
forward in thermodynamics by Leontovich [9]. According to Leontovich for an arbitrary nonequilibrium state of 
any thermally uniform system, that is characterized by definite values of internal parameters, the transition into 
the equilibrium state with the same values of those internal parameters may be performed by introducing an 
additional force field. By definition, the entropy of this nonequilibrium state is equal to the entropy of the 
equilibrium (being that due the presence of the additional force field) state characterized by the same values of 
the considered material parameters. 

The microscopic kinetics for the parameter % is determmed by the Langevin equation 

Sik=Ka{s,„)-Fit (4.1) 

where Kn^ = dE/dsa , £■ is the energy of the defect and Fit is a random part of the force field and satisfies the 

relations (^Fiic{t)) = 0 and {Fii,{t''^ii^{t)j = QS{t-t'). The parameter Q characterizes the mean value of the 

energy relief of the initial material structure (the energy of defect nuclei). 
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Statistical model of the defect ensemble was developed in the terms of the solution of the Fokker-Plank 
equation in [2,3] 

■^W = ——K W + ^O— W (4.2) 

According to the statistical self-similarity hypothesis the distribution fimction of defects can be 

represented in the form W = Z~ exp - ^ I where Z is the normalization constant. As it follows from (4.2) 

the statistical properties of the defect ensemble can be described after the determination of the defect energy E 
and the dispersion properties of the system given by the value of Q. 

In the term of the microscopic and macroscopic variables and according to the presentation of these 
mesodefects as the dislocation substructure the energy of these defects (the Lagrangian) can be written in the 
form 

E = Eo- HitSit + asl, (4.3) 

where the quadratic term represents the own energy of defects (2.2) and the term /fft% describes the interaction 
of the defects with the external stress o-jt and with the ensemble of the defects in the effective field 
approximation: 

Hit = ait + 2pi^ = CTij. + Anl^Siii), (4.4) 

where a, A  are the material constants. The average procedure gives the self-consistency equation for the 
determination of the defect density tensor 

Pik = «J SikW(s, V, l)dSit. (4.5) 

For the dimensionless variables  p,t = / ,/^ Pih % = H/% %> <^tt = '^"/i   self-consistency 

equation has the form 

Pik = J SikZ-i exp(((T,vt + -^ Pik)Sik-s?k j^ik, (4.6) 

that includes the single dimensionless material parameter   ^ = %  • The dimension analysis allowed us to 

estimate that 

Here G is the elastic modulus, Va ~ r§ is the mean volume of the defect nuclei, R is the distance 

between defects. Finally we obtain for d the value ^ ~ I 7I I that is in the correspondence with the hypothesis 

concerning the statistical self-similarity of the defect distribution on the different structural level. 



Figure 4.1. Characteristic responses of 
materials on defect growth. 

Figure 4.2. Free energy dependence on stress and 
defect density for 5 <S^ «1. 

The solution of the self-consistency equation (4.6) was found for the case of the uni-axial tension and 
simple shear [2], (Fig.4.1). The existence of characteristic nonlinear behavior of the defect ensemble in the 
corresponding ranges of <?(^> & «1.3,    Sc<S<S.^    <J<^c «1) was established, where Sc and S» are the 

bifurcation points. It was shown [3,4] that the above ranges of <5are characteristic for the quasi-brittle 
(<y < ^c «1), ductile (4 < (5 < <5.) and nanocrystalline (<J > & «1.3) responses of materials. It is evidence 
from this solution that the behavior of the defect ensemble in the different ranges of d is qualitative different. 
The replace of the stable material response for the fine grain materials to the metastable one for the ductile 
materials with the intermediate grain size occurs for the value of <5 = & «1.3, when the interaction between the 
orientation modes of the defects has more pronounced character. It means that the metastability has the nature of 
the orientation ordering in the defect ensemble. It will be shown in Section 8 that continuous orientation 
transition due to the growth of the defect density (and, as the consequence, the decrease of (5) provides the 
specific mechanism of the momentum transfer that is conventionally known as the plastic flow. As it will be 
discussed in Section 6 the range oi S <Sc^\ provides the specific non-linear kinetics of defect evolution, 
which leads to the nucleation of failure hotspots. 

5. COLLECTIVE PROPERTIES OF ENSEMBLES OF DEFECTS 

5.1. Phenomenology of Solid with Defects. Free Energy. 

The statistical description allowed us to propose the phenomenology of solid with defects based on the 
appropriate presentation of the free energy form F. Taking in view that Eqn.4.5 corresponds to the equation 

/QJJ = 0, the simple phenomenological form of the part of the free energy caused by defects (for the uni-axial 

case  p = Pi„ cr = a^, e = s^^) is given by the six order expansion, which is similar to the well-known 
Ginzburg-Landau expansion [11]. 

P = )i^(^-%)P' ■ y^Bp*+yc(i-%)p^-Dap+ xi'^ip y. (5.1) 

The biftu'cation points St, Sc play the role that is similar to the characteristic temperatures in the 
Ginzburg-Landau expansion in the phase transition theory. The gradient term in (5.1) describes the non-local 
interaction in the defect ensemble in the so-called long wave approximation; A, B, C, D and z ^re the 
phenomenological parameters. 

The defect kinetics is determined by the evolution mequality [5] 

SF ^ SF   dp 
a       5p     dt <0 (5.2) 

that leads to the kinetic equation for the defect density tensor 



dt Ail-f)p -Bp^^ai-f)pS-Da -4^(Z^)U (5.3) 

where F is the kinetic coefficient. 
Kinetic equation (5.3) and the equation for the total deformation 

s=Ca+p (5.4) 

(C is the component of the elastic compliance tensor) represent the system of the constitutive equations of solid 
with considered types of the defects. 

5.2. Collective Properties of Defect Ensemble 

As it follows from the solution of (4.5), presented in Fig. 4.1, transitions through the bifiircation points 
Sc and 6^ lead to a sharp change in the symmetry of the distribution fimction as a result of the appearance of 

some orientationally pronounced macroscopic modes of the tensor />,i. The effect of transitions on the evolution 
of the defect ensemble is determined by the type of bifurcation - the group properties of the kinetic equation for 
the tensor pn, for different domains of  ^S > S„S < 6 < S„S < dj. The qualitative relationships governing 

the changes in the behavior of the system are reflected in Fig.5.1 in the form of families of heteroclines, which 
are the solutions of equation 

J^-^\,-S^4-A),-na^,^) (5.5) 

In the region S > S, this equation is of the elliptic type with periodic solutions with spatial scale A and 
possesses p anisotropy determined mainly by the applied stress. This distribution of p gives rise to weak 
pulsations of the stram field. As S -^ S, the solution of Eqn. 5.5 passes the separatrix S2, and the periodic 
solution transforms into a solitary-wave solution. This transition is accompanied by divergence of the inner scale 
A : A « - ]n{S -<?,). In this case the solution has the form p(t^ = p(x - Vt). The wave amplitude, velocity and 
the width of the wave front are determined by the parameters of non-equilibrium (orientation) transition: 

■pa\l-tahn(Cl-^)]l=-^ 
f X Yi 

(5.6) 

The velocity of solitary wave is F = xA{pa - p^fli^i, where (/?« - /?„) is the jump in /? in the course 
of an orientational transition. A transition through the bifurcation point 5^ (separatrix ^'3) is accompanied by the 
appearance of spatio-temporal structures of a qualitatively new type characterized by explosive accumulation of 
defects as f -> f^ in the spectrum of spatial scales («blow-up» regime) [12, 13]. In this case the kinetics of p is 
determined by the difference of the power of the terms in the expansion (5.1). 

w 
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Figure 5.1. Types of heteroclines and the corresponding characteristic forms 



Assuming a power-law dependence of the nonlocality parameter on p, the kinetic equation (5.3) can 
be written in the form 

^S<p.)p'*^Z-<p.)pA]. (5.7) 

where © = 5/3. It is shown in [12, 13] that for this type of the equations the developed stage of kinetics of p in 

the lunit / -> tc can be described by a self-similar solution 

p(x,t) = <^t)fliO,    C = ^,    ^/) = *c(l--|-)", (5.8) 

where m>0, Oo > 0 are the parameters related to the nonlinear form of Eqn. 5.3; I^ and tc are the scaling 

parameters. The fimction J[Q is determined by solving the corresponding eigenvalue problem. For example, for 
the case a; = /? +1 the self-similar solution of Eqn. 5.7   has the form 

p(xMs(t-tc)\i[^^^sin{f+;rd]j', (5.9) 

where ^ is a random value in the interval (0,1). The scale I^, the so-called fimdamental length [13], has the 
meaning of a spatial period of the solution (5.8) 

The self-similar solution (5.8) describes the blow-up damage kinetics for t -> tc on the set of spatial 
scales Lff = kLc, k = \,2,..X. The blow-up kinetics of damage localization allowed us to link the hotspots of 
failure with the above mentioned self-similar structures. 

6. COLLECTIVE BEHAVIOR OF CRACKS AND DEFECTS 

6.1. Introductory Remarks 

The interaction of the mam crack with the ensemble of the defects is the subject of mtensive 
experimental and theoretical studies that revealed some unresolved puzzles in the quasi-brittle failure. The long- 
standing problem is the limiting velocity of a crack. The linear elastic theory predicted that a crack should 
continuously accelerate up to the Rayleigh wave speed, VR, however, the experiments on a number of brittle 
materials [14] showed that the crack will seldom reach even the half of this value. A view of the dissipation 
process was suggested in [5, 15] where the main role in the explanation of qualitative new mentioned effects was 
assigned to the collective modes of the defect ensemble and the interaction of these modes with a moving crack. 
In the present paper we will discuss the phenomena investigated intensively during the past decade under the 
study of nonlinear dynamics of crack propagation. These phenomena demonstrate the qualitative new features of 
a crack behavior caused by the interaction of the crack with the ensemble of defects in the so-called the process 
zone. 

The rebirth of interest in the issue of dynamic fracture is observed during last decade due to the variety 
of new experimental results which are not explainable within the prediction of classical fracture mechanics, 
where it was shown that the crack in infinite plane specimen has two steady-state velocities: zero and the 
Rayleigh speed [16]. The recent experimental study revealed the limiting steady state crack velocity, a dynamical 
instability to micro-branching [16, 17], the formation of non-smooth fracture surface [18], and the sudden 
variation of fracture energy (dissipative losses) with a crack velocity [19]. This renewed interest was the 
motivation to study the interaction of defects at the crack tip area (process zone) with a moving crack. The still 
open problem in the crack evolution is the condition of crack arrest that is related to the question whether a crack 
velocity smoothly approaches to zero as the loads is decreased from large values to the Griffith point [20]. There 
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is also problem at the low end of crack velocity. How a crack that is initially at rest might achieve its steady- 
state. 

6.2. Some Results in Crack Mechanics 

The subject of the rapid propagation of crack in a brittle material is one whose roots go back to the 
classical works of Griffith and Mott [22,23]. Since that time a great deal of both analytical and experimental 
work [24,25,26] has been dedicated to understanding the phenomenon of fracture, where the behavior of crack 
driven by externally imposed stresses is studied. With a goal to study the crack stability problem and the 
interaction of the main crack with the defect ensemble in the process zone we will consider briefly the classical 
results in the crack mechanics were much analytical progress has been made in assuming that the medium 
behaves according to the equations of linear elasticity. The important step to model the brittle failure was made 
by Griffith [22] when the additional characteristics of the crack resistance were introduced in the form of the 
energy of the development of the new surface at the crack tip. According to the Griffith theory the energy U of 
elastic materials with a crack is represented in the form (Fig.6.1, curve 1) 

U=- 
a 2rna^\ 

2G 
+2ra. (6.1) 

where y is the surface energy; a is the applied stress; a is the crack length; G is the elastic modulus. 
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Figure 6.1. The Griffith (1) andFraenkel (2) energy form of elastic solid with a crack. 

Irwin [24] developed the Griffith conception and proposed the force version of the crack stability to 
introduce the stress intensity factor 

Ki = a4m  . (6.2) 

Barenblatt [25] proposed a variant of the force version of the crack stability that reflects another view 
on the role of stress in the crack tip area. It was assumed the existence at the crack tip over the area 0<s <d of 
the cohesion forces GB(S) . These forces have the molecular nature and divert the singularity of the stress field. 

Two hypothesis were assumed in the Barenblatt approach: 

small size of the crack tip zone in comparison with the crack length {y «l); 

autonomous behavior of crack tip, i.e. the self-similar evolution of the crack tip in the steady-state regime. 
This hypothesis is in correspondence with the properties that reveal quasi-brittle materials. The self- 

similarity features of the crack tip evolution are the consequence of the small ratio of the applied stress a and 

the cohesion force G^: ^ «1. This fact reflects the intermediate-asymptotic character of quasi-brittle 

failure theories and the material parameter was introduced, the so-called the cohesive modulus, as the 

independent strength property of materials: KB = GB^Id . Despite the similar form of the cohesive modulus KB 

and the stress intensity factor Kj there is a difference between the Irwin criteria and the cohesive modulus 
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proposed by Barenblatt. The cohesive modulus determines the steady-state character of crack propagation, but 
not the catastrophic one corresponding to the Griffith-Irwin approach. The qualitative difference between above 
mentioned approaches can be shown taking in view the remarks by Fraenkel [27] under the critical analysis of 
the Griffith approach. Fraenkel wrote that the physically realistic form of the energy U must contam the local 
minimimi Ujia^ (Fig.6.1, curve 2). The difference in the energy AC/ = Uc-Ue determines the work of the 
stress field at the crack tip under transition from the steady-state to the unstable regime of crack propagation. 
This work provides the surmount of this energy barrier. It is natural to assume that the cohesive modulus is the 
force version of this energy barrier. We will show in the following that the metastable energy form, assumed by 
Fraenkel, has the relationship to the collective behavior of the defect ensemble in the process zone and to the 
interaction of the defects with the main crack. 

6.3. Origin of Crack Instability 

The classic theory of fracture freats a cracks as mathematical branch cuts which begin to move when an 
infinitesimal extension of the crack releases more energy then it is needed to create fracture surface. This idea is 
successful in some cases in practice but conceptually incomplete. The experiments fail to confirm this idealized 
picture. The surface created by the crack is not necessarily smooth and flat. In a series of experiments on the 
brittle fracture the simultaneous propagation of an ensemble of microcracks, instead of a single propagating 
cracks, was observed [15]. The fracture process was viewed as a coalescence of defects situated in the crack 
path; the mean acceleration drops, the crack velocity develops oscillations and a structure is formed on the 
fracture surface [17,18,19,20]. As the branches grow in size, they evolve into macroscopic large scale crack 
branches. 

A theoretical explanation of the limited steady-state crack velocity and the fransition to branching 
regime was proposed in [28,29,30] due to the study of collective behavior of the microcrack ensemble in the 
process zone. It was shown by the solution of evolution equation for the defect density tensor that the kinetics of 
microcracks accumulation at the final damage stage includes the generation of spatial-temporal structures 
(dissipative structures with blow-up damage kinetics) that is the precursor of the nucleation of the "daughter" 
cracks. The kinetics of the daughter crack generation is determined by two parameters, which are given by the 
self-similar solution (5.8) 

p(x,t)=<f>it)fiO,c=fj^,m=^oii-j-y'", (6.3) 

where Z^ and tc are the scaling parameters which can be found under the solution of the corresponding 
nonlinear eigen-fimction problem [12,13,29]. These parameters are the spatial scales Lc of the blow-up damage 

localization and the so-called "peak time" t^ , which is the time of damage localization in the self-sunilar blow- 

up regime. The velocity limit Vc of the transition from the steady-state to the irregular crack propagation is 
given by the ratio: Vc « Lc/tc. As it was shown in Section 5 the set of spatial scales LH (daughter crack sizes) is 

proportional to Lc and represents new set of independent coordinates (collective modes of the defect ensemble) 
of the nonlinear system for a ><TC . These coordinates characterize the property of a second attractor that could 
subject the behavior of the nonlinear system. The first attractor corresponds to the well-known self-sunilar 
solution (6.2) for the stress distribution at the crack tip that is the backgroxmd for the stress intensity factor 
conception. This solution is available in the presence of the metastability (local minimxun) for /? in the range 

a-<CTc. 

