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NEURAL NETWORK METHODS FOR ERROR CANCELING IN HUMAN-
MACHINE MANIPULATION 

 
Wei Tech Ang and Cameron N. Riviere 

The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA 
 

Abstract � A neural network technique is employed to cancel 
hand motion error during microsurgery.  A cascade-
correlation neural network trained via extended Kalman 
filtering was tested on 15 recordings of hand movement 
collected from 4 surgeons. The neural network was trained to 
output the surgeon�s desired motion, suppressing erroneous 
components.  In experiments this technique reduced the root 
mean square error (rmse) of the erroneous motion by an 
average of 39.5%.  This was 9.6% greater than the reduction 
achieved in earlier work, which followed the complementary 
approach of estimating the error rather than the desired 
component.  Preliminary results are also presented from tests 
in which training and testing data were taken from different 
surgeons. 
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I.  INTRODUCTION 
 
The human ability to perform micromanipulation is 
hampered by inherent erroneous hand motion. This manual 
imprecision affects the performance of microsurgery [1].  
It complicates many procedures and makes certain delicate 
procedures impractical and often impossible [2].  

The most familiar type of involuntary or erroneous 
movement affecting microsurgery is physiological tremor 
[3].  Tremor is defined as any involuntary, approximately 
rhythmic, and roughly sinusoidal movement [4].  
Physiological tremor is inherent in the movement of 
healthy subjects.  The resulting tool tip oscillation can be 
50 µm peak-to-peak (p-p) or greater [5]. Besides 
physiological tremor, measurements of the hand motion of 
surgeons have shown that non-tremorous components of 
erroneous or undesired motion such as jerk (i.e., normal 
myoclonus) and drift are often larger than physiological 
tremor [3,5].   

For some time there has been research interest in 
enhancing human positioning accuracy during 
microsurgery.  A number of efforts have followed a 
telerobotic approach [6,7], involving a robotic arm in place 
of the shaky human arm.  Taylor et al. have used a "steady 
hand" approach, in which a robot and a surgeon directly 
manipulate the same tool, the robot having high stiffness 
and complying with only those components of the manual 
input force that are deemed desirable [8]. 

In order to further reduce cost, and to maximize ease 
of use, user acceptance, and compatibility with current 
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surgical practice, the present authors are implementing active 
error compensation within a completely hand-held tool, 
seeking to keep the instrument size and weight as close as 
possible to those of existing passive instruments. This device, 
known as Micron, must sense its own motion, estimate the 
undesired component of the sensed motion, and manipulate its 
own tip to nullify the erroneous motion in real-time as shown 
in Fig. 1. 

 

 
Fig. 1. Active hand-held instrument for error compensation in microsurgery 

 
For this approach to work, it is of paramount importance 

to accurately model and predict both tremor and various types 
of non-tremorous involuntary movement, so as to enable 
online canceling without time delay.  Several techniques have 
been developed for tremor modeling and suppression. Riley 
and Rosen [9], among others, have investigated lowpass 
filtering.  Gonzalez et al. [10] proposed an equalizer to 
suppress pathological tremor.  Riviere et al. [11] developed an 
adaptive filter to cancel physiological tremor during surgery, 
using an artificial frequency-modulated sinusoid as a 
reference.  However, other significant sources of error, e.g., 
myoclonic jerk, have yet to be substantially suppressed. Since 
little is known about these components, and since practical 
reference signals for adaptive noise canceling are unavailable, 
suppression is difficult.  

The mapping from human intention to human movement 
output is nonlinear [12].  Neural networks model nonlinear 
processes well, and have been used in modeling of human 
control strategies [12].  The complexity and multiplicity of 
involuntary hand motion components, and the paucity of 
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knowledge about many of them, makes a neural network 
approach well suited to modeling them.  Riviere and 
Khosla [13] used a cascade-correlation neural network for 
noise canceling in human hand motion. Their experiments 
showed that the neural network successfully modeled and 
reduced the errors in recorded hand movement of four 
surgeons. This paper presents a different approach, 
employing the same neural network to model a different 
quantity (the desired part instead of the erroneous part) for 
the same set of data.   We might call this the direct 
approach to suppressing positioning error.  We then 
compare our results with those obtained by Riviere and 
Khosla using the indirect approach, i.e., modeling the 
erroneous component.  We also go a step further and cross-
test the networks, investigating the effectiveness of the 
trained networks on surgeons other than those on which 
they were trained. 

Though the experiments presented here focus on 
surgery, the concepts demonstrated are directly relevant to 
a variety of manipulation applications with low signal-to-
noise ratio, e.g., assistive computer and powered-
wheelchair interfaces, and manual accuracy enhancement 
for cell micromanipulation in the biomedical laboratory. 
 

