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Introduction 
Periodic mass screening of asymptomatic women is rapidly gaining approval and 

acceptance, and the population segment recommended for screening is increasing due to both 
longer hfe expectancy as well as earlier recommended age for initial examination [1-3]. The 
large variability in a number of important aspects related to mammography, as practiced in 
the U.S., resulted in the enactment of the Mammography Quality Standards Act, which 
mandates accreditation of each program (facility, technical and professional) [4,5]. Shortages 
of expert mammographers in many locations, combined with the desire to make it convenient 
for the patient to undergo the procedure, suggest that there may be a need for high-quaUty 
telemammography systems that enable a distributed acquisition-centralized expert review 
type solution to the problem, particularly in underserved areas [6,7]. The relatively high 
recall rates (5-15%) of screened women to supplement information that was not ascertained 
during the initial visit (e.g. magnification views) also make it desirable to enable physician 
"monitoring" and "management" of remote locations so that patient-management decisions 
can be made while the patient remains in the clinic [8-11]. Current practices result in 
increased patient anxiety and added practice complexity and cost. Early attempts to develop 
and implement a practical telemammography solution to this problem failed due to several 
significant technical problems associated with acquisition, transmission, management, and 
display of the images [12-14]. Many of these technical issues have been resolved in recent 
years, but some remain [14-18]. Although an adequate communication infi-astmcture for 
high-quality telemammography is available within some urban regions, the fact remains that 
where it may be needed most (i.e. remote, non-urban locations), enabling (two-way) 
communication systems are limited mainly to the Plain Old Telephone System (POTS). 
Other communication technologies, such as satelhtes, are being evaluated for this purpose, 
but it is not likely that these will displace POTS in most underserved areas for quite some 
time [19-21]. Hence, the problem of cost effective, timely remote patient monitoring and 
management in many underserved areas is not a simple one. 

As a part of this project, we are assembling and evaluating a unique 
telemammography system that enables improved communication between remote sites where 
physicians are not always available during the mammographic acquisition process and a 
central location where experts can review the acquired images shortly after acquisition and 
assess whether or not additional procedures (e.g., spot compression views) are needed 
[22,23]. The system we are assembling is based on prior preliminary experience acquired in 
our group during ten years of research in this general area. It includes the use of a common 
carrier for communication (Plain Old Telephone System, POTS), wavelet-based image 
compression for data reduction, and the optional incorporation of CAD results to the 
transmitted information. The main goal is to assess in a step-by-step approach whether the 
use of such a system could significantly reduce recall rates in the remote sites. Other 
secondary objectives regarding ways to improve communication and creating an environment 
for "more active" participation of the technologist in the diagnostic process are also being 
explored. 

Body: 

Since the initiation of the project on September 1, 2000, we have been progressing 
methodologically on the tasks listed in the Statement of Work (page 5 of the proposal), as 



originally submitted. It should be noted that the project is, for the most part, back on track, 
schedule wise, despite the fact that the hnaging Research group was relocated during 
November and December 2000 from Scaife Hall of the University of Pittsburgh to Magee 
Womens Hospital of the University of Pittsburgh Medical Center Health System. While this 
move resulted in a minor interruption in adhering to the original schedule, in the long run, the 
project is benefiting from such a move, since the group is now located where much of the 
project is being carried out and evaluated. During year two of the project, work was 
performed in three different areas Usted under Task 1 (Redesign and Assemble System), Task 
2 (Implement Clinical System), and Task 3 (Clinical System's Evaluation) in the original 
proposal. We have also begun planning for Task 4. 

Under Task 1, we performed the following: 

With the exception of one task (l.c), which is partially completed (see comments 
below), we have completed all other tasks under this category. We assembled and tested a 
multi-site telemammography system that meets (and in some cases exceeded) our proposed 
specifications. The status of the tasks described under this category is as follows: 

a) Select and Purchase Equipment: Completed. 

b) Convert Software to Windows Based;        Completed. 

c) Develop Interface to FFDM Acquisition System; We enabled the system to accept 
DICOM images that will be required for completion of this task. However, due to strategic 
and market changes in this area (see special section below), we elected to postpone 
completion of this task. 

As indicated in last year's report, we have acquired the GE FFDM system (not a part 
of the project) and obtained the information needed for transferring the DICOM images. 
Using our DICOM tool kit, we have been actually fransferring FFDM images to a server. 
Hence, the capability to complete the interface has been verified, and much of the work 
needed for this task was carried out. However, the FFDM field has been progressing rapidly 
from an acquisition technology point of view (in that several companies are now offering 
high-quality systems), and the specific systems that may be ultimately implemented in the 
ftiture in our remote sites have not been determined. As important, the cost associated with 
such implementation is quite high, and we are finding that in most remote sites (ours as well 
as others), there is a reluctance to move rapidly into digital acquisition (FFDM). Hence, as 
indicated in our previous report, we are ready to complete an interface to an FFDM system 
when it is deemed timely and appropriate. However, at this time, we continue to focus our 
efforts on film digitization. It is not clear that the use of FFDM devices in remote 
"underserved" sites for screening purposes is likely to be common or appropriate in the near 
fixture. 

d) Develop a New User Interface for the Acquisition Sites: Completed and tested. 
A remote site user interface was completed and tested, both subjectively and 

objectively (by sending over 100 cases through the system). After minor modifications that 
were based on users' comments, our data entry and case-sending routines were refined and 
finalized. 



e) Complete Data Compression Software Module:   Completed and tested. 
A compression software scheme was finalized and tested.  The scheme allows for a 

site-specific selectable level of compression to be used. 

