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Abstract - We review results of initial clinical trials with 76
stroke patients at the Burke Rehabilitation Hospital. They
provide evidence that robot-aided training enhances recovery.
We also discuss technology under development, including
algorithms for evaluating patients’ performance. To conclude,
we summarize different modalities of robot-aided therapy. In
our initial clinical trials we used a single modality of robot
therapy, but since each lesion is unique there is no reason to
believe that a “one-size-fits-all” optimal treatment exists. We
argue that therapy should be tailored to each patient’s needs.
Keywords - rehabilitation, stroke, robot, adaptive, modality.

I. INTRODUCTION
In  "Why Michael Couldn't Hit", Harold Klawans [8] raises
an interesting question about brain plasticity: why can a
superstar professional athlete in a particular sport, say
basketball, only achieve mediocre competence in another
sport, say baseball? In principle, it is the same hardware
recruiting similar capabilities: the same skeleton and
muscles, the same nervous system, with similar eye-hand
coordination and similar body-balance control. Yet on the
scale of professional sports competence, the same hardware
that achieves absolute wonders and perfection in one
environment is less impressive in another. One might argue
that all that is required is minor tuning of the motor control
system to adjust to the subtleties of the new game. If a
minor tune-up would suffice, a year of intensive practice
and training should achieve that goal, yet in general, it does
not. In other words, MJ was not an exception to this rule. It
appears that the motor control system gets “hardwired” to
perform one task seamlessly, but not another. There is
strong evidence that there are particular periods of massive
organization and re-organization of the motor control
system. In humans, these “windows of opportunity” occur
primarily during child development and adolescence.
Outside these windows of opportunity, plasticity still
occurs, albeit of a much smaller and subtle proportion. In
summary, MJ may have lost his window of opportunity to
hardwire baseball.

But what about an adult “broken” brain following a
stroke? It appears that after a severe stroke that for example,
wipes out a fourth of a survivor’s brain, a massive re-
organization takes place. In other words, there may be a
“window of opportunity” that might allow us to maximize
motor neuro-recovery following a stroke. Short of direct
neural transplants, this period might afford the biggest
chance of recovering function. Our efforts have been
concentrated on applying robotics and information
technology to determine how to augment therapy, harness

plasticity, and increase the productivity of clinicians so that
this window (if it exists) might be fully exploited.

In this paper, we review results obtained in the initial
clinical trials with 76 stroke patients at the Burke
Rehabilitation Hospital. We provide evidence that robot-
aided training enhances recovery; and that this effect is not
due to a general physiological improvement —  in fact, it
appears to be limb- and muscle-group specific. We discuss
existing technology and new technology under
development, including algorithms for evaluating patients’
performance. Finally, we summarize the different modalities
of robot-aided therapy that we are investigating. In the
initial clinical trials we used a single modality of robot
therapy, but since each lesion is unique there is no reason to
believe that a “one-size-fits-all” optimal treatment exists.

II. CLINICAL RESULTS
Cerebrovascular accident (CVA) is the leading cause of
disability in the United States. Almost 600,000 people in the
U.S. experience a stroke each year, and nearly 4.5 million
stroke survivors in America experience some degree of
disability (American Heart Association, 2001). The effects
of stroke can be devastating, resulting in deficits of
cognitive, affective, sensory, and motor functions.

Although individuals with stroke commonly experience
some degree of spontaneous recovery, they often receive
intensive occupational and physical therapy to enhance
recovery of function. Common movement-related
impairments include decreased passive range of motion,
weakness, hyperactive reflexes, and in-coordination.
Typical therapeutic activities include manual stretching of a
patient's limb to improve passive range of motion, assisted
movement through specific reflex-inhibiting patterns to
reduce hyperactive reflexes, and graded coordination or
strengthening exercises. Progress is often evaluated
subjectively, with the therapist making hands-on or visual
judgments about a patient’s isolated motor control or
functional use of the affected limb [4].  We propose that
robotic technology can facilitate the rehabilitation process
through precise measurement of movement kinematics and
forces, and by providing opportunities for graded, goal-
directed motor action.

