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1Abstract - The sensitivity of a simulated surface 
electromyogram (SEMG) to changes in conduction 
velocity (CV) of individual motor units was assessed.  
Changes in the conduction velocity measurement and the 
median frequency and spectral compression measures of 
both the amplitude and power spectra of the SEMG were 
calculated.  Results show that motor units close to the 
electrodes dominate the SEMG signal.   Results also show 
that for changes in CV of individual motor units the CV 
measurement and the spectral measures differ.  In the 
case of uniform changes in the CV of all motor units, 
changes in these measures are similar and unity 
sensitivity is observed.  Indications from this preliminary 
study highlight the need for care when deducing the 
physiological significance of changes observed in the 
SEMG. 
Keywords – Electromyogram, conduction velocity, 
spectral measures, sensitivity.  

 
I.  INTRODUCTION 

 
Needle electromyography is a conventional 

electrodiagnostic evaluation tool with a proven and long 
established history in the diagnosis and treatment of disorders 
of nerve and muscle, [1].  According to the same report from 
the American Association of Electodiagnostic Medicine, 
surface electromyography (EMG) is not a valid clinical tool 
for the diagnosis and treatment of muscle and nerve 
disorders, as many questions are as yet unanswered.  Some 
investigators believe electrophysiological diagnosis tests are 
obsolete, [2]. Conflicting opinions exist however, with 
Rainoldi and co-authors claiming that EMG is a “very 
promising” clinical technique for detecting information about 
the global activity of the muscle, [3].  A changing muscle 
fiber conduction velocity (CV) is the most direct 
electroneurophysiological sign of a changing excitability of 
the muscle fiber membrane, [4].  The question of how best to 
record changes in muscle fiber conduction velocity naturally 
arises.  The limited extent to which changes in muscle 
physiology may be inferred from the recorded surface signal 
needs to be recognised.  Noninvasive measurement of 
conduction velocity is often perceived to be the most 
valuable tool in EMG. 
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Spectral changes in the EMG signal during fatiguing 
contractions are generally attributed to progressive changes 
in CV.  Experimental studies, however, consistently report 
that changes in spectral measures (e.g. median frequencies of 
the EMG power spectrum) are substantially different to 
changes in CV [4], [5], [6].   This is largely explained by 
concluding that the spectral measures are more influenced by 
other factors, including firing rates, recruitment, 
synchronisation and motor unit action potential (MUAP) 
shape.  The EMG signal is sensitive to all these factors and is 
also strongly dominated by motor units (MU’s) located in the 
vicinity of the recording electrodes.  In a simple MUAP 
model, Fuglevand and colleagues, demonstrated that only 
MU’s within 10-12mm of the electrodes would contribute 
any significant energy to the surface signal, [7].  Despite this 
awareness of the limited pick-up range of surface electrodes, 
results from EMG analysis continue to be interpreted as 
indicative of the overall physiological state of the muscle.        

  A better understanding of the relationship between CV 
and measures of spectral compression require insight into the 
factors influencing the EMG signal.  This relationship has 
been partially investigated using a mathematical model of the 
electromyograph [8], [9].   The aim of our study is to 
investigate by simulation how sensitive the CV calculation, 
obtained from cross-correlation, and spectral measures of the 
EMG signal are to CV changes of individual MU’s.    

 
 

II. METHODOLOGY 
 
The model used is based on the previous EMG model of 

Lowery et al. [8].  Improvements made to the model are 
described below. 

 
A.  Model description 

 
The model may be split into three parts; muscle 

generation, MUAP calculation, and SEMG creation.  
 

Muscle generation:  
The muscle has a cylindrical cross section and is 

randomly filled with fibers according to a predetermined 
uniform density. The fiber type is randomly assigned in 
accordance with the required percentage of type I and II 
fibers for a specific muscle.  All fibers in a MU are of the 
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same type and are assigned an appropriate diameter, length, 
conduction velocity, and end plate position.   

Three electrodes, two bipolar pairs, are placed 8 mm apart 
along the fiber direction and 3 mm distant from the outer 
surface of the cylindrical muscle.  Axial conductivity is 0.33 
mho/m, radial conductivity is 0.063 mho/m and internal 
conductivity is 1.01 mho/m.  Table 1 gives details of the 
muscle model parameters.   