II. METHODS 
A. Neural Network Architecture 

 
Instead of the traditional fixed architecture network with 
backpropagation, we used a technique introduced by 
Nechyba and Xu [12].  The technique combines (i) flexible 
cascade-correlation neural networks, which dynamically 
adjust the size of the neural network as part of the learning 
process, and (ii) node-decoupled extended Kalman 
filtering (NDEKF) [14], a fast-converging alternative to 
backpropagation. 

When training starts, the network has no hidden 
nodes, only linear connections between the input and the 
output nodes. This enables the network to capture any 
linear relationship between the inputs and outputs (Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Diagram of the cascade-correlation neural network architecture. 
The diagram shows a network with three hidden nodes. As each hidden 
node is added, it is connected to the input and output nodes, as well as 

each of the preceding hidden nodes 
 
During training, each time the error performance 

stagnates, a new hidden node is added to the network from 

a pool of candidate units (transfer functions). In our 
experiments, these candidates include sigmoid, Gaussian, sine, 
and Bessel functions. The best candidate unit is selected after 
all candidates have been trained independently and in parallel 
with different random initial weights.  Once a new hidden unit 
is installed, the hidden-unit input weights are frozen, while 
weights to the output units are retrained. The process is 
repeated until the algorithm succeeds in reducing the root 
mean square error (rmse) sufficiently for the training set or the 
number of hidden units reaches a specified maximum number.  

Extended Kalman filtering (EKF) is an extension of 
Kalman filter to deal with non-linear systems via linearization 
about the current parameter estimates. In neural network 
training, learning is cast as an identification problem for a 
nonlinear dynamic system.  The neural network weights 
represent the state of the non-linear system.  The EKF theory 
is then used to derive a recursion for the weight updates.  This 
work uses NDEKF, in which the network weights are grouped 
such that each group contains the input nodes, the output 
nodes and one hidden node.  For each group, elements of the 
error covariance matrix estimate corresponding to other 
groups can be ignored, greatly reducing the computational 
complexity. 
 
B.  Experimental Methods 
 
The hand movement of surgeons was recorded at Wilmer Eye 
Institute of Johns Hopkins University. Each surgeon held a 
microsurgical instrument with the tip inserted in a sclerotomy 
in the eye of a vitreoretinal microsurgical simulator.  A Hall 
effect sensor mounted inside the mannequin eye detected the 
position, in one dimension, of a 0.26g permanent magnet 
mounted on the tip of the instrument.  Data were recorded for 
16s at a sampling rate of 250Hz.  The surgeons attempted to 
hold the instrument motionless for the duration of each test, 
therefore any motion in these recordings is considered to be 
error. A total of 15 files were obtained from four surgeons (5, 
5, 3, and 2 files, respectively). 

 To ease differentiation of erroneous movement from 
desired movement for purposes of evaluation, surgeons were 
given fixed targets at which to point, and tried to keep the 
instrument motionless, thus ensuring that all recorded motion 
is error.  To make the experiments more realistic we generate 
low frequency pseudo-voluntary motions by lowpass filtering 
Gaussian white noise with a cutoff frequency of 1 Hz.  This 
signal is then added to the recorded still hand error movement. 
The pseudo-voluntary motion serves as the target or desired 
motion in these experiments. The magnitude of the randomly 
generated pseudo-voluntary motions has a ratio of roughly 1:1 
to the mean rmse of the 15 data recordings.  Two different 
pseudo-voluntary motions are generated in this manner, one 
for the training the network and the other for testing. 

A separate neural network was trained and tested for each 
of the four surgeons.  In each case, one data recording was 
used for training, and the remaining data sets from that 
surgeon were used for testing of the trained network.  The 
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rmse with respect to the pseudo-voluntary motion was 
calculated for each file, both before and after processing 
by the neural network. 

The input to the neural network was a window of data 
in the time series, i.e. the number of input nodes depended 
on the length of the window. The output of the neural 
network was the error-compensated motion, and since the 
data are one-dimensional, there is only one output node. 
Different numbers of input nodes and hidden nodes were 
tested to obtain the best net architecture for each surgeon. 
Riviere and Khosla [13] used the same set of data but 
chose the error estimate as the network output, so that the 
output of the neural network could be used directly as a 
compensation command to cancel the error.  In addition, 
Riviere and Khosla fixed the number of input nodes at 100 
and the maximum number of hidden nodes at 10.  

Each neural network was also tested on one data file 
from each of the other surgeons. 
 