The steady-state crack propagation is realized in the case when the stress rise in the process zone 

provides the failure time tf > tc = ^yC    for the creation of the daughter crack only in the straight crack path. 

The failure time tf follows from the kinetic equation (5.3) and represents the sum of the induction time tt (the 

time of the approaching of the defect distribution to the self-similar profile on the LH =kLc scales) and the peak 
time tc'. tf = ti + tc. For the velocity F < fc the induction tune U »tc and the daughter crack appears only 
along the initial main crack orientation. For the crack velocity V aVc there is a transient regime (ti » /^) of the 
creation of number of the localization scales (daughter cracks) in the main crack path. The crack velocity growth 
in the area V >Vc leads to the sharp decrease of the induction time /, -> 0,tf -> tc that is accompanied by the 
extension of the process zone in both (tangent and longitudmal) directions where the multiple blow-up structures 
(daughter cracks) and, as the consequence, the main crack branching appears. The last situation is qualitatively 
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similar to the resonance excitation of the numerous mirror zones imder the spall condition but in the non-uniform 
stress field in the range of angle with cr >CTC. 

6.4. Experimental Study of Nonlinear Crack Dynamics 

Experimental setup 

Direct experimental study of crack dynamics in the preloaded PMMA plane specimen was carried out 
with the usage of a high speed digital camera Remix REM 100-8 (time lag between pictures 10 l^s) coupled 
with photo-elasticity method. Fig. 6.2 [29,30,31]. 

Figure 6.2.   Scheme of experiment 

Figure 6.3. Different regimes of crack dynamics. 

F>F, 

The pictures of stress distribution at the crack tip is shown in Fig.6.3 for slow {V <Vc) and fast 
{V>Vc) cracks. The experiment revealed that the path of the critical velocity Vc is accompanied by the 
appearance of a stress wave pattern produced by the daughter crack growth in the process zone. Independent 
estimation of critical velocity firom the direct measurement of crack tip coordinates and from pronounced stress 
wave Doppler pattern gives a correspondence with the Fineberg data (Fc » 0.4iP^) [16]. 

Characteristic crack velocity 

The dependence of crack velocity on the initial stress is represented in Fig.6.4. 
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Figure 6.4. Crack velocity versus applied 
stress 

Figure.   Figure 6.5. Mirror zone concentration versus 
applied stress 

Three portions with different slopes can be shown. The existence of these portions determines three 
characteristic velocities: the velocity of the transition from the steady-state to the non-monotonic straight regime 
Vs « 220 mls , the transient velocity to the branching regime Vc « 330 mls and the velocity VB « 600 w/5 
when the branches behave autonomous. 
The characteristic velocity Vc « 330 w/s allowed us to estimate the peak time tc to measure the size of the 

mirror zone  Lc m 0.3mm:   tc=yC «1-10-6S. This result allowed also the explanation of the linear 

dependence of the branch length on the crack velocity [20]. Actually, since the failure time for V>Vc is 
approximately constant (t/ a tc » l/«), there is a unique way to increase the crack velocity to extend the size of 

the process zone. The crack velocity V is linked with the size of the process zone Lpz by the ratio V =  ''V . 

In our experiments the dependence of the density of the localized damage zone on the stress was observed 
(Fig.6.4). Since the branch length is limited by the size of the process zone, we obtain the linear dependence of 
branch length on the crack velocity. This fact explains the sharp dependence (quadratic law) of the energy 
dissipation on the crack velocity established in [20]. 

Scaling Properties of Failure 

The scaling properties of failure has spurred great interest in the context of the general problem of 
disordered media when the self-affmity of the failure surface was established in the terms of the universality of 
the so-called roughness exponent. The self-afiSnity of the fracture surface was established first by Mandelbrot 
[32] as the existence of the power law of the distance r measured within the horizontal plane for the points at 
which the heights h{r) are measured. This defines the surface-roughness index ^ as h(r) oc r?. Experimental 
data of the past decades on the measurement of the roughness exponent revealed the self-affinity of the fracture 
surface and it was established that the pattern of the fracture surface can be considered as scale invariant objects 
with the roughness index ^ » 0.8 ± 0.05 [33]. This fact allowed the determination of the length scales r > ro 

where the roughness exponent is the invariant. The range of scales r > ro for many materials show the universal 
scaling properties (the roughness exponent ^ « 0.8). For the scales r <ro the roughness exponent can change. 

The scale invariant properties for r > ro means the transition from the roughness statistics caused by the 
initial structural heterogeneity (size of blocks, grains) to the statistics given by the collective properties of defects 
imder transition from damage to fracture. 

In our experiments the roughness profile was determined for the PMMA fracture surface (Fig. 6.6) 
using the laser scanner system. Fracture surface analysis revealed the correspondence of the sharp change of the 
crack dynamics for the velocities Vc and VB , and the fractographic pattern. The fractographic image of the 
fracture surface was studied in the velocity range V ~ 300-800 mis when different regimes of the crack 
propagation were observed. 
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Figure 6.6. The roughness of failure surface in PMMA 

The first regime F~220-300 7M/5: is characterized by the mirror sxuface pattern (Fig.6.7). The 
increase of the crack velocity in this range leads to characteristic pattern on the mirror surface in the form of the 
so-called conic markings [34]. The conic markings are the traces of the jxmctions of the main crack and the 
damage localization zones that nucleate in the process zone. These data reflect the influence of the damage 
kinetics on the characteristic size of above mentioned failure structures on the surface. 

.' t' 

Figure 6.7. Failure surface for slow (V < Vc) and fast (VB >V >VC) crack 

The second regime appears in the velocity range 300-600 mls and the surface pattern includes the 
numerous mirror zones. 

The analysis of the roughness data in the term of the roughness exponent showed the dependence of the 
scaling properties on the regime of crack propagation. However, the group of specimen was foxmd with the 
exponent ^ « 0.8. This fact allowed us to assume the existence of the regune of crack propagation with 
universal scaling index close to ^ » 0.8. The existence of different scaling indexes for other regimes of crack 
propagation reflects the variety of the behavior of investigated nonlinear system. As it was shown, the crack 
dynamics in quasi-brittle materials is subject to two attractors. The &st attractor is given by the intermediate 
asymptotic solution of the stress distribution at the crack tip. The self-similar solution (9) describes the blow-up 
damage kinetics on the set of spatial scales and determines the properties of the second attractor. This attractor 
controls the system behavior ior V >VB when there is a range of angles with a> a^. The universality of the 

roughness index can be considered also as the property of this attractor. In the transient regime VB > V >Vc the 
influence of two attractors can appear. This reason can be considered as a mechanism of the dispersion of 
experimentally measured roughness on the scale r > ro. 
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Figure 6.8. Scheme of stress phase portrait recording 

The scaling properties of failure were studied also under the recording of the stress dynamics using the 
polarization scheme coupled with the laser system, Fig.6.8. 
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Figure 6.9. The Poincare cross-section for the phase variables & ~ a: 
a-V = 200m/s,    b-V = 6l5m/s 

The stress temporal history was measured in the marked point deviated from the main crack path on the 
fixed (4 mm) distance. This allowed us to investigate the correlation property of the system using the stress 
phase portrait &~a for slow and fast cracks, Fig.6.9. These portraits display the periodic stress dynamics 
(Fig.6.9a) that in the correspondence with the local ellipticity of Eqn.5.3 for cr < o-£. (V <Vc ) and the stochastic 
dynamics (Fig.6.9b) for V >Vc corresponding to the second type of the attractor. In the transient regime V aVc 
the coexistence of two attractors can appear that can lead to the intermittency effect as the possible reason for the 
scaling index dispersion. 
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Figure 6.10. The stress history 
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The recording of the temporal stress history in the marked point for V >Vc revealed the appearance of 
finite amplitude stress fluctuations, which reflect the qualitative new structural changes in the process zone for 
the fast crack (Fig.6.10). The scaling properties as the above attractor properties were studied in the term of the 
correlation integral calculated fi-om the stress phase pattern using the formula [35] 

^'■) = l^-tt^'-\'^-4- m->oo mi 
rv. 

i,M 

where x;-, Xj are the coordinates of the points in the &~(y space, H{...) is the Heaviside flmction. The existence 

of the scales r > ro with the stable correlation index was established for the regimes V <Vc and VB > V >Vc , 
Fig.6.11. The values of the correlation indexes in these regimes show the existence of two scaling regimes with 
the deterministic (V = 200mls, v « 0.8 ) and stochastic (F = 426, 6\3>mls, v » 0.4) dynamics. The extension 

of the portions with the constant indexes determines the scale of the process zone Lpz. The length of the process 
zone increases with the growth of the crack velocity in the range VB >V >Vc with the maintain of the scaling 
property of the dynamic system. Nvimerical simulation of the damage kinetics in the process zone allowed us to 
conclude that this scaling is the consequence of the subjection of the failure kinetics to the blow-up self-similar 
solution which determines the collective behavior of the defect ensemble in the process zone [29,30,31]. 

6.5. Low Velocity Limit. Crack Arrest 

In this part we have addressed the question of how a dynamic crack will approach zero velocity. This 
fact was discussed ia [21] and it was shown considering a simplified version of the strip specimen with the 
radiation at the boundaries that steady-state velocity law with a square-rot behavior is expected as a function of 
the excess load over the Griffith load. This means that the steady-state velocity increases with an infinite slope 
near zero overload, but in a smooth fashion with a load. It was shown also that if the crack has no field inertia, 
the pass of the "trapping limit" will lead to the crack move. But if the crack has a field inertia the crack velocity 
will exhibit a transient oscillation. The similar conclusion can be made to compare the estimation of the crack 

velocity, given in [21] V = w.yj(Ee - 2))/(C(w)) , where w is the Barenblatt cohesive zone of the crack, 

(Ee - 2y) is the GriflSth static term, C(w) is material parameter, and the results predicted above statistical 
model. Taking in view that W is similar Lpz ~ Z^, the root term is the inverse characteristic time tc given by 
the self-similar solution. This fact allowed us to determine the range of the application of this generalized 
Griffith relation, where the crack can approach to the rest smoothly: V <Vc. For V >Vc , when the "wave part" 
of energy will increase with crack velocity, the crack arrest will appear non-smoothly for the energy 
metastability providing the "crack trapping". The similar view can be developed to analyze tiie crack overload 
above the Griffith value before any state motion. 

7. RESONANCE EXCITATION OF FAILURE 

7.1. Delayed Failure Phenomenon. Failure Waves 

The phenomenon of failure wave in brittle materials is the subject of intensive study during last two 
decades. The term "failure wave" was introduced in [37] as the limit case of damage evolution when the number 
of microshears will be large enough for the determination of fi^ont with characteristic group velocity. This fi-ont 
separates the structured material fi-om the failed area. The important feature of failure wave phenomenon is that 
the velocity of failure wave doesn't depend on the velocity of propagation of the single crack having the 
theoretical limit equals to the Rayleigh wave velocity. The stored elastic energy in material is the main factor, 
which provides the ability of brittle solid to the generation of failure wave. The high capacity of elastic energy in 
material can be created under the bulk compression or in the condition of loading providing the state close to the 
bulk compression, for instance, under impact loading. The necessity to provide the high capacity of elastic 
energy can be realized by the removal of surface defects or the structure homogenization. The brittle materials 
(glasses and ceramics) exhibit very high dynamic compressive strength, the Hugoniot elastic limits [38]. For the 
glasses with high strength or the high latent compressive stress self-keeping failure can be observed not only for 
the compression but also for bending and tension. 

Rasorenov et al [39] were the first to observe the phenomenon of delayed failure behind the elastic 
wave in glass. Such a wave was introduced in [40] were the concept of a wave of fi-acture was discussed to 

17 



explain the nature of elastic limit. The existence of failure wave was established by considering a small 
recompression signal in the VISAR record of the free surface velocity of K19 glass (similar to soda-lime). This 
recompression signal resulted from a release retummg after reflection of the shock at the glass rear surface 
reflecting again in compression at the lower impedance failure front. Recent studies have suggested that a wave 
of failure propagates behind the elastic wave in glass with a velocity in the range 1.5-2.5 km/s. Failure wave 
appeared in shocked brittle materials (glasses, ceramics) as a particular failure mode in which they lose strength 
behmd a propagating front. Generally, the interest to the failure wave phenomenon is initiated by the still open 
problem of physical interpretation of traditionally used material characteristics as the Hugoniot elastic limits, 
dynamic strength, the relaxation mechanism of the elastic precursor. 

The recent research has shown that glasses having open structures may fail in a characteristic way when 
loaded with plane shock waves. More filled materials such a soda lime glass have an elastic response to 6 or 7 
GPa and plastic behavior beyond. The experiments in [41] confirmed the existence of these waves and extended 
measurements to glass states behind the shock (but ahead of the failure front) and behind the failure wave using 
manganin stress gauges. The tensile (spall) strength of the glass remained high behind the shock but dropped to 
zero behind the failure front. Additionally, the shear strength of the material was dropped from a high value 
ahead becoming lower behind the failure front. The experimental study established the sharp light opacity behind 
front under high speed videocamera recording [42], reduction in acoustic impedance, lowered sound speed [39]. 
The material states behind and ahead of moving boimdary (behind the shock) allowed the measurement of failure 
wave speed [43]. The comparison of these data with high speed framing in soda-lime and borosilicate (Pyrex) 
glasses [38,44] revealed the constant value of the failure wave speed. 

Qualitative changes in silicate glasses behind the failure wave under the measure of the refractive index 
(refractive index increased) allowed Gibbons and Ahrens [45] to qualify this effect as the structural phase 
transformation. These results stunulated Clifton [46] to propose the phenomenological model in which the 
failure front was assumed to be a propagating phase boundary. According to this model the mechanism of failure 
wave nucleation and propagation results from local densification followed by shear failure around 
inhomogeneities triggered by the shock. 

The description of failure wave phenomenon as the consequence of the generation of collective burst 
modes of mesodefects was proposed in [47,48,49] in the course of study of non-equilibrium transition in defect 
ensemble. It was shown the existence of the self-similar solution for the microshear density tensor, which 
describes the qualitative changes in the microshear density kinetics in the course of the non-equilibrium 
transition. The failure waves represent the specific dissipative structures (the "blow-up" dissipative structures) in 
the microshear ensemble that could be excited due to the pass of the elastic wave. 