 

Motor unit action potentials:  
The transmembrane current is represented as a multipole 

(100 points), obtained from the discretisation of the 
transmembrane potential according to a line source model, 
[8].  Seven CV levels were generated, ranging from 100-58% 
of the original CV in decrements of 7%.  The resulting 
database contains the MUAP’s seen by each bipolar electrode 
pair for all calculated levels of CV sampled at 10kHz.   
 
B. EMG Creation 

 
The surface EMG signal is created from the generated 

database of MUAP’s.  The user can define recruitment, firing 
rates and conduction velocity levels of individual MU’s.  
Correct recruitment order, i.e. that obeying Hennmann’s size 
principle, is facilitated by MU’s being listed in order of type, 
type I then II, and in order of increasing muscle fiber 
diameter within each type, [10].    

Firing statistics:  
A Gaussian distribution of mean MU firing rates was 

assumed, with a 25Hz mean and a coefficient of variance of 
0.2, thus lying within the standard range for human muscle, 
i.e. 0.1-0.33, [11].  Higher mean firing rates are assigned to 
larger MU’s.  The firing statistics, i.e. the interpulse intervals 
(ipi’s) of each MU are calculated based on Clamann’s 
equation for interpulse interval standard deviation, [12].  The 
motor unit action potential trains, (MUAPT’s) seen by each 

electrode pair are generated and stored for all MU’s.  This is 
repeated for each CV level.  The same MU firing statistics 
are used for all CV levels, thus enabling the effects of 
changing CV to be studied in isolation.   

 

Recruitment: 
EMG signals corresponding to a desired maximum 

voluntary contraction (MVC) level and comprising MU’s 
with specified CV’s can be easily generated.  The number of 
active MU’s required for a given output force is determined 
according to fiber diameter, i.e. for a 50% MVC, MU’s are 
gathered, respecting recruitment order, until 50% of the total 
muscle volume is activated.  This study has been carried out 
on signals of 30, 50 and 80 %MVC.  The resultant EMG 
signal is the sum of the MUAPT’s for all active MU’s.   

 
C. Signal Analysis 

 
The most popular frequency analysis method used on 

EMG’s, is the Fourier Transform.  One issue arising with its 
use is the necessary assumption of stationarity.  In our case, 
stationarity is a valid assumption as there are no changes in 
CV within a signal segment.  Therefore an epoch length of 4 
seconds was chosen, giving 0.25Hz frequency resolution.  
Four spectral measures are monitored in this study: the 
median frequency of the power and amplitude spectra, 
Fmedpwr, Fmedampl, and spectral compression from the 60th-
90th percentile for both the power and amplitude spectra, 
Comppwr, Compampl, [9]. 

Conduction velocity is calculated by upsampling (to 
100kHz), and cross correlating the EMG signals from the two 
bipolar electrode pairs, giving a resolution of less than 
14mm/sec.  

 
III. RESULTS 

 
 MU’s were ranked according to the normalized 

maximum peak-to-peak amplitudes of all active MUAPT’s 
for a given MVC level.  CV's of individual MU's were 
changed, keeping that of all others constant.  The sensitivity 
of each measure to these changes was assessed.   The 
sensitivity of any measure, X, being defined as, sensitivity = 
∆XEMG/∆XMUAPT.  ‘MUAPT’ signifies the motor unit action 
potential train of the MU who’s CV is changing.    See Fig.1 
for an illustration of the relative ranking of the twenty most 
significant MU’s, note how the signal is dominated by very 
few MU’s for each MVC level.  When testing sensitivity to 
changes in MU behaviour, it is important to keep MU 
ranking in mind.  As expected, the sensitivity of all measures 
dropped with decreasing MU rank, see Fig. 2.  Deviations 
about the mean values in this figure, and other cases not 
illustrated here, demonstrate that the cross-correlation 
technique is the most reliable measure for tracking changes in 
CV of superficial/high-ranking motor units.  Fmedpwr was 
consistently the most variable and unpredictable measure.  
Fig. 3 shows the normalised values obtained by each measure 

TAB
Muscle genera

 
Dia

FiberMuscle 
Geometry 

A
MuFiber Density  

(fibers/ mm2) M
Fiber Type Total
No. MU’s 213 
No. Fibers 12133

% Total Area 74 

Diameter (µm) 42 – 5

CV (m.s-1) 3.05-3
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across a 42% change in CV of the second ranked MU for a 



 
 

3 of 4

30% MVC signal.  This figure also illustrates the divergence 
between measures when CV of only one MU is changing.  At 
a 42% decrease in CV the normalised value of Compampl 
drops by 5% while that of Fmedpwr drops by more than 15%.  
In contrast, Fig. 4 shows the convergent response of all 
measures to common changes in CV.  Local MU activity had 
a strong influence on all measures.   