III.  RESULTS 
 
The neural network reduced the rmse with respect to the 
randomly generated pseudo-voluntary motion in all cases.  
For each surgeon, Table I shows the mean raw rmse of the 
data (with the number of testing data sets in parentheses), 
the mean and standard deviation of the rmse of the output 
of the neural network, and the architecture that yielded the 
best result.  Table II demonstrates that the direct approach 
outperformed the indirect approach in these tests.  Fig. 3 
depicts sample results from the two approaches.  Table III 
shows how well each network performed in filtering data 
from surgeons other than the one on which it was trained. 
 

TABLE I 
ERROR CANCELING PERFORMANCE 

Surgeon # 
(no. of 
testing 
files) 

Mean raw 
rmse  
(mm) 

Mean rmse of 
neural network 

output 
  (mm) 

Standard 
deviation 
of output 

(mm) 

Best 
Network 

Architecture 

1 (4) 0.112 0.055 0.005 75 input,  
3 hidden  

2 (4) 0.046 0.033 0.002 60 input,  
6 hidden  

3 (2) 0.048 0.037 0.001 100 input,  
3 hidden  

4 (1) 0.127 0.056 - 50 input,  
6 hidden  

 
TABLE II 

COMPARISON OF MODELING APPROACHES 
Surgeon # Rmse reduction, 

direct approach (%) 
Rmse reduction, 

indirect approach (%) 
1 50.9 44.6 
2 28.3 26.1 
3 22.9 18.8 
4 55.9 29.9 

Average 39.5 29.9 
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(b) 

Fig.3. Comparison of direct and indirect approaches to error suppression.  
�Target� is the pseudo-voluntary motion, generated by lowpass filtering white 
noise at 1 Hz cutoff frequency.  �Input� represents the network input, obtained 

by adding recorded erroneous hand motion error to the target motion.  
�Output� indicates the filtered version of the data.  (a) Sample result from the 
direct approach, in which the network estimates the pseudo-voluntary motion.  
(b) Sample result from the indirect approach, in which the network estimates 

the erroneous motion. 
 

TABLE III 
CROSS-TESTING 

 Parentheses indicate rmse for the surgeon the network was trained on.  
Boldface means performance equaled or surpassed what the network achieved 

on its own surgeon.  Italics indicate performance worse than raw rmse. 
NN trained on Surgeon # NN test on Surgeon # % rmse reduction 

1 2 
3 
4 

26.2 (23.1) 
38.1 (28.6) 
45.1 (56) 

2 1 
3 
4 

-85.5 
28.6 (28.6) 

-243.1 
3 1 

2 
4 

0 
15.4 (23.1) 

-0.9 
4 1 

2 
3 

32.7 (54.5) 
-30.8 

22.7 (28.6) 

Input 

Output

Target 

Input 

Output

Target 
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IV. DISCUSSION 

 
The results show the feasibility of neural network-based 
error canceling in human-machine control. The neural 
network reduced the rmse of the surgeons� erroneous 
motion by an average of 39.5%. 

The direct approach outperformed the indirect by 
9.6% in reduction of rmse.  During training, both methods 
terminated at the specified maximum allowable number of 
hidden nodes. The tests of the indirect approach used 100 
input nodes in each case [13], whereas the present work 
explored the effect of different input-hidden node 
combinations on network performance.  It is not yet clear 
whether the superior performance of the direct approach in 
these tests is due to an inherent superiority in the method, 
or is due simply to the fact that the network architecture 
was optimized for the direct approach. 

The motion profiles produced by the direct and 
indirect approaches are distinctly different, as is clearly 
visible in Fig. 3.  The direct approach produces much less 
high frequency noise than the indirect, and seems to 
preserve the general shape of the voluntary motion much 
better.  In future work, appropriate performance metrics 
will be used in order to quantify this effect. 

The cross-testing experiments yielded inconclusive 
results.  Of twelve tests, three produced equal or better 
filtering than the network trained on data from the same 
surgeon, and nine produced worse results.  Of those nine, 
four yielded results even worse than the raw rmse for the 
testing data set, i.e., the error was increased rather than 
decreased by the filtering process.  Further study is 
necessary in order to determine whether a network can be 
successfully trained for general application to more than 
one subject.  Additional work in the near future will 
involve training the networks using data from dynamic 
tasks, rather than static �pointing� tasks, so that the 
networks can be trained using real desired movement 
rather than pseudo-voluntary signals. 
 

V. CONCLUSION 
 
The use of cascade-correlation neural networks to suppress 
undesired components of microsurgical instrument motion 
has been demonstrated using 15 hand movement 
recordings collected from 4 surgeons.  The neural network 
reduced the rmse of the surgeons� erroneous motion by an 
average of 39.5%.  The networks performed better when 
trained to estimate the desired component than when 
trained to estimate the undesired component of motion.  
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