Our research to date has shown that repetitive, goal-
directed, robot-assisted therapy can be effective in reducing
motor impairments in the affected arm after stroke
[1,11,16,17]. Table 1 summarizes the outcome of seventy-
six stroke patients exhibiting a unilateral lesion who were
enrolled in the initial clinical trials, which lasted
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approximately 5.5 weeks per patient. Patients were
randomly assigned to an experimental and a control group.
The experimental group received an hour per day of robot-
aided therapy exercising the shoulder and elbow. The
control group received an hour per week of “sham” robot-
aided therapy with the same video games. The results of the
initial studies, as measured by standard clinical instruments,
showed statistically significant difference between the
experimental and control group for shoulder and elbow (the
focus of the exercise routines), but no differences for wrist
and fingers (which were not exercised).  This result suggests
a local effect with limited generalization of the benefits to
the unexercised limb or muscle groups. If this is the case,
we must extend our robots to exercise different groups of
muscles and limb segments.

Group F-M
(/66)

MP
(/20)

MS1
(/40)

MS2
(/42)

∆ 1 ∆ 1* ∆ 1* ∆ 1
RT (40) 9.25 3.99 8.15 4.16
ST (36) 7.1 2.0 3.42 2.64

Table 1. Change during Acute Rehabilitation (76 patients):
Experimental (RT) vs. Control (ST) Group - ∆1: score
change from hospital admission to discharge; F-M is the
Fugl-Meyer Scale; MP is the Motor Power; MS1 is the
Motor Status Score for Shoulder & Elbow, and MS2 is the
Motor Status Score for Wrist & Fingers; p < 0.05 for
statistical significance (*).

III. ROBOTIC TECHNOLOGY
The centerpiece of our ongoing research program is MIT-
MANUS, a novel robot specifically designed and built for
clinical, neurological applications [6,9]. Because the
mechanical system was designed to have a low intrinsic
end-point impedance, with extremely low inertia and
friction (i.e. it is highly “back-drivable”), MIT-MANUS is
able to move smoothly and can rapidly comply with a
patient’s motor actions [9,11]. The robot sensors permit
accurate and essentially continuous measurement of the key
variables relevant to motor behavior, namely position,
velocity, and forces applied.  The present module has two
degrees-of-freedom (DOF) that can move a patient’s
shoulder, elbow, and hand in a horizontal, gravity-
eliminated plane. During therapy, the person’s hemiparetic
arm is placed in a customized arm support that is attached to
the end-effector (i.e. handle) of the robot arm. As the patient
moves the robot’s handle toward a designated target, a video
screen in front of them provides visual feedback of the
target location and movement of the robot handle. If the
person is unable to move the arm, the robot guides the hand
to the target in much the same way as a therapist provides
hand over hand assistance during conventional therapy.

Considering the limited benefits to the unexercised limb
or muscle groups, we are extending our robot-aids to
exercise different groups of muscles and limb segments. We

are presently developing robots to add spatial motion
capabilities to MIT-MANUS, and novel robots for wrist,
fingers, and legs [2,5,12,18]. Figure 1 depicts some of our
robots, all developed under the same design philosophy
striving at intrinsic low end-point impedance.

Fig.1. A Gym of Robots. The top left corner shows a
recovering stroke patient receiving upper extremity robotic
therapy with MIT-MANUS. The lower left corner picture
shows the wrist robot and the right figure shows the spatial
module (to be added to the tip of MIT-MANUS).

IV. EVALUATION TOOLS
We believe that robotic technology can enhance
conventional practice of rehabilitating neurologically-based
impairments in many ways. Treatment intensity, including
the number of movement repetitions, can be closely
monitored and controlled. This treatment information can be
used in conjunction with robot evaluation data to examine
the specific effects of robot-assisted therapy on motor
behavior. The performance indices derived from robot data
can measure changes in the kinematics or forces elicited
during movement that may not be detected by standard
clinical evaluations. We are presently developing different
performance indices to evaluate patients’ ability and have
organized them into two categories based on the type of
human-machine interaction: unconstrained and constrained.