Self-Similar Solution 

Equation (5.3) describes the characteristic stages of damage evolution. In the range of stress cr < cr^ 
and the defect density p < Pcihe damage kinetics is subject to the "thermodynamic branch" oa corresponding to 

the local minimum of the free energy (Fig.2.1; 2.2). At the approaching of stress to the critical value CT^ 

(.p-> Pc) the properties of the kinetic equation (5.3) change qualitatively (from elliptic to parabolic) and the 
damage kinetics is subject to specific spatial-temporal structures which appear in the defect ensemble in the 
course of the interaction between defects [12]. These structures describe the damage localization and the 
nucleation of failure hotspots. 
The spatial-temporal structures are given by the self-similar solution (5.8) of the kinetic equation (5.3) under the 
pass of the critical point pc. The substitution of (5.8) into (5.2) leads to the equation for J[^ 

1    f  P-io)+^)j^df^d\ f, 
3-V     2(13-1) ^dE W-' 2(J3-\) ''d^ d^l'   d^_ +/^ (7.1) 

The conditions for / at the front ^f of the dissipative structure and the symmetry conditions at the center of 
structure are 

^=^:/=0,/--^=0, (7.2) 

^=0:/--^=0. (7.3) 
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We assume that the defect density in the dissipative structure exceeds essentially this density outside the 
failure hotspot. The difference in the number of conditions (7.2) and (7.3) and the differential power of Eqn. 7.1 
means that the solution exists only for specific values of S,f = £,f, i.e. the eigen-value problem for ^y arises. The 

method for the solution of this problem was developed in [13] that allowed the estimation of ^f and the 
definition of failure fi"ont propagation. 

Xf ■■^fzi"'' 
CO        fi-a+l 

' l{fi-l) t 208-1) (7.4) 

Eqn. 7.4 determines three of self-similar regimes depending on the relations between the parameters of 
the non-linear medixmi. If the material properties and the stress level provide the damage localization kinetics 
with parameters 0>w + \ the failure wave front will propagate with a group velocity given by the solution 
(7.4). 

Some Experimental Results 

The blow-up kinetics of damage localization allowed us to link the hotspots of failure with the above 
mentioned self-similar structures. The correspondence of these hotspots having the image of mirror zones to 
above self-similar structures was confirmed experimentally in [50,51]. The multiple mirror zones with an equal 
size were excited on different spall cross sections in the shocked PMMA cylindrical rod when the stress wave 
amplitude exceeded some critical value corresponding to the transition to the so-called "dynamic branch" under 
spalling (Fig. 7.1). The constant size of damage localization corresponds to the damage kinetics (free energy 
release rate) given by the following relationship between non-linearity parameters p ^ a + \. 

Figure 7.1. Fracture time t^ for shocked rod of PMMA (1) and ultraporcelain (2) versus stress amplitude a^. 

Inset: surface pattern with mirror zones in different spall cross sections. 

The "dynamic branch" corresponds to the stress CT xr^,, where the failure scenario is determined by the 
generation of the collective mode in defect ensemble in the form of the dissipative structure with blow-up 
damage kinetics. The self-keeping features of failure corresponding to the condition of failure wave where 
observed also in the condition of dynamic crack propagation. The framing of crack dynamics in the preloaded 
PMMA plane specimen established the existence of the transient velocity VB « 600 mls , when the branches 
behave autonomous, Fig. 6.4. The low rise of velocity for a > 60 A/Pa reflects the stress independent character 
of failure similar to the dynamic branch in spall fracture. The pictures of stress distribution at the crack tip is 
shown in Fig.6 for slow {V <Vc), fast ( F >rc) and branching {V >VB) cracks. 

7.4. Simulation of Failure Waves 

The study of failure wave initiation and propagation was carried out on the basis of constitutive 
equation (4) coupled with momentum transfer equation. The defect density tensor in the compression stress wave 
represents the microshear density. 
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Figure 7.2. Propagation of stress (S) and failure (F) waves. 
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Figure 7.3. Longitudinal (T^ and transverse CJ    stress kinetics. 

The system of equations was solved using original finite element code. The simulation confirmed the 
delayed propagation of the failure front behind the stress wave, Fig.7.2. We observed also that the shear stress 
vanishes in the failure wave. The failure wave propagation leads to qualitative change in the transverse stress 
when this stress is approaching to the longitudinal stress level, Fig.7.3. 

Statistics of Fragmentation 

Qualitative new features in the crack dynamics (transition from the steady state branching regimes and 
the fragmentation), the phenomenon of the delayed failure revealed specific features of dynamic failure that is 
the property of non-equilibrium system with nonlinear and stochastic behavior caused by the collective effects in 
defect ensemble. This allows us to develop the view on the dynamic fracture statistics (fragmentation problem) 
to link the nonlinear dynamic aspects of damage evolution with the change of symmetry properties in the system 
due to the generation of collective modes in the defect ensemble. 

Some basic theories have emerged within the past 10 years for predicting the consequences of dynamic 
fragmentation induced by high velocity impact or explosive events. These theories have focused on the 
prediction of mean fragment size through energy and momentum balance principles [52-55], and on statistical 
issues of fragment size distribution [56,57]. However, there are a number of unresolved issues within the 
development of statistical energy balance theories of fragmentation. 

The dynamic fragmentation was analyzed in [58] on the approach based on local energy inequality and 
minimum fracture time requirement. This theory was later modified in [54] to include the kinetic energy 
available for fragmentation. However, the theories are not complete because the evolution process that leads to 
the catastrophic failure of the materials was not considered. 

Taking in view the dramatic changes in the scaling properties of nonlinear system "solid with defects" 
due to the re-subjection of the system behavior to the collective modes of defects, the following scenario of the 
dynamic fragmentation can be discussed. The existence of characteristic stages of dynamic fracture under crack 
propagation (Fig.6.4) allowed us to establish the correlation of the dynamic fragmentation statistics with the 
energy density miparted to the material. The energy density E < Ec ( Ec corresponds to the critical velocity 
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Vc of the steady state - branching transition) provides the stress intensity controlled failure scenario. The 
transient densities EB> E >Ec (Yc <V <V^ lead to the fracture statistics that is sensitive to both self- 
similar solutions: the self-similar stress distribution at the crack tip and collective blow-up modes of damage 
localization. The intermittency effect, when the system reveals the complex statistics in the presence of two 
attractors, probably, has the phenomenological interpretation in the framework of the WeibuU statistics. Taking 
in view theoretically predicted low limit of damage localization scale Lc, it can be assumed the existence of 
critical energy density, which provides the limit size of fragmented structure close to Lc. Taking in view that 
these energy densities can be imparted in material generally by shock, this homogeneous fragmentation can be 
realized due to the failure wave excitation. The experiments in [59] with large specimens (optical glass K5 
impacted by blunt steel cylinder) visualized the several fracture nucleation in the form of failure waves. Several 
spherical or nearby spherical waves were formed ahead of the main front. 

8. PLASTICITY AS METASTABLE ORIENTATION TRANSITION IN MICROSHEAR ENSEMBLE 

8.1. Defect Induced Mechanisms of Momentum Transfer 

The physical particularity of the momentum fransfer imder the plastic flow is the motion of the 
deformation carriers (microshears in our case) in the conservative (elastic) field. This fact reflects the principal 
difference of irreversible deformation caused by the dislocation structure rearrangement from conventionally 
known mechanism of the viscous flow in liquids, which occurs due to the momentum diffusion. 

Much progress was attempt during last decades in the imderstanding of mechanisms of the plastic flow 
and the development of the phenomenology of plasticity for the large range of the stress and strain rate 
intensities. However, the attempt to use the structural aspects in the formulation of the plasticity constitutive 
equations did not allow the explanation of most principal questions related to the specific nature of deformation 
carriers responsible for the plastic flow. Still imresolved problems are the regularities of the strain localization 
due to the shear banding, the linkage of the structure evolution with deformation hardening, the explanation of 
the structure of the plastic wave front in shocked materials. 

The experimental data concerning the fransitions in dislocation substructures under the plastic flow and 
the results of the statistical description of collective behavior of microshear ensemble allowed the consideration 
of plasticity rules in the linkage with the structure evolution. It was discussed in Section 2 that the intermediate 
range of the structural heterogeneity (for instance, grain size) corresponds to the values of the structure sensitive 
parameter S^ <S <S, and provides the deformation response of solid caused by the generation of collective 
modes of the microshear ensemble with pronomiced orientation. The formation of these modes is the 
consequence of the orientation instability in the microshear ensemble in the corresponding range of external 
stresses a} <a-y < CTHEL for the given structural parameter d (Fig. 8.1). These stresses determine the range of 
the yield stresses (a^, CTHEL ), where the orientation metastability occurs. The yield stresses from this range 
represent the sum of the stress cr° (where orientation metastability can appear). This stress has the athermal 
nature and determines the initial point of availability of the coherent microshear behavior as qualitative new 
mechanism of sfress relaxation. The part of yield sfress {<j^ -af) determines the additional stress, which 
provides the thermally activated transition A-> D in the dislocation substructure in more orientated state D . 

F k 

Figure 8.1. Metastable orientation transition 
in microshear ensemble 

Figure 8.2. Free energy "transitions' 
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The jump in the microshear density parameter hp^o leads (according to Eqn. 5.4) to the sharp drop of 
elastic modulus, which precedes to the plastic flow. The possible scenario of the microshear ensemble evolution 
at the point D is shown in Fig. 8.1 and can involve two opportunities. The first one, along BUd trajectory, 
supposes high deformation hardening. The second scenario (along the trajectories DHE or DHF ) assumes the 
increase of deformation caused by the defects in the continuous orientation ordering in the course of metastable 
transitions due to the change of value of structure sensitive parameter S. Two realizations of this scenario 
(^DHE and DHF ) correspond to the typical plastic deformation of solid that are conventionally known as the 
perfect plasticity (DHE ) and the plasticity with a hardening ( DHF). 

This type of the plastic flow is described in the framework of the incremental plasticity theory, when the 
increment of plastic deformation dsS, (= dpn) is determined by the so-called normality rule 

der,=dX-§-, (8.1) 

where O is the plastic potential, 1 is the multiplier. The incremental law of plastic flow determines the plastic 
strain decrement as the result of the "expansion" of the yield surface, given by the plastic potential O . 

The consideration of the plastic flow as non-equilibrium orientation transition allowed the interpretation 
of the phenomenological background of the incremental plasticity. According to this result the driving force of 
the plastic deformation is the minimization of the free energy F(cr, p,S) in the current system state, for instance 

(.<^D,PD,SD), under the continuous ordering of defects (D -^ .^ -> ...) and the formation of different dislocation 
substructures. The description of these transitions can be obtained as the generalization of the evolution 
inequality (5.2) considering 5 as the mdependent variable 

SF = ^dp + ^dS£0   or   -fl = ^-$- + ^^<0. (8.2) 
op   ^     dS dt       dp   dt      35   dt ^    ' 

Assuming the linear relations between the increments {dp,dS) and thermodynamic forces 

( y^_)    Ag )> *lie equations for the transitions read 

dF      jif _   V  3F dp = -Y,-^,   dS = -Ys-^. (8.3) 

It is evident that the increment dS plays the role of the increment dZ and provides the change of the 

plastic flow potential in term of O. For the quasi-static loading the relations (8.3) allowed the expression of the 
increment dS in the term of current values of stress and defect induced plastic strain p. The unloading, for 

instance from point F occurs along the trajectory FES in the "partly unloaded state". The analog of cr} under 

vmloadmg is the threshold stress Sj of the metastability area LC under unloading. Taking in view that the 
plastic flow realizes as continuous orientation ordering of dislocation substructures with the scaling parameter 
S related to the size of the dislocation substructure /„ and the distance between ones 4, the real scenario of the 
plastic straining depends on the loading conditions, for instance, the stress or the strain rate. 

The strain rate sensitivity of plastic flow is observed typically at strain rates exceeding Ws-\ It is 

important to use in this range of strain rate £>10's-' the description of independent kinetics of defect induced 

plastic straining and the structure evolution in the form given by the second equation in (8.2). 

dt - ^'' dp ' ^^■^'> 

dS    _      T      dF fn rs 

where Lp and Lg are the kinetic coefficients. The relations between the kinetics of the external loading (for 
instance imposed stress or strain rate), the kinetics of transition in the /> metastability area and the kinetics of 
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structure sensitive parameter S determine the variety of the material behavior for high strain rate loading and 
the response of shocked materials. 

The kinetics of S -parameter determines the hardening law due to the formation of new dislocation 
substructures responsible for the momentum transfer in more high structural level that is realized as the rescaling 
of initial structural scales /„ -^ L„\p), 4 -* M/')- Experimental data concerning the variation of the flow stress 

with a strain rate established the dramatic increase of the flow stress at the strain rate ^ > 10^-10'' s''. The 
description of the plastic flow as metastable orientation transition in the defect ensemble allowed us to propose 
the explanation of the anomalous hardening. Eqn. 8.5 can be represented in the form 

dS ^ 
dt 

1   dF (8.6) 

where F = F/A , Tg = [LgA) is the characteristic time of structure rearrangement in the term of S. The 

anomalous hardening for the strain rate e>lO^-Ws'^ is the consequence of limiting rate ability of materials to 

the dislocation substructure rearrangement with characteristic time Tg «10'^ s"'. For the strain rates exceeding 

£• > 10'' s"' the plasticity, as metastable transition to the dislocation substructure with more pronounced defect 
orientation on large spatial scales, could not be realized and defect ensemble evolution could occur along the 

branch CDD u with a constant value of S and the maximal hardening. 

9. KINETICS OF METASTABLE TRANSITIONS AND MECHANICAL RESPONSES OF SHOCKED 
CONDENSED MATTER 

9.1. Structure of Stress Wave in Solid under Impact Loading 

Complicate material responses to the increase of the strain rate are observed in the nonlinear behavior of 
deformation and in the changes of yield stresses of plasticity and strength. The attempts were imdertaken in 
[47,50,51] to establish the linkages of the mesodefect evolution (microcracks, microshears) with relaxation 
properties and failiu-e kinetics. Statistical approach allowed us to establish specific features of the defect 
ensemble evolution caused by the initial solid state (structural heterogeneity in the term of S) and the interaction 
between defects. Scenario of defect ensemble evolution has the form of non-equilibrium kinetic transitions, 
which appear as a specific form of the self-similarity. This self-similarity is displayed particularly clear at plastic 
instability and damage localization under dynamic loading. The self-similarity in the behavior of solid loaded 
dynamically is caused by the excitation of spatial-time structures in the defect ensemble. The appearance of these 
structures is accompanied by the qualitative change of solid responses to dynamic loading. 

The established correspondence of the nonlinear behavior of the defect ensemble and the structure of 
the shock wave profile allows the explanation of some regularity of shocked material responses. 

One dimension plane shock waves have been widely used to study the mechanical response of solids to 
high velocity deformation. For many materials under a certain range of impact pressures, there exists a two-wave 
structures of which the first wave, the so-called, elastic precursor, travels at the velocity of sound waves, while 
the second wave, plastic shock wave, travels at a slower speed which increases with impact pressure. While the 
fill! two-wave structure is thus not steady (does not propagate without change of form), each component wave 
may be treated as steady after sufficient propagation distance. 

The stress wave structure was examined in [60] for the impact loading of aluminimi plate loaded by the 
quartz disk at the rate of 400?« Is. In the case of the plane wave propagation in z direction the system of 

constitutive equations coupled with conservation laws of mass and impulse are written as 

. f dF' 
Opzz 

4>0 
a ■-L% 

dFo 
Spo 

(9.1) 

£zz=£lz+Pzz ,   sl,-&^lE, (9.2) 

diUz _ da^ 
dti 

_ duz 
dz 

dz. 
(9.3) 

(9.4) 
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where p^ and po are devitoric and isotropc parts of p^, F=F'(p'^,a-'J+F (p^,<Ji) , 

p is material density, L^ and I$p are the kinetic coefficients. There is only /j^ component in the compression 
waves. 