Changes detected in EMG signal characteristics are 
assumed to be indicative of changes in the physiological 
activity of the muscle be it CV, firing rates, recruitment, 
synchronization or metabolite build-up.  A simulation was 
run where a single MUAPT was time-shifted before being 
added to the EMG signal.  This was repeated for twenty time 
shifts, where each shift corresponded to approximately 1⁄20

th 
of the averaged ipi duration for that MU.  All measures 
showed significant sensitivity to these shifts, except the CV 
measure, which varied by less than 0.5%.  See Fig. 5 for 
details.   

 
 

 
 

 
 

 
Fig.1.  Ranking of the top 20 MU’s for each of 30, 50 & 80%MVC.  

MU’s are ranked according to the normalised peak-to-peak values of their 
MUAPT’s.  %MVC(Total no.of active MU’s): 30(151), 50(173), 80(197).

 

 

 
Fig. 2.  Illustration of the mean sensitivities to CV decreases from 100-58% in 

steps of 7%, for each of the seven most highly ranked MU’s.  (30% MVC 
shown, similar results were observed for 50 & 80%MVC.) 

Fig.
30%

CV 

 

F

 
 3.  Results obtained when the CV of the 2nd most significant MU at 

 MVC, is decreased from 100% to 58% in steps of 7%.  All other 
values remain constant.  All measures are normalized to their initial 

values. 
 

 

Fig. 4. Results obtained when the CV of all MU’s changed 

simultaneously, at 30% MVC.  Note the convergence of all measures. 
This is the only situation found where changes in the CV and spectral 

measures directly reflect CV changes i.e. sensitivity of unity.   All 
measures are normalized to their initial values 
 
ig. 5. Results obtained from time-shifting a single MUAPT in steps of 

1⁄20 
th of its average ipi, for a 30%MVC signal. 

 

Same legend as Fig. 4 
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IV. DISCUSSION AND CONCLUSION 

 
We have demonstrated the bias of SEMG to localized 

activity.  The sensitivity of all measures was shown to 
decrease with decreasing MU rank.  A striking outcome of 
our simulations is the level to which the possible information 
content of the EMG signal is restricted.  Restrictions being 
primarily in terms of localization, but also due to the 
variability of each measures’ sensitivity to a range of CV 
changes.  Note the particularly significant changes appearing 
in Fmedpwr, Fmedampl, Comppwr and Compampl, in Fig. 5, 
despite there being no physiological changes – all firing rates, 
conduction velocities, recruitment and synchronization 
patterns remained constant.  Such fluctuating results indicate 
the need for caution when interpreting changes seen in the 
EMG signal.  

Merletti et al. proposed that a non-uniform decrease in 
CV was a possible explanation for the different rates of 
change observed between the median and mean power 
spectrum frequencies and CV, [6].  Similarly, our results 
have shown variations in CV of local MU’s to yield a 
divergence between changes observed in spectral measures 
and those observed in the CV measure obtained from cross-
correlation, all other influences remaining constant.  This is 
evident by comparing Fig. 3, where the conduction velocities 
of all MU’s change together, to the situation illustrated in 
Fig. 4 where, by altering the CV of just one MU, a wide 
divergence is apparent - the most significant divergence 
occurring between Fmedpwr and CV.  It was observed that 
though a good indicator of the general trend of activity, with 
a low variance, the CV measure did not have a 1:1 
relationship to the actual CV changes.  The only case where 
unity sensitivity was achieved was when the CV of all MU’s 
decreased simultaneously and by the same amount.  In this 
case all measures, (CV, Fmedpwr, Fmedampl, Comppwr and 
Compampl) converged and had a 1:1 relation, to CV changes, 
see Fig. 3.   

It is difficult to conclude that any one measure is a good 
indicator of the overall physiological state of the muscle, 
however, as a preliminary conclusion the divergence of the 
measures appears to be a significant indicator of varying 
CV’s particularly amongst the higher-ranking MU’s.  From 
the representative results presented here, it seems that unless 
an assumption of uniform CV changes is made, little 
information can be gained from the signal. 
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