We had been using variations of the first set of
performance indices (unconstrained) in psychophysical
experiments with unimpaired subjects as well as patients.
These indices are hand path displacement, the lateral
deviation from a straight line between start and target
positions, mean squared aiming deviation, the correlation
between observed movement and a minimum jerk motion of
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the same duration, the mean squared difference between the
observed and minimum jerk movements, and the number
and overlap of submovements. Because these measures
require patients to be able to independently move their arm,
albeit in a gravity-compensated environment, they have
severe limitations when dealing with hemiplegic or severe
hemiparetic stroke patients, who initially can not reach the
movement targets.

To address this limitation we developed the second set
of indices (constrained). These indices are the mean
magnitude of interaction forces in and out of plane of
movement, the mean speed, the mean power exchanged
between robot and patient, the mean holding radius for a
given perturbation force, the maximum range of movement
against a given impedance, and the shoulder flexion,
extension, abduction, adduction maximum static forces [13].
Note that our highly back-drivable robot designs afford a
unique ability to measure the process of neuro-recovery. For
example, consistent with the conjecture that apparently
continuous movements are actually composed of a sequence
of submovements or segments, we were able to identify in
twenty patients recovering from a single cerebral vascular
accident (stroke), the apparent submovements that
comprised a continuous arm motion in an unloaded task.
Kinematic analysis demonstrated a submovement speed
profile that was invariant across patients with different brain
lesions, and provided experimental verification of the
detailed shape of primitive submovements.  We propose as a
working hypothesis that this kind of "quantization" is a
basic feature of human motor behavior, and used it to
develop a robot-aided assessment procedure [7,10].

Indices such as hand path displacement or the number
and overlap of submovements will provide accurate
measures of how directly and smoothly an individual moves
his or her arm when reaching toward a target, that are
repeatable from one evaluation session to the next. We are
presently correlating findings from robotic evaluation data
with standard clinical evaluations, in order to identify the
performance indices that best measure motor performance
throughout the rehabilitation process. This is a first step in
developing reproducible, reliable and valid robotic measures
that will initially complement and may ultimately replace
subjective clinical scales. We also expect robotic evaluation
data to be valuable when examining patterns of motor
learning and recovery, and when predicting functional
motor outcomes. The performance indices derived from this
data can be used in conjunction with functional brain
imaging to examine the relationships between neural
reorganization and motor action. In addition, kinematic and
force measures derived from robotic evaluation data can
more precisely measure the effects of different therapy
approaches on motor performance after a disabling event.
These measures will enable us to more closely examine the
relationships between neural processing, motor recovery,
and functional outcomes. The effects of different forms of
practice (e.g. blocked vs. random) and varied treatment
intensities (e.g. altering duration, number of repetitions, or

frequency) also can be readily monitored by the robot. It
will lead to the development of more scientifically based
theories of motor re-learning and rehabilitation practice.

V. MODALITIES OF ROBOT-ASSISTED THERAPY
There is no reason to believe that a “one-size-fits-all”
optimal treatment exists. Instead therapy should be tailored
to each particular patient’s needs. Robot-assisted therapy
can be delivered in a variety of ways to reduce motor
impairment and enhance functional motor outcomes. Goal-
directed therapeutic “games” can be designed to address
motor impairments including poor coordination, impaired
motor speed or accuracy, decreased grasp or dexterity, and
diminished strength, as well as addressing cognitive or
perceptual impairments. Depending on the survivor’s
impairment and lesion, robotic aids can provide passive,
active-assistive, active, and active-resistive exercises. They
can also deliver therapeutic approaches with no equivalent
experience in nature [14].  We expect the understanding of
what constitutes the most appropriate therapy to become an
intensively active topic of research.

Naturally the desired outcome of rehabilitation is not
merely a reduction of impairment, but an improvement in
functional abilities and participation in daily life tasks.
Currently, robot-assisted therapy is primarily administered
in isolation from other rehabilitation efforts, with little
emphasis on the practice of trained movements during daily
functional tasks [1,3,9,11,15]. Research studies have
indicated that the use of imagery-based tasks and the
presence of objects during goal-directed tasks can
significantly enhance movement kinematics during reach, in
persons with and without CVA [19]. Based on this research,
we are developing a therapeutic practice model that uses
imagery-based, simulated tasks during robotic therapy
sessions and is directed toward the carryover of robot-
trained movements during functional activities. The intent is
that this functionally-based robotic therapy may improve the
generalization of learned motor skills, and thereby enhance
functional motor performance.