The solution of system (9.1)-(9.4) has to satisfy the boundary and initial conditions: 

<yJ^A = ao{t),ajh,t) = 0;v,(z,0) = 0(2,0) = />,,(z,o) = 0; p(z,o) = A , 

where h is the plate thickness, cro(/)-function was determined on the basis ofthe solution of collision problem. 
Material parameters have been determined from quasi-static data of aluminum testmg (uni-axial 

tension) using direct methods of the registration of the microcrack accumulation. The parameters were taken 

p = 2.1l-\QikglTm,     G = l09JGPa,     r^ = L^/G = 2.1-10^ sec ,     r,=A/q=1.9610"'sec   (C,=(G//7)"^). 

Presented in Fig. 9.1 are the results of numerical simulation of the stress wave propagation and the time- 
dependencies of stress and microcrack density parameter in the spall section. In the stress area corresponding 
approximately to the dynamic yield stress the orientation kinetic transition for the parameter /?„ is realized 
which results in the abrupt increase in stress relaxation tempo, a change in the plastic wave profile and the 
separation of the elastic precursor (bolt parts of the curves m Fig. 9.1). 

A sharp transition to the highly ordered structure due to the metastable transition may lead to the 
behavior which has been commonly referred as dynamic failure due to the plastic shear instability. Spatial scales 
of the orientation area (shear localization zone) are determined by the parameters of the solitary wave of shear 
instability given by the solution (5.6). 

t, us 

-0.4   _ 

Figure 9.1. Structure of stress waves and damage kinetics in spall cross-section of aluminum target. 

9.2. Strain Rate Universality at the Steady-State Plastic Wave 

Experimental evidence of viscous like effects in solids was lacking until the results of Sakharov's group 
[61] when the measure of shock viscosity in solids was inferred using the indirect method. The existence of 
steady-wave shocks as significant feature of stress wave in solids is treated in [62,63]. With the development of 
laser interferrometry techniques the first direct measurements of high-resolution wave profiles were provided in 
[64] for aluminum. The observation of the shock wave rise showed the very rapid increase in steady-wave strain 
rate with increasing peak stress. This increase is substantially greater than would be predicted by a simple 
Newtonian proportionality between viscous stress and strain rate. The existence of steady-wave solutions for the 
Navier-Stokes equations has been recognized first by Rayleigh and Taylor [65,66]. Since then a large literature 
on this subject in the field of fluids has emerged [67,68]. 

The unique feature of large amplitude wave profile is the steady-wave plastic-shock profile. The steady- 
wave profile propagates without change in form and, as it pomted out in [69] is a consequence of a stable 
balance between the competing processes of stress-strain non-linearity and dissipative or viscous material 
behavior. 

According to the results presented in Section 5 the steady-wave profile for different shock amplitudes 
appears as the self-similar auto-solitary waves induced by the collective orientation mode in the microshear 
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ensemble. The rescaling of current values of 5 (DHF-path. Fig. 8.1) provides the self-similar auto-solitary 
response for the variation of the stress-amplitude. 

The rate of the transition p^ from the lower to upper branches reaches the maximum under the deepest 
penetration into the metastability area (point b in Fig.8.1). This is assumed to be a main reason of the 
universality of the plastic strain rate dependence on the stress amplitude p^ » Acr^,^ established by Barker and 

Grady for wide class of materials for strain rates £ > 10^ s'\ This relation follows from the self-similar solution 
(5.6), when the driving force of the transition xmder the S - rescaling can be represented in the term of stress as 
the difference in the free energy for the current level along the dG-paHh (Fig. 8.1) and the energy for 
metastability limits (the analog of point b, Fig. 8.1) for the curves corresponding to the current values of S. 

This result reflects the importance of the collective effects (orientation transition) in the system of 
defects providing the intriguing material independent feature in the steady shock process and reveals the specific 
character of the solid viscous response. On another side the universality of this fourth power dependence for a 
large class of the materials allows the assxmiption that in the intensive shock enviroimient the complex structural 
processes that are involved due to the plastic flow become simpler. The study of these general mechanisms 
seems to be important for the imderstanding of the collective effects in the defect ensembles responsible for the 
irreversible deformation in solids. 

Relaxation Properties and Defect Induced Instabilities in Shocked Liquid 

The problem of the true structure of liquids can not at present be considered as finally explained. A 
dependence of mechanical properties on the relation between the relaxation time of the mediimi and the 
characteristic time of the loading is not only the property of solid but is also valid for a liquids. Any theories of 
viscous liquid flow starts out to some extent an assumption about the nature of structure of liquid. For this reason 
investigation of the relaxation properties of liquid imder high strain rate loading produced by shock waves, are of 
great scientific and applied interest. The viscosity of condensed matter plays the principle role in effecting the 
irreversible shock compression. It is well known that without account of the viscosity one can not produce a 
continuous distribution of all thermodynamic quantities in the shock wave front (SWF). 

The method of investigating viscosity of materials behind the SWF, proposed first by Sakharov [61], is 
based on the experimental study of small perturbations on the SWF and then by Barker [64] with the usage of the 
Doppler interferometry (S^SAR) technique. 

The still unresolved puzzle was established in the Sakharov experiments when the shocked liquid (water 
and mercury) and solid (aluminum and lead) reveled the same viscosity TJ = W Pz at approximately the same 

values of the strain rate s = 10^ 5-' at the SWF. It is necessary to imderline that these substances so different 

under normal conditions. Nevertheless, for the pressure P « 80 -100 KBar water and mercury are characterized 
by the same dynamic viscosity as that unmelted solid (pressure range P » 400 - 500 KBar) behind SWF. It 
allowed the conclusion that the mentioned liquids in the pressure range/* » 80 -100 KBar have a relaxation 
time T > £-^ ~ 10"^ s differing by 6 orders from the molecular (diffusion) relaxation times estimated by the 

Einstein formula as To = A^/eArf ~ lO"" s, where A is the distance between the particles, Ai is the self- 
diffiision coefficient. It means that a liquid behaves in the indicated experiments effectively like a solid. 

The physical mechanisms leading to the development of instabilities in condensed media indicate the 
possibility of describing instabilities in liquids on the basis of an analysis of the kinetics of fluctuations, if the 
latter are viewed as defects in the structure of the liquids [12,70]. In the case of liquids the mesoscopic defects, 
being by their nature the fluctuation of the displacement field in solids, can be also regarded as real structural 
defects which are produced during collective motion of groups of molecules. This mechanism of motion does not 
correspond to the conventional diffusion mechanism of momentum transfer in simple liquids. 

The attempt to explain the noncontradictory nature of the viscosity of shock compressed liquid and solid 
for the strain rate £• = 10' 5~' was undertaken by in [61] to use the Fraenkel idea concerning the role of defects 

("holes") produced by the propagating SWF. The validity of this view was qualitatively confirmed by the 
measure of the electric conductivity of water behind the SWF, when the dramatic change of the receptivity was 
foxmd. 

Apparently, Fraenkel [71] was the first to call attention to the analogy in the mechanisms of flow of 
solids and liquids, noting that "... x-ray diffraction pictures of liquids are similar to those of microcrystalline 
solids, and it would be possible to interpret their general features on the basis of the idea that a liquid consists of 
a large number of randomly oriented submicroscopic-size crystals" and " the widely held view that the fluidity 
of liquids is caused by the absence of shear elasticity, i.e., by a zero shear modulus, .... is incorrect (except, 
possibly, for the case of liquid helium II)." These statements are confirmed in [72] by measurements of 
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relaxation spectra in a shear simple liquid flow accompanying the superposition of shear oscillations in a liquid 
at frequencies WHz when the existence of shear elasticity was established. The explanation of this long 

relaxation time anomaly is linked in [72] with a coordinated displacement and reorientation of groups of 
molecules which involves longer times. A coordinated displacement of groups of molecules (similarly to the 
relative slipping of blocks or grains in solids) can be realized during nucleation of mesoscopic defects arising 
between these groups of molecules. 

The dissipative fiinction for a medium relaxing by flow and as a resuh of the development of defects 
has the form [12] 

TPs=-jr- qk^kT + (TiueJ, - -^ Pik > 0, (9.5) 

where T is the temperature, qk is heat flux, SFI <^,yt is the thermodynamic force acting on a system when p.^^^ 

is different from its equilibrium value, and ej^ = en - pi^ is the "viscous" component of the strain rate tensor. 
The condition that the dissipative function be positive-definite leads to a system of equations for the tensor 
variables: 

(^ik = ml + XPik, (9.6) 

SF 
Spii 

= -zei + gh, (9.7) 

where rj, x, and g are kinetic coefiScients. For the case of simple shear, from Eqn. 9.6 follows an expression for 
the effective viscosity 

nm=-^ = ri-in-x)^. (9.8) 

In the interval S^ <S <S, the strain rate fluctuations "conform" to the spectrum of solitary waves, 

meaning that en » p,/,, and Eqn.9.8 gives the asymptotic viscosity T] = x • The independence of viscosity of 
condensed matter ;; « W Pz for the strain rates £• « 10'' - lO^s"' is the consequence of the subjection of the 

deformation response to the strain rates induced by the defect kinetics in the form of finite amplitude solitary 
wave disturbances. 

The following scenario of the development of instabilities in a liquid is possible in accordance with the 
characteristic features of the nonlinear behavior of ensembles of defects. 
The weak periodic pulsations of the velocity induced by defect induced fluctuations of the strain rates appear in 
the region S > S,. The flow intensification can lead to the transition through the bifurcation point S, (the region 

S^ <S <St) and the nucleation of the cascade of solitary waves as a result of orientation transition in an 

ensemble of microscopic shears. The inertial cascade of the solitary waves is generated under the re-scaling of 
S due to the appearance of new spatial scales linked with the solitary wave front. The second inertial interval 
appears in the course of the transition for 8 = 8^, when dissipative structures with blow-up kinetics of the 
defect induced strain rate are excited. 

It is interesting to compare the real picture of turbulent flow with the scenario given by the dynamics of 
Pik ■ The dynamics of the development of turbulence has been investigated in [73] in an analysis of the evolution 
of a turbulent spot in a Poiseuille flow with Reynolds number R~840-1500. It is observed that the turbulent spot 
has the form of a triangular wing, and the turbulent motion arises mside a region on the boundary of which 
disturbances in the form of solitary waves arise. These waves, generated on the boxmdary of the spot, propagate 
into the laminar zone and transform into quasi-periodic damped pulsations of the velocity. The motion of solitary 
waves in the direction of the spot results in secondary instability and growth of the spot. This experimentally 
observed scenario agrees with the nonlinear dynamics of macroscopic defect-induced strain rate fluctuations. 
The laws established for the development of instabilities in condensed media suggest the possible existence of a 
bifurcation tree, leading to turbulence [74], that can be described on the basis of a kinetic approach [75]. 
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10.      EXPERIMENTAL   STUDY   OF   PLASTIC   DEFORMATION   OF   COPPER   UNDER   SHEAR 
CONDITIONS 

The samples from cold-rolled Oxyden Free Electronic (OFE) copper (99,99% Cu) were studied in the 
condition of plastic shear. The sizes and geometry of the samples are represented in Fig 1. 

D^=lO-'m;   D2 =13-10-'m;   h = lO-'^l-lQ-'m; 

L = 3-lO-^m;   c^=c^\   a = Z? = 1.4-10"^ w;   J = 10^. 

Figure 10.1. Geometry and size of the copper sample. 

After mashinning, samples were given anneal heat treatments with the ftimace cooling dviring 6 hour. 
Annealed temperatures was 350° C to, and aimealed times was 60 minutes. To realize shear test the lever 
loading device was constructed. Fig. 2. 

Figure 10.2. The scheme of the lever loading device. 

The shear straining was realized along two ditch with width h =1 or 2 mm. Left and right parts of the 
sample are twisted to one side but the central part to another. The maximimi twist angle was about 100-110° that 
corresponds to the deformation of about 600-1000%  depends on h . Lever loading device was insert in the 
tensile testing machine 2167 P-50. 

Experimental conditions: 
maximum load is 5000 N; 
strain rate is f = 10-^ - 210-^ s"'. 
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room temperature. 
The experimental equipment is presented in Fig. 10.3. 

a) b) 
Figure 10.3. a) The lever loading device; b) The lever loading device inserted in the tensile 
testing machine 2167 P-50. 

The load and displacement were registered during deformation process by tensile 
testing machine. "Load-displacement" diagram was recorded using double-coordinate self- 
recording system. Fig 10.4. 

a) b) 
Figure 10.4. a) The samples before the deformation; b) The samples after the deformation. 

The shear stress-shear strain curves x-y are presented in Fig. 10.5 a,b. 
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Figure 10.5. The shear tress-shear strain curve a) /j = 2 • 10-' /n;e = 10'«-' ,b) 

Fig. 6 illustrates the slip bands on the surface of the ditch after Has shear deformation. The image was 
obtained using the microscope MBT 71 Y4.2 and thedigital camera New View. 

Figure 10.6. Slip bands on the surface of the ditch after the shear deformation (visible area 
680x983 ^M 
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11. EXPERIMENTAL STUDY OF COPPER UNDER DYNAMIC LOADING 

11.1. Dynamically Loaded Copper Behavior 

It is important to underline that data for the dynamically loaded copper obtained from different sources 
exhibit different dynamic stress-strain behavior or degrees of strain rate sensitivity. Data on copper have shown 
either no strain sensitivity at rates 10' s"'  [76] depending on the sours. This is attributed to either slight 

differences in material chemistry, microstracture or processing history. Data for annealed OFHC copper are 
presented in [77]. As for many of the other materials there appears to be a sudden increase in strain rate 
sensitivity at rates above 10' s"'. The extrapolation of the uniaxial stress (quasi-static and Hopkinson bar data) 

shows that the HEL would correspond closest to data at the lowest constant strain value of 0.01. Degree of rate 
sensitivity is not constant over the range 10"' - lO' 5"', but shows sudden upturns in the higher rate regime for 

some materials. Experimental data show a systematic increase of flow stress with strain rate over the strain rate 
range covered by the SHPB apparatus. At very low strain rates, below quasi-static a region of little or no strain 
rate sensitivity can be found. At higher rates in most metals, flow stress increases with strain rates in a linear 
manner with a logarithm of a strain rate. 

At even higher rates, the degree of rate sensitivity mcreases dramatically when strain rates approach to 
the range of 10' - IC 5"'. One explanation for this behavior is based on the change in the rate-controlling 

deformation mechanism from thermally activated to linear viscous mode. 
The behavior of copper, in particular, at very high strain rates is discussed in [76], where discrepancies 

in the rate sensitivity beyond a strain rate of 10' s~' are highlight. However, the validity of some experimental 

results in this range of strain rate was questioned in [78]. It was not observed the apparent increase of the stress 
under uniaxial strain (plate impact) conditions at yield up to equivalent strain rates of 10^ 5"'. In contradiction it 

was shown in [79] showed that OFHC copper revealed a highly rate-dependent properties. The rate-controlling 
mechanism in copper and sudden increase in rate dependence at rates exceeding 10' 5"' was linked with 

structure evolution plotting the data for constant strain. Using a "mechanical threshold stress" as a state variable 
which characterizes dislocation-dislocation interactions, they conclude that the increase in stress at high rates is 
due to the increased rate sensitivity at the strain hardening rather than to a true rate sensitivity at constant 
structure. 

It was noted also in [76] that there is apparent change from a thermally activated mechanism to one 
causing a higher degree of rate sensitivity appears to accour for many materials at room temperature at strain 
rates which at upper limit of validity of the SHPB test technique. 

11.2. The Hopkinson - Kolsky Technique 

The Split Hopkinson pressure bar (SHPB) has become a very popular experimental technique for the 
study of the constitutive laws of materials at high strain rates (10^ -10" 5-'). 

Kolsky's origmal SHPB analysis is based on some basic assumptions: (i) The waves propagating in the 
bars can be described by one-dimensional wave propagation theory, (ii) The stress and strain fields in the 
specimen are uniform in its axial direction, (iii) The specimen inertia effect is negligible, (iv) The fiiction effect 
in the compression test is also negligible. 

A typical SHPB set-up is outlined in Fig. 11.1. It is composed of long incident and transmitted bars with 
a short specimen placed between them. The impact of the projectile (striker bar) at the free end of the incident 
bar develops a compressive longitudinal incident wave of strain £,.. This elastic wave travels through the 

incident bar and then reaches the specimen, which is sandwiched between the incident and the transmitted bar. 
The amplitude of the wave is such that plastic deformation is imparted to the specimen. A part of the incident 
strain wave, £^, is reflected, whereas another part goes through the specimen and develops in the transmitted bar 

the transmitted strain wave S^. Those three basic waves recorded by the gages attached to both incident and 

transmitted bars. We measure the direct incident pulse, a reflected pulse, and a transmitted pulse, which have 
amplitudes £",-,£"^, and S^ respectively. From these three pulses one can derive a stress-strain relationship for the 
specimen. 

When the waves are known at bar-specimen interfaces, the stresses, the deformations and the 
deformation rates at both faces of the specimen are given by the following equation: 

0-, = E(A/A,)£„ 
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£, =-2co/L {s^dt, 
JO 

dt 

where A - bar's cross-sectional area; 
As - specimen's cross-sectional area; 
E - Young's modulus; 
Co - elastic wave speed. 

The main assxmiption of the Kolsky method is satisfied during the entire test, namely: 

where  8^,8^,e^   - the incident strain wave, the reflected strain wave and the transmitted strain wave 

respectively. The Hopkinson bar is also used in tension, torsion, and shear. 

11.3. Experimental set-up 

The main components of the experimental set-up are loading devices with control system, and 
registering devices with PC for data processing. Pulsed loads in a SHPB are generated using 46-mm gas gun. 
The projectile is accelerated by compressed air. The gas gun makes it possible, in laboratory conditions, to 
accelerate projectile 200 mm long up to the impact velocities of 10-30 ms''. 

Pressure test is conducted following the block-scheme (Fig.11.1). The both bars are 720-mm long and 
30-mm diameter. The bars are made of steel. The specimens have the tablets shape. 

The striker velocity is measured during it pass the fixed distance, where induction gauges are cemented. 
Two impulses are produced one by one and registered by the Counter. 

The start of the registration system is produced by synchronization impulse, which are made by Pulse 
Generator. The impulsive generation of the Bridge Connection is produced by impulse of Pulse generator 
(T = 1.. .2 ms). The deformations in both pressure bars are measured with tensoresistors are connected by semi- 
bridge scheme (Fig. 11.2). 

The experimental information fi-om the gauges cemented to the pressure bars equidistantly fi-om the 
specimen is registered by the two-channel ADS. The processing program makes it possible to synchronize the 
registered impulses and to generate the dynamic deformation diagrams for tests. 

Gas gun     Striker Incident bar 
Gaug( 

Transmitted bar Buffer 

Pulse 
generator 

J-L 
1-2 mS 

Pulse 
buster 

SW 

Aplifier 

ADS 
2 channel 
50 MHz 

Computer 

Figure 11.1 Split Hopkinson pressure bar 
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"+(15-50)V 

-(15-50)V 

Figure 11.2.   Bridge Connection 

11.4. Dynamic strain-stress diagrams for copper 

Preparation of specimens. 

Specimens made from copper of size 14 mm in diameter and 6mm in width were used to perform the 
experiment. In the preliminary stage the specunens were subjected to vacuum annealing at the temperature 
SOO^C. Then they were hold up for two hours. Finally they were cooled together with the oven. The annealed 
undeformed section specimen is shown in Figure 12.3. The average size of the grain is 0.6 mm. 

Figure 11.3 
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SHPB experiment. 

The split was modified to provide the single loading of the specimens in each experiment. The ends of 
the specimens were preliminary processed to achieve the purity Rz5. Just before placing the specimens between 
the bars, their ends were covered with a thin soap layer. This allowed us to avoid the buckling of the specimen 
during deformation. Each experiment was carried out on a series of five specunens, subjected to loading 
according to the following scheme: the first specimen - one impulsive force, the second specimen - two 
impulsive forces,..., and the fifth specimen - five impulsive forces. The velocity of the projectile was planned to 
keep the same during all the tests, but it did not always work. The experiments were carried out at the following 
velocities of the projectile: 4.6-5,5 m/s, 7-9 m/s, 15m/s. 

experimental results 

CT-WPa 

t.it 0.04 B.OS o.ifi 

Figure 11.4. Diagram a - e for coppe (the specimen al8), impacts 1, 2, 3. 
1 — velocity of the projectile = 3.94 m/s, strain rate ds/dt=I124 c'; 

2— velocity of the projectile 6.41 m/s, strain rate ds/dt=1082 c' 
3 — velocity of the projectile 6.25 m/s, strain rate ds/dt=864 c' 

o.ot a.ti g.OE O.DI 

Figure 11.5. Diagram a-e for copper (the specimen al8), impacts 1, 2, 3,4. 
1 — velocity of the projectile = 5.82 m/s, strain rate ds/dt=1124 c'; 

2— velocity of the projectile 6.41 m/s, strain rate ds/dt-1082 c' 
3 — velocity of the projectile 6.25 m/s, strain rate de/dt=864 c' 
4 — velocity of the projectile 6.37 m/s, strain rate dE/dt=838 c' 
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i.tt 0.04 I.OE 0.00 

Figure 11.6. Diagram a -s for copper (the specimen a 18), impacts 1, 2, 3. 
1 — velocity of the projectile = 5.82 m/s, strain rate de/dt-1124 c'; 

2— velocity of the projectile 6.41 m/s, strain rate d£/dt=1082 c' 
3 — velocity of the projectile 6.25 m/s, strain rate de/dt=864 c' 
4 — velocity of the projectile 6.37 m/s, strain rate ds/dt=838 c' 

5 — velocity of the projectile 7.01 m/s, strain rate ds/dt=1080 c' 

0.04 

Figure 11.7. Diagram a - e for copper (the specimen a26), impacts 1, 2, 3. 
1 — velocity of the projectile = 3.94 m/s, strain rate d£/dt=759 c'; 

2— velocity of the projectile 5.03 m/s, strain rate de/dt=935 c' 
3 — velocity of the projectile 4.68 m/s, strain rate de /dt=656 c' 

0.01       O.Ot       0.03       S.04       O.OS       O.OC 

Figure 11.8 Diagram a -s for copper (the specimen a26), impacts 1, 2, 3,4. 
1 — velocity of the projectile = 3.94 m/s, strain rate ds/dt=759 c'; 

2— velocity of the projectile 5.03 m/s, strain rate d£/dt=935 c' 
3 — velocity of the projectile 4.68 m/s, strain rate ds/dt=656 c' 
4 — velocity of the projectile 4.64 m/s, strain rate d£/dt=930 c' 
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Figure 11.9 Diagram <j - e for copper (the specimen a26), impacts 1, 2, 3,4,5. 
1 — velocity of the projectile = 3.94 m/s, strain rate ds/dt=759 c'; 

2— velocity of the projectile 5.03 m/s, strain rate ds/dt=935 c' 
3 — velocity of the projectile 4.68 m/s, strain rate ds/dt=656 c' 
4 — velocity of the projectile 4.64 m/s, strain rate de/dt=93Q c' 
5 — velocity of the projectile 4.09 m/s, strain rate ds/dt=500 c' 

a-WPa 

0.01      O.OI      0.0}      0.04      0.05      O.OE 

Figure 11.10. Diagram a - e for copper (the specimen a29), impacts 1, 2, 3,4. 
1 — velocity of the projectile = 5.71 m/s, strain rate ds/dt=977 c'; 

2— velocity of the projectile 5.41 m/s, strain rate ds/dt=812 c' 
3 — velocity of the projectile 5.26 m/s, strain rate de/dt=450 c' 
4 — velocity of the projectile 5.68 m/s, strain rate d£/dt=714 c' 

12. MECHANICAL RESPONSES OF SHOCKED MATERIALS 

12.L Constitutive Description of Deformation of Copper Based on the Use of the Mechanical Threshold Stress 
as an Internal State Variable 

The observed change in the strain rate sensitivity at constant strain must then be due to the strain rate 
sensitivity of structure evolution. FoUansbee extended the model proposed by Kocks [80] and Mecking and 
Kocks [81] into the high strain rate regime in copper. The important feature of the model is that evolution of the 
internal state variable (structure evolution) is treated separately from the determination of the strain-rate and 
temperature dependent flow stress for any microstructural state. This treatment was motivated by the observation 
in polycrystalline copper that the yield stress at any standart strain and temperature on samples prestrained at 
room temperature to a constant strain varied with strain rate of pre-strain process. 

Results in copper [82] have indicated large strain or strain rate history effects. Measurements usmg the 
strain change test are usually limited to strain rates < 10' s'^. The availability of mechanical threshold stress 

data measured in copper at strain rates as high as 10"* s~^ permits extension of this model into the regime where 

the strain rate sensitivity (determined at constant strain) is known to increase dramatically. This allows the 
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proposal and testing of a single model based only on thermal activation controlled glide that describes results 
over a wide range of strain rates (10"^ 5"' ^£^10'' s"'). 

In the Follansbee model the flovi^ G stress is determined as the fiinction of mechanical threshold stress 
(or the flow stress at 0°K) a . 

The mechanical threshold stress is separated into two components, 

Cr = <Tfl + or,, (12.1) 

where the component <T„ characterizes the rate independent interactions of dislocations with long-range barriers 
such as gram boundaries whereas the component a, characterizes the rate dependent interactions with short 
range obstacles. 

At finite temperature, thermal activation can lead to a lowering of the second component of the flow 
stress, while leaving the first imchanged. The relation between the flow stress and the mechanical threshold 
stress becomes 

a = aa+(T,=&a+ s(£, T)&,, (12.2) 

where the strain rate and temperature dependencies are included in the factor S . 
With equation (12.2) as the foimdation for a model, there are two separate problems. First, the form of 

the factor S in equation (12.2) must be specified. Second, evolution of the mechanical threshold stress must be 
described. 

Thermal activation at constant structure 

The factor S in equation (12.2) specifies the ratio between the appHed stress and the mechanical 
threshold stress. The value of S is defined by the glide kinetics. This factor is 5 < 1 for thermally activated 
controlled glide because the contribution of thermal activation energy reduces the stress required to force a 
dislocation past an obstacle. If deformation is instead in the dislocation drag controlled regime, then an applied 
stress greater than the mechanical threshold stress is required for continued deformation. 

The exact form of the equation relating o(&,s,T) in the transition regime between these two rate 
controlling deformation mechanisms has been derived in [82]. 

The results for a copper indicate that at strain rates s < Ws'^ the rate controlling mechanism is thermal 
activation and that the contribution of dislocation drag is negligible. 

In the thermally activated glide regime the interaction kinetics for short range obstacles are described by 
an Arrhenius expression of the form 

e = Ea exp 
kT (12.3) 

where ^o is a constant and k is the Bolt2mann constant. 
For the fi-ee energy AG the phenomenological relation was proposed [82] 

AG = go/^3 1- (12.4) 

where go  is a normalized activation energy, which is expected to remain constant providing the obstacle 
character does not vary, ^ is the shear modulus, b is the magnitude of the Burgers vector, and p and q are 
constants that characterize the (statistically averaged) shape of the obstacle profile (0<. p<l,l<.q^2) [82]. 

Combining equations (12.4), (12.3) and (12.2) and the arranging the resuh gives 

&a + (a- &„} 
goMbi 

(12.5) 
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which is a specific form for the more general equation (12.2). The equation (12.5) express the dependence of 
flow stress as the function of current structure ( CT ), strain rate and temperature. However, the evolution of the 
structure is more difficult and needs more precise study. 

Structure Evolution 

Structure evolution is considered as the balance between the dislocation accumulation and dynamic 

recovery. The strain hardening rate 9 =   /jp is used to characterize the differential variation of the structure 

parameter with strain. 
The fimdamental relation between the competing process is written as 

e = e,-e,iT,s,a), (12.6) 

where 9^ is the hardening due to the dislocation accumulation and 9^ is the dynamic recovery rate. Application 
of this equation to a variety of fee. pure metals and alloys, using the data measured over a wide range of 
temperatures but a narrow range of strain rates allowed in [82] the conclusion that the first term on the right- 
hand side of equation (12.6) is roughly constant and equal to // / 20, which is the strain hardening rate during 
Stage II deformation. According to the model expressed by equation (12.6) the important temperature and strain 
rate dependencies were found in the dynamic recovery term. 

A linear variation of strain hardening rate with stress indicates Voce behavior 

9 = 9, 1- 
aiT,£)-aa 

(12.7) 

where <T^ is the stress at zero strain hardening rate (sometimes termed the saturation stress). 
Most metals do not show Voce behavior over a wide range of stresses, but saturation-like behavior is 

common. That is, the strain hardening rate continues to decrease toward zero with increasing stress or strain, but 
true saturation behavior is rarely observed. 

It was assumed in [82] that for the strains f < 1 the strain hardening curve do saturate with a law given 
by the equation 

9 = a 

where the fimction F is chosen to fit the measured data. 

Results at constant structure 

The mechanical threshold stress is measured by deforming several samples identically according to the 
strain and strain history that was chosen for the testing. 

All loading was realized at ambient temperature and the reloading at various temperatures to measure 
the yield stress as a function of the reload temperature. The mechanical threshold is the flow stress at 0 K. 
Equation (12.7) provides this extrapolation as it describes in [82]. 

To fit the reload yield stress data to equation (12.7), the athermal stress was estimated as the yield stress 
on undefonned material 

<T^ = AOMPa. 

For the evaluation of the e^ term in equation (12.7) the rests were performed in some ranges of the 
strain rates. The best agreement for all of the loading histories and temperatures is given by the value of s^ 

EQ = 10? 5-1. 
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No systematic variation in EQ with the history was detected. However, as it was emphasized m [82], the 
low constant-structure rate sensitivity in copper makes it difficult to experimentally determine this quantity with 
precision. 

The normalized activation energy is determined from the slope of the line through the data and the 
average of all data, which presented in [ 82] gives 

go =1-6. 

It was underlined also in [ 82] the significance of the slight increase in go with increasing a . 

Application of the results to the description of structure evolution 

The key of the successful application of equation (12.5) to the description of structure evolution is the 
choice of the function F. Several functions were investigated [83]. To fit die evolutionary equations to the 
mechanical threshold stress data the factors 0o and a^ were varied until the lowest error between the 
experimental data points and the predicted a ~ e curve was achieved. 

The form of the function F finally chosen uses the hyperbolic tangent fimction and is written as 

p _ tanh(2x) 
tanh2   ' 

where x = ■    ~'^'' 
(T,-CT„ 

0 = 00 

Combining this expression with equation (12.7) gives 

j    tanh(ZY) 
tanh(2) (12.8) 

It was emphasize that the particular evolution law chosen to fit the results presented in [82] is merely a 
convenient mathematical form which happens to describe the data. It is satisfying that equation (12.8) 
approximates the Voce law at low strains. However, it was underlined that there is no physical significance to 
the particular form of equation (12.8), and the assumption was expressed concerning the existence of more 
universal, physically based evolution laws, which could give the fundamental understanding of texture evolution 
and Stage IV deformation are advanced. 