One innovative modality of robotic therapy developed
recently in our lab is the inclusion of specific, movement-
related feedback and game adaptation. The stroke
rehabilitation therapy we administered during our initial
clinical trials was a fixed, repetitive exercise cued by a
video display.  It consisted of a series of point-to-point
moves, which appeared to be well suited for patients with
very limited movement ability.  As displayed in Figure 2,
the effect of the stiffness of the current impedance controller
can be visualized as a potential energy field about a desired
position.  During therapy, this desired position moves from
the starting position (*) to the end position (**).

The potential energy field of the adaptive impedance
controller is also shown in Figure 2.  While the stiffness of
the previous controller tends to impede the patient from
moving ahead of the desired point, the proposed controller
allows capable patients to reach the target unassisted.
During the proposed therapy, the time allotted for the
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patient to make the move and the stiffness of the impedance
controller are varied based on the patient’s ability. In this
way the therapy continuously adapts to challenge the
patient.

Fig.2. Impedance Controllers. The top plot shows the
potential energy of the controller employed during the initial
trials. The bottom plot shows the potential energy for the
novel adaptive controller.

In an effort to keep patients motivated during therapy
sessions, a video display provides the patient with positive
reinforcement during the session.  Changes in patient
performance are indicated both by the height of the bars and
their color.  These performance measures grade the patient’s
ability to initiate movement (PM1), to move from the
starting position to the target (PM2), to aim their movement
along the target axis (PM3), and to reach the target position
(PM4).  PM1 records how many times the patient initiated
the “game” by moving the arm above a modest velocity
threshold. PM2 is used to adjust the time allotted for the
move. PM3 is used to adjust the impedance controller
stiffness.  While PM4 records the maximum distance the
patient moved along the target axis.

The PM2 and PM3 measurements must evaluate a
patient’s performance during each move. Figure 3 depicts
the most promising candidates for PM2, the ability to move
(top row), and for PM3, the ability to aim (bottom row)
obtained from a representative patient between admission
and discharge.  The first column depicts kinetic
measurements, whereas the second column is kinematic.

The kinetic measurement for PM2 is the average power
along the target axis (PM2a), and the kinematic

measurement is the average deviation from the minimum
jerk trajectory (PM2b).
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where Ft is the force along the target axis, Vt is the velocity
along the target axis, t is the distance along the target axis,
and tmj is the prescribed minimum jerk trajectory of the
desired position.  Note that the representative patient data
shows that from admission to discharge these numbers
become less negative, indicating that the patient contributes
more power and motion to complete the task.

The kinetic measurement for PM3 is the average
absolute power normal to the target axis (PM3a), and the
kinematic measurement is the root-mean-square deviation
along the normal to the target axis (PM3b).
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where Fn is the force normal to the target axis, Vn is the
velocity normal to the target axis, and n is the distance
normal to the target axis.  Both measures for PM3 show that
the patient’s ability to aim improved between admission and
discharge.

Fig.3. The Most Promising Candidates for PM2 and PM3.

Simulations were conducted to determine how the
performance measures varied with the desired range of
robot command variables and assumed patient variation.
The controller time allotted for a move from the starting
position to the desired target was varied between 1.5 and 4.5
seconds.  To assist patients with their aim, the stiffness of
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the impedance controller was varied from 50 to 350 N/m
along the direction normal to the target axis.  It was also
assumed that the patients’ move time would lie in between
1.5 and 4.5 seconds, and their maximum deviation along the
normal to the target axis would be from 0.01 m to 0.07 m.

The final selections for PM2 and PM3 are displayed in
Figure 4.  PM2, the ability to move, was defined as a
function of both PM2a and PM2b.  Thus, both kinetic and
kinematic information of the patient’s move is contained in
this performance measure.  In particular, the positive values
represent the average deviation from the commanded
minimum jerk trajectory when the patient is moving ahead
of the assist, and the negative values represent the average
power delivered from MIT-MANUS to the patient during
assisted moves.  PM3, on the other hand, was defined as a
function of PM3b only, the RMS normal deviation of the
patient.  PM2 required both kinetic and kinematic measures
in order to discriminate when the patient leads or lags the
desired minimum jerk trajectory of the controller.