Initial Strain Rate Hardening 

A fundamental supposition of Meecking and Kocks [81] is that the mitial portion of the stress-strain rate 
curve is affected strongly by the athermal dislocation accumulation rate, whereas the large strain regime of the 
strain-stress curve is affected strongly by dislocation rearrangement and therefore the saturation flow stress 
behavior. 

The mechanical threshold stress data show an unusual large strain rate dependence at low strains. This 
behavior can not be described by the equation 

0 = 00 ■F(r^r^^ 
CTs-O-a    . 

unless the initial strain hardening rate is allowed to vary with strain rate. Thus, the observed variation of 0o with 
e  is not a function of the particular evolutionary law chosen. 

These data indicate that the increased strain-rate sensitivity found at these strain rates is not due to 
change in the rate controlling deformation mechanism but rather is a strain rate history effect. 

Discussion 

The foundation of the FoUansbee model is the separation of the constant structure part of the strain-rate 
sensitivity from the structure evolution part. There are fondamentally different processes, which require different 
theoretical models. 
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A combination of physically based equations 

a = &„ + (&- &a} 

M-f J^^U   ^. 
kT 

and phenomenologically based equation 

9 = 0, 1-F(- <T-cr„ 

to describe these processes has been applied and fitted to mechanical threshold stress measurements firom strain 
rates of 10"^ -10" s"'. 

The major conclusion of this work is that there is strong evidence that the dislocation accumulation rate, 
or Stage II hardening rate, begins to increase dramatically with a strain rates exceeding -lO's"'. This 
observation explains the origin of "the increased strain rate sensitivity" of the flow stress at constant strain found 
in copper and other fee. metals at these strain rates. 

One interesting implication of this finding is that at strain rates exceeding ~10' s~^ the strain hardening 

will quickly saturate and the stress-strain behavior will approach perfect plasticity. The reason for this is that the 
strain rate sensitivity of the athermal hardening rate exceeds the strain rate sensitivity of the saturation stress at 
high strain rates. There is a limited experimental evidence which supports this prediction. 

12.2.      Structure of Stress Waves in Solid under Impact Loading 

One dimensional plane shock waves have been widely used to study the mechanical response of solids 
to high velocity deformation. For many materials imder a certain range of impact pressures, there exists a two- 
wave structures of which the first wave, the so-called, elastic precursor, travels at the velocity of sound waves, 
while the second wave, plastic shock wave, travels at a slower speed which increases with impact pressure. 
While the fixU two-wave structure is thus not steady (does not propagate without change of form), each 
component wave may be treated as steady after sufficient propagation distance. 

In the case of the plane wave propagation in z direction the system of constitutive 

Figure 12.1. Scheme of loading 

equations coupled with conservation laws of mass and momentum are written as 

4 = C+Az'        K=<^.JE, (12.9) 
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8 u,    da,. 
de dz 

£„ =■ (12.10) 

^^       '    dpi     '      dt      '     dp,     '      ^'      '     «^     '^ ' ^ dt dt 35 

where p'^ and p, are deviatoric and isotropic parts of p^,S is a parameter reflecting an evolution of 

equilibrium stress-plastic strain dependence,   p   is material density,  L'^,  L^   and Lg   are the kinetic 

coefiBcients. There is only p'^ component in the compression waves. 
The solution of the system has to satisfy the boundary and initial conditions: 

(T,, (0, r) = o-o (/), 0-,, (A, r) = 0; V, (z,0) = CT(Z,0) = p,, (z,0) = 0;/)(z,0) = po, (12.12) 

where h   is the plate thickness,  (To(f)-fanction was determined on the basis of the solution of collision 
problem. 

12.3.      The Equilibrium Stress-Strain Dependence with Controllable Degree of Metastability 

The equilibrium dependence C (/>) corresponding to the natural condition of the free energy minimum 

 = 0 plays the main role in material response under a slow loading. (The loading with a characteristic time 
dp 

much less than the characteristic time of structure evolution T„ = L„l G). 
p       p       ' 

The dependence presented on Fig. 4.1. can be written in form: 

■(p) = Ap 
( 

1 + Tanh P-PC\\B 1 + Tanh 
\ 

( 

\ 

P-iPc+^) 
iPc+^) 

\\ 
(12.13) 

JJ 

where A = <Tu f(2p^) , 2B is the critical stress, p^ is a strain corresponding to the beginning of plastic flow, 

CTfj is the Hugoniot elastic limit. 

Figure 12.2. The evolution of the equilibrium dependence <J (/?) on 5. The equilibrium dependence with 

controllable degree ofmetastability. 

Two type of law were tested for the evolution of the dependence. They can be writing as the following: 
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S{P)=^SQP and S(P) = SQtanh{p). (12.14) 

The material parameters for the numerical simulation were determined for pure copper. Using (12.13), 
the constitutive equations for compressed loading can be written in dimensionless form: 

P = -k Ap 1 + Tank 
V 'c       J 

{      ^      (-zr 

1 + Tanh 
\ iPc+^) 

^^     a^ 
(12.15) 

.A_ where    ^=0.6-10", ^=^=1.54,    B=2.5W,B=Bpm^/G=l2.S2,    P,=pjp^=-l,    L = 7, 

Lp=LLpG/,jG7p =10''   Lp=2.510-^,S,=LL,/yfE7p=lO^   ^o=510-^ 

To calculate the face front and rear front of stress wave we introduced in numerical algorithm the 

dependencies corresponding to loading and imloading conditions. The unloading in point X  is determined by an 

do- 
inequality 

dt 
< 0. The rear front dependence were written as 

a{p)=-A(-p+Po) 
( 
l+Tanh .( ^(-P+P,)-PP -Rr.\\ 

V PPC 

r 
-B 

J) 

l+Tcmh ■ (-P+PO)-(PPC+^) 

(PPC+S) 

\\ 

JJ 
+C7o (12.16) 

where p^ and cr^ are, respectively, the strain and stress corresponding to the beginning of the unloading 

process, fi is parameter describing the Baushinger effect. The "loading- unloading" dependencies are presented 
on Fig. 12.3. 

•^;^ Unloading g 

Figure 12.3. "Loading-Unloading" dependencies used in numerical simulation. 

Presented in Fig. 12.3 dependencies are the results of numerical simulation of the stress wave 
propagation and the time-dependencies of stress. In the stress area corresponding approximately to the dynamic 
yield stress the orientation kinetic transition for the parameter p is realised which results in the abrupt increase 
in the stress relaxation tempo, a change in the plastic wave profile and the separation of the elastic precursor 
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0 0.5 1 x/h 0 0.5 1 x/h 
a) b) 

Figure 12.4. The stress profile in specimen for different under laws S = SyPj,^) ^\P)~^oP ^) 

5 (p) = 4) tanh (/?). Stress amplitude is 20 lO' Pa, loading time ICf^ sec. 

15.3.     The Landau Expansion. 

The generalization of Ginzbnrg-Landau approach for system described by two  interacting structural 
parameters {p and 6 in our case) is an important problem under mvestigation of non-equilibrium systems. The 

main problem in this approach is the determining the law for oip). The equilibrium dependence was 

presented in the form: 

a{p) = Ap + Bp' + C,^^^p\ 
S^-S^ 

(12.17) 

where        A, B, C 

lOo", 

constants       determined       as       follow:        A =        ^ = 1.56522el 1, 
23/^, 

3o-„ 
5 =-1:212. = _2.0869el7, Co = ^^ = 2.50435e23. 

23pl 23pl 

The dependence CTyp) is presented on Fig. 12.5. 

D.OOU 
P 

D.Otlt r 
a. 101 

I.DttI 

V \.        5=1.22 
  

O.OIII ■ 

)/"^ 
.  8=1.3 

fl.OOH 

o.tott L-^ ■ > ■ I i 

Figure 12.5. Dependence O'yP) on S ( The Landau expansion). 
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For the determination of current value of S instead of an analytical dependence Sypf we proposed 

special numerical procedure based on double using of Newton's technique for non-linear algebraic equation. The 

procedure used the follow dependence ^{o") '■ 

S{a) = &tsmh(a{(7 -crj). 

Using (12.7) the constitutive equations (12.1) for compressive loading were written in dimensionless 
form: 

in =-h \Ap + B{p)'^C,^(p)' -Da 

where        P = plPr^,        <J = C7/G, t=tc/LQ,        ^=1.5522-10", ^=^=4.01338; 

B=Bpl^/G = -l.337S, C = 2.50435 • lo",       C„ = C.p^^ IG = 0.401338, 5 =-2.08696 • 10 

D = l,   D = D/P^=2000, Lp=LLpG/,jGTp =74M97   Z^ =2 10^, c is sound velocity, 

LQ is space scale. 

To calculate the front and back fronts of stress wave we introduced in numerical algorithm "loading" 
and "unloading" equilibrium dependencies (Fig. 5.) corresponding to loading and imloading conditions. The 

* d<T 
imloading in point X  is determined by an inequality  

dt 
< 0. The "back" dependence can be written as 

<T{p) = A{p-(p,-p,)) + B{p-(p^-p,)f+Co-—Hp-(PQ-P*)f-^o^ 

ly/gB^ -20AC -3B 
where    /?« = J s is an auxiliary parameter, p^ and (Jg are, respectively, the strain 

and stress corresponding to the beginning of the imloading process. 

t.ttts 

p 
; Second potential 

(unloading potential)      _^._.—-—' — 

D.ttt 

1.0915 ^ /NPoint of revers 

B.OOl 

e.OIDS y     Initial potential 
'^'^'^-..^loading potential) 

L . . . 1 . . . 1 ■  
CJ 

Figure 12.6.   "Loading " and "Unloading " dependencies used in numerical simulation. 

The results of numerical simulation are presented on Fig 12.7 and 12.8. 
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Figure 12.7. The stress profile in specimen a) stress amplitude 2 • 10 Pa, loading time 10'^ sec, b) elastic 

precursor decay (stress amplitude 2-10 Pa, loading time ICf^ sec). 

0.5 x/h 
Figure 12.8. The stress profile in specimen a) stress amplitude is 3-10 Pa, loading time 6-10" S. 

13. EVALUATION OF THE BODNER - PARTOM MODEL AT HIGH STRAIN 
RATES 

13.1. Constitutive Equations for Elastic-Plastic Strain-Hardening Materials 

The state variable model of Bodner and Partom [84] was formulated for the description of visco-plastic 
material responses with a broad range of load histories and found the wide application for the strain rate loading 
in the test were high enough to assume relevance to impact loading about 500 to lO' s'' and range of stress states 
that are typical for split Hopkinson bar (SHB) (one-dimensional stress) and flat plate impact (one dimensional 
strain). The attractive features of the Bodner-Partom (B-P) model are the ease of determination of parameter 
values and adaptivity to finite difference and finite element computer codes. The basis of the formulation is the 
separation of the total deformation rate into elastic and inelastic components hat are functions of state variables 
and the deformation at all stages of loading and unloading. The theory does not require a yield criterion or 
loading and unloading conditions. The response of the system is calculated on a step-by-step basis and does not 
depend on reference integration fi-om the "zero" state or the introduction of "memory" fiinctions. 

The total strain rate is assumed to be decomposable into elastic and inelastic components 

^£.+£^ (13.1) 

Both are nonzero for all lading-unloading conditions. The elastic stram rate is related to the stress rate 
by the elastic constants (Hooke's Law). The inelastic strain rate is assumed to be related to the stress through the 
flow rule of classical plasticity and is a flmction of stress, (T;^, a state variable, Z, and to follow the Prandtl- 

Reuss rule 

44 



where £?, and S^= are the deviatoric plastic strain rate and stress. Squaring equation (13.2) gives 

(13.2) 

where 

1 .„., A^ ■'ik'^ik 

(13.3) 

(13.4) 

is the second invariant of the plastic deformation rate deviator and J^ is the second invariant of the stress 
deviator 

•^2 = -<^\k^\k ■ (13.5) 

Since D^  is the measure of the "effective" inelastic shear deformation rate and J^ is the effective 
shear stress, the statement 

(13.6) 

can be considered to be multimensional generalization of the imi-axial resuh. This hypothesis is motivated by the 
extensive work in the field of dislocation theory, which has shown that the dislocation velocity and therefore the 
uniaxial plastic strain rate is a function of the stress. The form of equation (13.6) that allows for flexibility in 
modeling actual material response and has a physical basis is 

Dl DQ exp 
( 7^X 

\jJ2 J 
(13.7) 

The material constants for equation (13.7) are D^, n, and Z . The constant D^ is the bound on Z)^ for 

large Jj and influences the rate sensitivity, n is related to the steepness of the curve and therefore to the 
sharpness of yielding and also to the rate-sensitivity, and Z corresponds in a general way to the yield stress 

since the maximum slope occurs at J2 = Z /3. 

Work hardening corresponds to increased resistance to plastic flow, which means that Z)^ should vary 
inversely with the measure of strain hardening. The most significant and simplest state variable to present this 
property for straining histories having a constant sign of the stress is the plastic work W [86]. The latter seems 

to have a sounder physical basis and Z was proposed in the form 

Z=Z,+(Zo-Z,)expf-'"^^^' 

as the solution of the kinetic equation 

Z = m(Z,-Z)W^, 

(13.8) 

(13.9) 
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where Z,, ZQ and m are new material constants. A finite upper limit for Z is required since otherwise D2 

would approach zero for large W . This would correspond to fully elastic behavior and an upward turning 

stress-strain curve at large strains, which is unrealistic. The proposed strain hardening law corresponds to 
isotropic hardening and therefore would not characterize the Baushinger effect. 

13.2.     The Bodner-Partom Model Simulation of Plate Impact Test for Copper 

The split Hopkinson bar and plate impact tests are the principal technique employed to evaluate the B-P 
parameters under uniaxial stress and one dimensional strain conditions. The SHB can operate in compression or 
tension. The bar design and analysis procedure are described in Section 11. 

Plate impact tests are used to observe very high strain rate yield behavior. In these tests,a flat flyer plate 
is made to impact against a target plate at a high velocity. Compressive stresses are produced and transmitted 
immediately fi-om the plane of impact to the adjacent stress fi-ee areas of the material in the form of a stress 
pulse. Measurement of the free surface velocity on the rear of the target provides data for the loading 
(compression) and unloadmg (release) paths. 

The plate impact tests are conducted to measure the Hugoniot elastic limit (HEL), which is the principal 
stress component under one dimensional strain at very high strain rates. The HEL is related imder one 

dimensional stress ( FQ ) by 

Yo= 
^HEL 

K 
IG 

r 
+- 

3 

where K and G are the bulk modulus and shear modulus, respectively. 
Simulation of the plate impact test was aided by simulations with the original finite difference code. The 

plate impact test is investigated as the propagation of plane elastic-plastic wave in plane specimen in the z- 
direction. The statement of problem includes the mass and momentum conservation laws and constitutive 
equations for elastic and plastic strain rates 

dp d .      . 
(13.10) 

^^^ = -^(pv^ ■^J (13.11) 

zz zz zz' 

4^=Aexp If Z 2 N 

2   3J. 2j y'^2 

(13.12) 

(13.13) 

(13.14) 

where J^ = -cr'ik^lk - 

The conditions of plastic incompressibility and the elastic dilatation have the forms 

^^+^;+4^=o. 

Kinetic equation for the hardening parameter Z was used as 

(13.15) 

(13.16) 
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Z = m(Z,-Z)W^, (13.17) 

where W^ = 0-,.^^^ . 

Dynamic loading on the plate was introduced as the boundary conditions: 
Loading surface, z = 0: 

O-,,(0,0 = /(0- (13.19) 

The function f(t) describes the loading pulse with the shape close to rectangular. 

Free surface, z = h: 

crzz(h,t)=0. (13.20) 

The solution must satisfy to the following initial conditions: 

v^(z,0) = ajz,0) = s^^(z,0) = 0, 

Z(z,0) = Z, (13.21) 

ze[0,l],te[0,co). 

The definition of (13.5) gives 

J2=4.5(o■;)^ (13.22) 

that leads to presentation of the rate of plastic work 

Wp=l.5aJ^^ (13.23) 

Here are : /? is specific density of material; t is time; z is the direction of wave propagation ia the 

plate; v^ is the velocity component; 0'ik><^iki^ik>^iki^a ' ^^^ ^^ components of stress, deviatoric stress, 

strain rate, elastic and plastic strain rates consequently; (7 is the mean stress; G,K are shear and elastic 
modulus; h is the plate thickness. 

Numerical simulation of the plate impact test was carried out by the finite element method. The 
following constants for a copper were used: 

yO = 8.6-10^ kg/m\ G = 0A08-10^^ Pa, K = 1.45-10^^ Pa; 

D^=1J2-10' s-\ n = OA, m = lA-10-^ J-\ Z^= 65.5-10)^ Pa. 

Results of Numerical Simulation 

The results of numerical simulation are presented in Fig. 1-3 for the initial pulse amplitude 

CTQ =3.0-10'Pa, the pulse duration At^=^.25-\Q-^S S and the plate thickness A=5.0-1 O^^m. The elastic- 

plastic wave propagation is accompanied by the relaxation of the deviatoric stress component for the stress close 
to the Hugoniot and the separation of wave on the elastic precursor and plastic wave fi-ont. The step appears on 
the back fi-ont corresponding to the elastic and then plastic unloading. 

The accuracy of the numerical procedure was estimated by the variation in the large scale of the finite 
difference parameters. 
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Figure 13.1. Propagation of plane stress wave CT^^ in plate for the moment of time: 

t=0.1:0.3;0.5:0.7:0.9 fJS 
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Figure 13.2. Evolution ofdeviatoric component of stress (7^^ for different time t=0.1; 0.3; 0.5; 0.7; 0.9 fJS. 
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Figure 13. 3. Evolution of plastic strain   £    in time: t=0.1; 0.3; 0.5; 0.7; 0.9 JUS 
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The Discussion of Results 

Numerical study of the evolution of the stress wave front showed the qualitative and quantitative 
agreement given by the B-P model for a copper in dynamic test. The elastic precursor appears at stress level 
amplitude that is much less the total stress level. Similar situation was observed experimentally in [79], when the 
appearance of the elastic precursor was not measured. Most clear two-wave picture of elastic-plastic front is 
observed for deviatoric stress component, where the kinetics of the elastic precursor decay can be estimated. The 
decay of elastic precursor is the consequence of elastic-viscoplastic relaxation presented in the B-P model. The 
evolution of deviatoric parts of stress and sfrain in Fig. 13.3 confirmed this physical reason of relaxation of 
stress-sfrain variables in the B-P model. 

The rate of decay of the amplitude of the leading elastic wave front in a sfress wave propagation 
experiment can be used to deduce the form of the sfrain rate sensitivity of a material. Extensive numerical 
analysis of precursor decay was conducted in [87], where a mathematical definition of the HEL, the amplitude of 
the leading elastic wave xmder xmi-axial sfrain conditions. The proposed definition of the HEL determines the 
amplitude of the HEL as the sfress corresponding to a plastic sfrain of 0.0002 in the dfrection of the propagating 
wave. It should be noted that the amplitude of the HEL is often considered to be a material constant. The 
decrease in amplitude in the B-P model is a dfrect result of the rate sensitivity of material. 

The positive feature of the B-P model is that there is no yield surface and no unloading condition. Thus, 
plastic flow is always nonzero but the yield behavior is modeled numerically using the property that the plastic 
sfrain rate is computationally small for low values of sfress. 

The plastic sfrain invariant jDfis taken in the form (13.7), where Zis the hardening parameter. A 

finite upper limit for Z is required since otherwise Z)f would approach zero for large W^ . This corresponds 

to fully elastic behavior and an upward turning sfress-sfrain curve at large sfrains which is unrealistic. A nonzero 

value of D2  for large W leads to the slope of the sfress-sfrain curve approaching zero as the sfrains become 

large.  The proposed sfrain-hardening law corresponds to isofropic hardening and therefore would not 
characterize tiie Baushinger effect. 

A particularly atfractive features of the B-P model are the ability for modeling high sfrain rate behavior, 
that is in the consistent with experimental observations which show that flow sfresses increase very rapidly with 

increase in sfrain rate for sfrain rates above 10   5"   for polycrystalline metals. The hardening term Z can be 

thought is usually taken to be in the range 10   — 10   s~  for the problems involving very high sfrain rates. 

14.SUMMARY 

With the aim to establish the linkage of nonlinear behavior of the defect ensembles with relaxation 
properties (plasticity) and failure of solid microscopic and statistical theory was developed and 
phenomenological models of deformation and failure of dynamically and shock loaded materials were proposed. 
The microscopic model reflects the results of experimental study of defect evolution in the large range of sfrain- 
rate with the usage of X-ray and light microscopy method, defect induced density measurement, including the 
experiments «in-situ». 

Multifield statistical approach is developed for the study of multiscale nature of plastic deformation and 
failure. The tensor order parameter, the defect density tensor, is infroduced for typical mesoscopic defects, 
microcracks, microshears, that are the structural image of dislocation substructures of different material scales. 
Statistical model has established the existence of dimensionless structural parameter of scaling which provides 
the linkage of continuous growth of the defect density under deformation and the rescaling of structural level that 
is involved in the successive mechanism of momentum fransfer due to the collective motion of defects. This 
parameter represents the ratio of the current scale of dislocation substructure and the distance between 
substructures. The statistical model revealed the variety in behavior of ensembles of mesoscopic defects caused 
by the interaction of defects with an external field and between defects. The collective properties of defects due 
to thefr interaction play most important role in the formation of large scale mesodefect substructures, and 
finally in the mechanisms of plastic flow and failure. The generation of large scale mesodefect substructure is 
realized as the orientation fransition in the low scale mesodefect substructure. This fransition occurs in the course 
of the excitation in material the auto-solitary sfrain waves with a front length corresponding to the orientation 
fransition area. The important consequence of this result is the conclusion that the plastic flow develops as the 
continuous orientation ordering of dislocation substructures. The driving force of this fransition is the free energy 
release in the conditions of growth of the defect density and the rescaling of structural level of material which 
provides the optimal mechanism of the momentum fransfer. 
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The orientation transitions in mesodefect ensembles and the nucleation of spatial areas with pronounced 
orientation of defects can be considered as mechanisms of adiabatic shear bands and the strain localization. The 
spatial distribution of the initial susceptibility in term of above scaling parameter can lead to the multiply 
generation of the set of collective modes (auto-solitary strain waves) in the bulk of the specimen. These modes 
can be considered as new phase variables which subject the material behavior and decrease the system 
symmetry. The irregular character of plastic deformation (Yerrky flow) is the consequence of the stochastic 
dynamics due to the generation and the interaction of autosolitary collective modes in mesodefect system. The 
important result of statistical multifield theory is the determination of the type of bifiircation, which leads to 
qualitative change for the evolution equation of defect density tensor under the transition from plastic 
mechanism of structural relaxation to the damage localization and failure. This bifurcation type arises for the 
critical value of scaling parameter and leads to the generation of the collective modes - the dissipative structures 
with blow-up kinetics of the defect density growth on the corresponding spatial scales. The set of these collective 
modes correspond to the coordinates of the second attractor which defines another multiscale nature f damage- 
failure transition. 

The collective mesoscopic modes of dislocation substructures (auto-solitary orientation waves and 
blow-up dissipative structures) have the meaning of the self-similar solution - eigen-fiinction spectrum of 
corresponding nonlinear problems. The loading condition can provide the resonance excitation of this type of 
collective modes that can lead to the anomalous deformation responses in the form of specific type of strain rate 
localization, failure wave, self-similar structures of wave fronts in shocked condensed matter. 

Statistical approach based on the solution of the multiparticle problem of the behavior of ensemble of 
mesoscopic defects (microcracks, microshears), characterizing by tensor order parameter (defect density tensor), 
allowed the establishment the characteristic type of the non-linearity of thermodynamic potential (free energy) in 
the terms of deformation induced by the defects. Non-linearity type of the thermodynamic potential and derived 
evolution equation for macroscopic variable, related to the defect, explained the mechanisms of plastic strain 
instability as the non-equilibrium orientation transition and the kinetics of the transition from damage to failure 
due to the generation of locahzed structures in defect ensembles. Study of the properties of evolution equations 
showed the linkage of above nonlinear regimes with self-similar solutions having the nature of autosolitary 
waves of orientation transition, which determines the dynamics of the fronts of localized plasticity, and the 
dissipative blow-up structures related to the nucleation of failure hotspots. 

Theoretical results related to the explanation of the linkage of the nonlinear defect kinetics and 
relaxation properties, failure allowed the interpretation and the description of essentially non-equilibrium effects 
that are observed under dynamically loaded and shocked materials. 

The main results in this area are: 
The explanation of the finite range of the Hugoniot elastic limits as the consequence of the existence of 

the orientation metastability area for the mesodefect ensemble. 
The explanation of universality (the self-similarity) of steady-state plastic front for the   strain rates 

S—>10 s~ (the Barker-Grady data) as the consequence of penetration into the orientation metastability limit 
and the realization of the sequence of orientation transitions in the defect ensembles in the conditions of the self- 
organized criticality. 

The explanation of mechanism of generation and propagation of failure waves in shocked glasses and 
ceramics as the consequence of the resonance excitation of localized blow-up modes in defect ensembles. 

The explanation of the temporal regularities of failure in the stress waves (dynamic branch) including 
the multiply spall failure, as the consequence of the resonance excitation of above localized modes. 

The explanation of the mechanism of transition from the steady-state crack propagation to the branching 
regime and the fragmentation due to the subjection of material behavior to the spectrum of localized blow-up 
collective modes of defects at the crack tip area. 

The explanation of the scaling nature, including the scaling of fracture surface roughness, as the 
consequence of the symmetry properties of system «solid with defects» due to the subjection of their behavior to 
the spectrum of the collective modes of localized failure. 

The developed approach and the continuiun models of materials with defects were tested for the 
description of structure of stress waves and failure under impact loading and for dynamic crack propagation. The 
comparison of developed model (in the following ICMM-Model) with conventionally used models (FoUansbee- 
MTS Model, Bodner-Partom Model) was carried out. Due to the analysis the following conclusion was made: 

The correspondence of athermic and thermally dependent thresholds for MTS Model to the stress 
thresholds corresponding to the orientation metastability range. 

The nonlinear hardening law (Voce law) in the MTS model is the consequence of characteristic type of 
the non-linearity in the area of orientation transition. 

The difference of the hardening kinetics in the Bodner-Partom Model and the kinetics proposed in MTS 
Model and ICMM -Model of solid with defects. 
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The limited applicability of MTS Model, Bodner-Partom Model model for the description of the 
localization effects xmder dynamic and shock wave loading, the transitions from the elastic precursor to the 
plastic front, the relaxation of the elastic precursor and the plastic strain instability (adiabatic shear bands). 

The foUowmg experiments were carried out for the verification of the ICMM-Model: 

The study of nonlinear dynamics of crack propagation in the preloaded PMMA plate with the aim to 
support the mechanism of the fransition from the steady-state crack propagation to the branching and the 
following fragmentation, the estimation of the critical velocities of crack propagation. Experiments were carried 
out with the usage of high speed digital camera REMIX (time lag between pictures lO/ZS), the photoelasticity 
method, and imder the recording with the usage of the laser system of stress phase portrait (the Poincare cross- 
section) at the vicinity of crack tip. 

The study of fracture surface scaling (after the crack propagation in PMMA) and at the free surfaces of 
the sfrained copper specimens subjected to the quasi-static shear and dynamic Hopkinson-bar compression. 
Experiments were carried out with the usage of High Resolution Scanning System «New View» with the 
resolution 10 nm with the aim to support the role of collective modes of defects in the development of localized 
plasticity and failure. 
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The main algorithm 

Begin 

n 
Variables: CT(x,t)=0,p(x,t)=0,8(x,t)=5o 
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Delta calculation 

detta 
calculation 

Variables: beta=0.01, pnecislon=1e-6 

Newton's method for solving 
the equation (;=F(p,deltaold) 

return pO 

deltanew^deltaold 

1=0 

Newton's method for solving 
the equation o=F(p,deltanew) 

return p 

deltanew=deltaold+beta*(fabs(p-pO)-dpequllbrium) 
precision/=2 beta*=2 

return deltanew 



Unitl2.cpp listing: 

//  
#include <vcl.h> 
#pragma hdrstop 

#include"Unitl.h" 
II  
#pragma package(smart_imt) 
#pragma resource "*.dfin" 

#include <math.h> 

TForml *Fonnl; 
//  
 fastcall TForml ::TForml(TComponent* Owner) 

: TForm(Owner) 
{ 
} 
//  

void_fastcall TForml ::FormCreate(TObject *Sender) 
{ 
inti; 

Image 1 ->Canvas->Brash->Color=clWhite; 
Image 1 ->Canvas->Pen->Coloi=clRed; 

// Source 
A0=1.56522ell; 
B0=-2.08696el7; 
C0=2.50435e23; 
D0=1; 
Le=7; 
pc=0.5e-3; 
//constans of material 
M=le4; 
E=3.9elO; 
ro=8.94e3; 
nu=0.345; 
//size of area 
I^O.le-2; 
// kinetic constans 
Lp=7e-1; 
Lpl=7e-1; 
LDI=le-4; 

Fmax=0.5e-3; 
deltal=l.l; 
delta2=1.3; 

N=2500; // Number of nodes 
h=l./N; 
tau=3e-5; 
Sect=30; 

// / 

InitStress=.0000; 
MaxStress=2e9/E; 



ImpactTimel=0.06e-6*sqrt(E/ro)/L; 
ImpactTime2=0.03e-6*sqrt(E/ro)/L; 

A=AO/E; 
B=BO*Pmax*Pmax/E; 
C=CO*Pmax*Pmax*Pmax*Pmax/E; 
D=DO/Pmax; 
Lp=L*Lp*E/sqrt(E/ro); 
Lpl=L*Lpl *E/sqrt(E/ro); 
LDl=L*LDl*E/sqrt(E/ro); 
pc=pc/Pmax; 

Fx=(9.*B*B-20.*A*C<0)?sqrt((-3*B)/(10*C)):sqrt((-sqrt(9.*B*B-20.*A*C)-3*B)/(10*C)); 
FFx=A*Fx+B*Fx*Fx*Fx+C*Fx*Fx*Fx*Fx*Fx; 

FlagOnTennmate=false; 

PrevStress=new double[N];// Stress 
for(i=0;i<N;i++) 
PrevStress[i]=InitStress; 

CurStress=new doublepSI]; 
for(i=0;i<N;i++) 
CurStress[i]=InitStress; 

NextStress=new double[N]; 

PrevP=new double[N];// Damage parameter 
for(i=0;i<N;i++) 
PrevP[i]=0; 

CurP=new double[N]; 
for(i=0;i<N;i++) 
CurP[i]=0; 

NextP=new double[N]; 
for(i=0;i<N;i++) 
NextP[i]=0; 

// Structural parameter 
CurDl=new double[N]; 
for(i=0;i<N;i-H-) 
CurDl[i]=delta2; 