Fig.4. Adaptive Performance Indices: Calibration Curves

Several observations can be made concerning PM2 and
PM3.  As the parameters increase, the performance
measures also increase monotonically along each line of
constant patient parameters. Note, when PM2 equals zero,
the patient move time equals the commanded robot move
time, and when PM3 equals zero, each value of maximum
patient normal deviation corresponds to a value of controller

stiffness.  MIT-MANUS is able to track the patient’s move
time by using a simple control law such as:

[ ] [] []kkTkT mm PM21 ⋅+=+ λ (eq.5)

where Tm[k] is the desired controller move time during the
kth game, and λ is the gain from PM2 to Tm.

This tracking algorithm is a good first step, but we are
not simply interested in tracking the patient’s performance,
but intend to challenge them to improve their performance
or, at the very least, motivate them to maintain it. During the
initial N games, the control system will operate in a tracking
mode to identify how well the patient is able to complete the
task.  Recall, when the controller parameters are changed,
the zero PM occurs at a different value of patient
performance.  In order to help account for this, a secondary
performance measure was introduced that serves as an
indication of patient variability.  The performance level (PL)
is defined to be
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The value of PL indicates whether the patient
performed worse or better than their baseline performance.
A value of 0 is also available to denote when the patient
performed approximately the same.

The last N+ games in a session will be grouped into
sections of 3 games each.  During each of these sections, the
desired controller move time and the controller stiffness will
remain constant.  By considering the average PM and the
sum of the PL values (-3 ≤ PLsum ≤ 3), the controller will
adapt to patients’ performance and variability, and challenge
them to continue to improve. The proposed performance-
based adaptive algorithm can be stated as follows:
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The desired effect of challenging the patient to improve
while keeping them motivated will be accomplished, in part,
by the asymmetry in the definition of α(PLsum).  When
patients do consistently better than their previous
performance, α(PLsum)=1, and when patients do consistently
worse, α(PLsum)=0.5.  Thus, the algorithm uses information
related to patient variability to dictate how much of an
increase or decrease of the parameter there will be during
the next 3 games.  The asymmetry challenges improving
patients to improve further, but makes the task easier, to a
lesser extent, when patient performance is worsening.
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So far, we have discussed only the approach to adapt
the time for movement completion. An analogous approach
is used to adapt the stiffness normal to the target axis.

Figure 5 displays a hypothetical case of a therapy
session lasting for 20 repetitions.  The first row is the patient
simulation parameters, the second row is for MIT-MANUS,
and the third row displays the PM2 and PM3 values
displayed to the patient after games 5, 9, 14, and 19.  In this
session, a (simulated) patient tries to improve his/her aiming
skills, but, as a result, moves more slowly.  Since the
performance has improved with respect to aim, the
controller stiffness is decreased, providing less guidance and
challenging him/her to further improve.  Although patient’s
preferred move time has slowed to almost 3.8 seconds,
MIT-MANUS completes the move in approximately 3.4
seconds.  Therefore, the algorithm allows him/her to slow
down from the original performance, but attempts to
motivate the patient to do better than current performance.
The displays are given as percentages and are defined by:











++= ∑ ave21 PMcPLc80
4GameAfter80

PM% (eq.8)

In this expression, c1 and c2 are scaled to limit patient
display between approximately 70 and 90%. Recall that the
purpose of the visual display is to provide positive
reinforcement to the patient throughout the session.

Fig.5. Simulation of the Adaptive Algorithm for a Therapy
Session lasting for 20 repetitions.

VI. CONCLUSION
In closing, robotic technology provides many unique and
unprecedented opportunities to not only increase the
intensity of rehabilitation programs, but to precisely and
objectively measure changes in motor performance that
result from intervention. It allows persons with motor
impairments the opportunity to engage in rigorous, goal-
directed movement activities that are often more motivating
and rewarding than contrived repetitions of “real-life” tasks.
It provides the clinician opportunity to deliver therapy
optimally tailored to the particular patient’s needs, obviating

pre-conceived ideas that a “one-size-fits-all” modality can
suffice. We look forward to the development of new robotic
tools for rehabilitation, and to further examining the effects
of robotic technology on functional motor recovery.
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