NextDl=new doublepSf]; 
for(i=0;i<N;i-H-) 
NextDl[i]=delta2; 

beta=new double[N]; 
for(i=0;i<N;i++) 
beta[i]=0.02; 

al=new double[N]; 
for(i=0;i<N;i-H-) 
al[i]=0; 

btF=new double[N]; 
for(i=0;i<N;i++) 
bt[i]=0; 

PoiiitRevers=new double*[N]; 
for(i=0;i<N;i++) 

{ 
PointRevers[i]=new double[7]; 



for(mt j=0ij<7;j++) PointRevers[i][j]=0; 
PomtRevers[i][2]=delta2; 
} 

CurTime=0.; 
Selastic=FFx/D; 
Pelastic=5e-4/Pmax; 
xp=0; 
fi=0; 
dl=delta2; 
P0=0; 
} 

//.  

void_fastcall TForml::StartClick(TObject *Sender) 
{ 
FlagOnProcess=trae; 

SolvingO; 
PlotO; 

FlagOnProcess=false; 
} 
//  
double TForml::SourceP(int i) 

{ 
double koef= 1.1; 
double S=CurStress[i],P=CurP[i]; 
ititNm=5000; 
double dt=tau/Nin; 
double r=0,rl=0; 

fr=PomtRevers[i][l]; 
XF=PointRevers [i] [0]; 
dl=CurDl[i]; 

double eps=le-7; 
double epstec=le-7; 

if(fr!=0)koef=l; 

if(fabs(S-fr)>koef*Selastic) 
Lpp=Lpl; 

else Lpp=Lp; 

P=P+xr; 
r=CurP[i]; 

double krl,kr2,kr3,kr4; 

for(intj=Oy<Niny++) 
{ 

krl=Lpp*(D*(S-fi-)-(A*P+B*P*P*P+C*(dl-deltal)*P*P*P*P*P/(delta2-deltal))) 
P=r+dt/2*krH-xr; 
kr2=Lpp*(D*(S-fr)-(A*P+B*P*P*P+C*(dl-deltal)*P*P*P*P*P/(delta2-deltal))) 
P=rfdt/2*kr2+xr; 
kr3=Lpp*(D*(S-fr)-(A*P+B*P*P*P+C*(dl-deltal)*P*P*P*P*P/(delta2-deltal))) 
P=r+dt*kr3+xr; 
kr4=Lpp*(D*(S-fr)-(A*P+B*P*P*P+C*(dl-deltal)*P*P*P*P*P/(delta2-deltal))) 
rl=rfdt/6*(krl+2*kr2+2*kr3+kr4); 
P=rl+xr: 



if(fabs(r-rl)<eps) 
return r; 
i=rl; 

} 
return r; 
} 

II.  
double TForml::Sourcedl(int i,double dp,double k) 

{ 
double dold=0,dnew=0; 
double poldtec=l,pnewtec=0; 
double eps=(le-8)*k*dp,epstec=le-7; 
double SjZeroit; 
int flagenter=l; 
int n=10; 

fr=PointRevers[i][l]; 
xr=PointRevers[i][0]; 
dl=CurDl[i]; 
S=CurStress[i]; 

zeroit=(CurStress[i]<fr)?-300:300; 
if (fabs(eps)<le-15) return dl; 
if(CurDl[i]==delta2) beta[i]=0.01; 
do{ 
eps/=2; 
do{ 
if(flagenter != 1) beta[i]/=5; 
if(n<l) {beta[i]=0.02;} 
flagenter=0; 
n=0; 
poldtec=pnewtec=zeroit; 

do{ 
poldtec=pnewtec; 
pnewtec=poldtec-(A*(poldtec+xr)+B*(poldtec+xr)*(poldtec+xr)*(poldtec+xr)+(C*(dl- 

deltal)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr))/(delta2-deltal)-D*(S- 
fr))/(A+3*B*(poldtec+xr)*(poldtec+xr)+(5*C*(dl- 
deltal)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr))/(delta2-deltal)); 

}while(fabs(poldtec-pnewtec)>epstec); 

pO=pnewtec; 
dold=dnew=dl; 
do{ 

dold=dnew; 
poldtec=pnewtec=zeroit; 
do{ 
poldtec=pnewtec; 
pnewtec=poldtec-(A*(poldtec+xx)+B*(poldtec+xr)*(poldtec+xr)*(poldtec+xr)+(C*(dold- 

deltal)*(poldtec+xr)*^oldtec+xr)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr))/(delta2-deltal)-D*(S- 
fr))/(A+3*B*(poldtec+xr)*(poldtec+xr)+(5*C*(dold- 
deltal)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr)*(poldtec+xr))/(delta2-deltal)); 

}while(fabs(poldtec-pnewtec)>epstec); 
dnew=dold+beta[i]*(fabs(pnewtec-pO)-k*dp); 
}while((fabs(dold-dnew)>eps)&&(n++<=1000)); 
}while(n>1000); 
}while(n<l); 
return dnew; 
} 

II  
void TFonnl: :CheckRefers(int i) 



{ 
double keycon=0.01; 
static double rememberPr=0; 

if((PointRevers[i][4]=l)&&(fabs(CurStress[i]-PrevStress[i])<keycon*tau)) return; 
PointRevers[i][4]=0; 

if((PointRevers[i][3]=0)&&((CurStress[i]-PrevStress[i])<=rememberPr)) 
{ 
if(CurDl[i]==delta2) 

{ 
PointRevers[i][0]=PoiiitRevers[i][5]; 
PointRevers[i] [ 1 ]=PointRevers[i] [6]; 
CurDl[i]=NextDl[i]=PointRevers[i][2]; 
PointRevers[i][3]=l; 
PointRevers[i][4]=l; 
} 
else{ 

PomtRevers[i][5]=PointRevers[i][0]; 
PomtRevers[i][6]=PointRevers[i][l]; 
PointRevers[i][2]=CurDl[i]; 
PointRevers[i][3]=l; 
PointRevers[i][0]=-CurP[i]+Fx; 
PointRevers[i][l]=CurStress[i]-FFx/D; 
CurDl[i]=NextDl[i]=delta2; 
PointRevers[i][4]=l; 
} 
return; 
} 

if((PointRevers[i][3]==l)&&((CurStress[i]-PrevStress[i])>=rememberPr)) 
{ 
if(CurDl[i]=delta2) 

{ 
PointRevers[i][0]=PointRevers[i][5]; 
PomtRevers[i][l]=PointRevers[i][6]; 
PointRevers[i][3]=0; 
CurDl[i]=NextDl[i]=PointRevers[i][2]; 
PointRevers[i][4]=l; 
} 
else{ 

PointRevers[i][5]=PointRevers[i][0]; 
PointRevers[i][6]=PointRevers[i][l]; 
PointRevers[i][2]=CurDl[i]; 
PointRevers[i][3]=0; 
PointRevers[i][0]=-CurP[i]+Fx; 
PointRevers[i][l]=CurStress[i]-FFx/D; 
CurDl[i]=NextDl[i]=delta2; 
PointRevers[i][4]=l; 
} 
return; 
} 

PointRevers[i][4]=0; 
rememberPr=(CurStress[i]-PrevStress[i])/100; 
} 

II  

void TForml::Solving() 
{ 
const double Z=l./(l-2*nu*nu/(l-nu)),K=Z*(l-nu/(l-nu))*Pmax; 
const int SN=8e4; // Not greater than 2el0 



int ij,k,m,MaxPosition; 
double koef=l; 

PrevTime=CurTime; 
MaxPosition=ProgressBar 1 ->Max; 
ProgressBarl ->Position=0; 
for(k=0;k<SN+l;k++) 
{ 
// Next layer for P and dl 

for(i=0;i<N;i++) 
{ 
NextP[i]=SourceP(i); 
if(fabs(CurStress[i]-PomtRevers[i][l])>=Selastic) 
{ 
CheckRefers(i); 
if(PomtRevers[i][4]=0) 
NextDl[i]=Sourcedl(i,2.3e+3*pow(fabs(CurStress[i]- 

PrevStress[i])*pow(tanh(3e3*(fabs(CurStress[i]-PointRevers[i][l])-Selastic)),l),l),l.); 
} 

} 

// Next layer for stress 
for(i=l;i<N-l;i++) 
{ 
NextStress[i]=(Z*(tau/h)*(tau/h))*(CurStress[i+l]-2.*CurStress[i]+CurStress[i-l])- 
K*(NextP[i]-2.*CurP[i]+PrevP[i])+2*CurStress[i]-PrevStress[i]; 

} 

// Boundary conditions 
NextStressik-1 ]=InitStress; 
if(CurTime<(2.*ImpactTimel+ImpactTime2)) 
{ 
if(CurTime<ImpactTinie 1) 
{ 
NextStress[0]=((MaxStress-InitStress)/ImpactTimel)*CurTime+InitStress; 

} 
else 
{ 
if(CurTime<(ImpactTimel+ImpactTime2)) 
NextStress[0]=MaxStress; 

else 
NextStress[0]=2.*(MaxStress-InitStress)-((MaxStress-InitStress)/ImpactTimel)*(CurTime- 

ImpactTime2)+InitStress; 
} 

} 
else 
NextStress[0]=InitStress; 

CurTime=PrevTime+tau*k; 

xp=PointRevers[Sect][0]; 
fi=PointRevers[Sect][l]; 
dl=CurDl[Sect]; 

ProgressBarl->Position=((double)(l./SN)*(k+l)*MaxPosition); 
if(FlagOnTemiinate) 
{ 
k=SN+l; 



FlagOnTennmate=false; 
} 
Application->ProcessMessagesO; 

for(i=0;i<N;i++) 
{ 
PrevStress[i]=CurStress[i]; 
CurStress[i]=NextStress[i]; 
PrevP[i]=CurP[i];CurP[i]=NextP[i]; 
CurDl[i]=NextDl[i]; 

} 
} 

ProgressBarl ->Position=0; 
} 
//.  
void_fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action) 
{ 
delete[] PrevStress; 
delete[] CurStress; 
delete[] NextStress; 

} 
II  
void fastcall TFomil::TimerlTimer(TObject *Sender) 
{ 
if(FlagOnProcess) 
PlotO; 

} 
//  
voidTForml::Plot() 
{ 
inti; 
int left,top; 
double vscale,hscale; 

ClearO; 

EditTime->Text=FloatToStr(CurTime*L/sqrt(E/ro)); 

left=10; 
top=Imagel->Height-30; 
vscale=((double)top-10.)/MaxStress; 
hscale=((double)Imagel->Width-20.)/N; 

Image 1 ->Canvas->Pen->Color=clRed; 
Imagel->Canvas->MoveTo(Ieft,top-CurStress[0]*vscale); 
for(i=l;i<N;i++) 
Imagel->Canvas->LmeTo(left+hscale*i,top-vscale*CurStress[i]); 

Image 1 ->Canvas->Pen->Colop=clBlue; 
vscale=2.el; 
Imagel->Canvas->MoveTo(left,top-0.1*CurP[0]*vscale); 
for(i=l;i<N;i++) 
Imagel->Canvas->LineTo(left+hscale*i,top-0.1*vscale*CurP[i]); 

} 
//  
void TForml: :Clear() 
{ 
TRect r; 



r.left=0;//Imagel->Left; 
r.right=Image 1 ->Width; 
r.top=0;//lmage 1 ->Top; 
r.bottom=Image 1 ->Height; 

Image 1 ->Canvas->FillRect(r); 
} 
II-' 

void_fastcall TForml::ButtonTenninateCKck(TObject *Sender) 
{ 
FlagOnTerminate=true; 

} 
II  

void _fastcall TFonnl::ButtonExitClick(TObject *Sender) 
{ 
exit(l); 

} 
II  



Unitl2.dfm Usting: 

object Forml: TForml 
Left = 241 
Top = 235 
Borderlcons = [biSystemMenu, biMinimize] 
BorderStyle = bsSingle 
Caption = 'Platelmpact' 
ClientHeight = 454 
ClientWidth = 599 
Color = clBtnFace 
Font.Charset = DEFAULT_CHARSET 
Font.Color = clWindowText 
Font.Height = -ll 
Font.Name = 'MS Sans Serif 
Font.Style = [] 
OldCreateOrder = False 
OnCIose = FormClose 
OnCreate = FormCreate 
PixelsPerlnch = 96 
TextHeight=13 
object Image 1: TImage 
Left = 8 
Top = 8 
Width = 585 
Height = 369 

end 
object Label!: TLabel 
Left = 95 
Top = 431 
Width = 26 
Height =13 
Caption = 'Time:' 

end 
object Start: TButton 

Left = 360 
Top = 392 
Width = 73 
Height = 25 
Caption = 'Start' 
TabOrder = 1 
OnClick=StartClick 

end 
object ProgressBarl: TProgressBar 

Left = 7 
Top = 399 
Width = 325 
Height =13 
Min = 0 
Max = 399 
Smooth = True 
Step = 1 
TabOrder = 2 

end 
object EditTime: TEdit 
Left =136 
Top = 426 
Width =150 
Height = 21 
TabStop = False 



Readonly = True 
TabOrder = 0 

end 
object ButtonExit: TButton 

Left = 512 
Top = 392 
Width = 73 
Height = 25 
Caption = 'Exit' 
TabOrder = 3 
OnClick = ButtonExitClick 

end 
object Timerl: TTimer 
Interval = 100 
OnTimer = Timerl Timer 
Left = 272 
Top =152 

end 
end 



Unitl2.h listing 
//  
#ifiidefUmtlH 
#define UnitlH 
// .  
#include <Classes.hpp> 
#include <Controls.hpp> 
#mclude <StdCtrls.hpp> 
#include <Forms.hpp> 
#include <ExtCtrls.hpp> 
#include <ComCtrls.hpp> 
#include <fstream.h> 
#include <Math.h> 
//  
class TForml : public TForm 
{ 
 published:      // IDE-managed Components 

TImage *Imagel; 
TButton *Start; 
TTimer *Timerl; 
TProgressBar *ProgressBarl; 
TEdit *EditTime; 
TLabel *Labell; 
TButton *ButtonExit; 
void fastcall FormCreate(TObject *Sender); 
void _fastcall StartClick(TObject *Sender); 
void fastcall FonnClose(TObject *Sender, TCloseAction &Action); 
void_fastcall TimerlTimer(TObject *Sender); 
void fastcall ButtonTerminateClick(TObject *Sender); 
void _fastcall ButtonExitClick(TObject *Sender); 

private: // User declarations 
boolFlagOnProcess,FlagOnTenninate; 
intN; 
double h,tau,CurTime,ImpactTime 1 ,ImpactTime2,PrevTime; 
double InitStress, MaxStress; 
double *PrevStress,*CurStress,*NextStress,*CorP; 
double *PrevP,*CurP,*NextP; 
double *CurDl,*NextDl,*beta,*al,*bt; 
double A0,B0,C0,D0,Cl,deltal,delta2,delta,Fx,FFx,GestStr,Q; 
double M,E,ro,nu,L,Lp,Lpp,Lpl ,LDl,Pmax; 
void SolvingO; 
void PlotO; 
void ClearO; 
void CheckRefers(int i); 
double SourceP(int i); 
double Sourcedl(int i,double dp,double k); 

public: // User declarations 
double **PointRevers; 
double A,B,C,D,Le,pc; 
double xr,fr,dl; 
double pO; 
double SelastiCjPelastic; 
int Sect; 
fstream fin,fint; 
 fastcall TForml(TComponent* Owner); 

}; 
II  
extern PACKAGE TForml *Fonnl; 
//  
#endif 