f) Develop and Refine Measures of Image Fidelity that can be used to 
Automatically Monitor and Adjust (if needed) Compression Levels on an Image-bv- 
Image Basis: Based on two independent tests (see evaluation section below), at two 
compression levels, 50:1 and 75:1, we enabled a "dial-up" compression capability in the 
system. However, we are finding out that the high level of acceptance of either compression 
level practically eliminates the need for this option. Therefore, we are currently using the 
system with a fixed level of compression (75:1). We believe that we have achieved high- 
quality images at such high compression levels that second-order image-specific adjustments 
are not needed for all practical purposes. 

g) Integrate all Software Modules: All software modules were successfiiUy 
integrated. 

h) Develop Display Protocols for the Workstation: User-fiiendly display protocols 
have been developed and tested extensively (see system evaluation section). 

i)        Assemble System: The system was assembled as proposed. 

j)        Test System in Laboratory: The system has been tested in the laboratory. 

k) Trouble Shoot Refine, and Finalize System: Through refinements, we increased 
the operational ease-of-use and reUability of the system and finaUzed the base configuration 
for implementation. 

1) Prepare Clinical Sites for Implementation: All three remote sites were prepared for 
system implementation as required. 

Under Task 2, we performed the following: 

a) All needed equipment was moved to the appropriate locations at the three remote 
sites. At each location, the equipment (send station and digitizer) is located at an easily 
accessible place. At the central site, we placed the "receive" workstation in a "screening" 
reading room at a central location within the Breast Center. This required some construction 
that was completed at no cost to the project. 

b) The complete system was reassembled on location. 

c) Technical and operational performance levels were retested on site. 

d) Different evaluation protocols for initial system evaluations were developed and 
implemented. 

1)        100 cases were randomly selected at each site and transmitted to a central site 
to assess ease-of-use, reUability, reproducibility, and cycle times. The results clearly indicate 



that cases from all sites at 15,20, and 90 miles away can be transmitted with a ftiU duty cycle 
time (from data entry at remote site to display) that easily meets our proposed specifications. 
A four-image case can be completed in less than seven minutes using 75:1 compression, 
which is less than half the time we originally specified. 

2) We performed a multi-reader subjective assessment of image quahty, and all 
participating radiologists rated the quaUty as acceptable or better for the task at hand. 

3) We evaluated differences in image quality on film and soft display at zero 
(no), 50:1, and 75:1 compression ratios and found that only under extreme magnification, the 
75:1 level can be identified (recognized), but image quaUty is not significantly degraded for 
all practical purposes. 

Under Task 3, we performed the following: 

a) Collect Baseline Information Off Mode: We continue to analyze the data available 
in our databases concerning patient distributions and process-related information. This 
includes the recall rate by physician, site, type, and reason for recall. We have also obtained 
patient satisfaction survey results as ascertained from internal and external surveys, which 
had been performed by our institution for other purposes outside this project. Last, we obtain 
records concerning the cycle time from the initial examination to a definitive diagnosis for 
cases that were not being recalled, as well as cases that were. This analysis is performed for 
the different sites in which we operate, including but not limited to the two Pittsburgh-region 
sites that are included in this project. This effort continues throughout the project as data are 
collected and analyzed regarding the above-mentioned variables. The effort described here is 
preliminary and will constitute the initial baseline (reference) information for comparison 
purposes. 

b, c, and d) Technical and Clinical System Evaluations: We have begun to evaluate 
step-by-step the possible utility of the telemammography system. All of these studies have 
been performed in a historical prospective mode. The first study included the transmission of 
several hundred cases for measurements of system performance. These have been 
successfiiUy completed, and our average cycle time is less than seven minutes for a four- 
image case. The second study included the review of 100 cases by three observers to 
subjectively assess image quality. The study indicated that radiologists feel "comfortable" to 
"exfremely comfortable" to perform the tasks at hand. The third study included an 
assessment of the automatic setting of display parameters (Look-up-tables, "LUTs"). Two 
experienced observers rated 50 cases for this purpose, and the results clearly indicated that in 
most cases our default settings were, at a minimum, "acceptable." The observers' ratings 
were 2.64+0.57 and 3.51+0.53 on a 1-4 scale. 

After minor refinements, we have been assessing the fraction of cases that are being I 
manually adjusted, and we find that approximately 90% of cases are being viewed using the 
default settings, and only approximately 10% of the cases are manually adjusted. We beheve 
that this is an excellent level of success in this difficult display environment. 



Our first retrospective clinically simulated study included five radiologists rating 310 
transmitted cases each. We evaluated their recommendations for the need of additional 
procedures. A total of 310 cases (4 images each) were reviewed without any additional 
information, such as history, prior reports, or prior images. The results are provided in the 
following table. 

Reviewing and Rating Screening Mammography Exams, 
Telemammography Workstation Versus Clinical Interpretation 

Clinical 
interpretation 

Radiologist 1 

Radiologist 2 

Radiologist 3 

Radiologist 4 

Radiologist 5 

Radiologists 
Average 

Cases Actually 
Recalled 
(n = 310) 

Agreement with Agreement with 
cases actually cases not 

recalled (n = 42)       recalled (n = 268) 

13.5% (42) 

27.1% (84) 

29.7% (92) 

36.7% (114) 

45.8% (142) 

54.8% (170) 

38.8% (120) 

N/A 

64.3% (27) 

69.1% (29) 

69.1% (29) 

78.6% (33) 

78.6% (33) 

71.9% (30) 

N/A 

78.7% (211) 

76.5% (205) 

68.3% (183) 

59.3% (159) 

48.9% (131) 

66.6% (178) 

The table clearly indicates a significant "over read" by the radiologists when using 
the workstation. This over-reading level stemmed from three known reasons: 

1. The awareness that this was a retrospective study that does not affect patient 
care during the workstation interpretation. 

2. The assumption that in a study of this sort we would use an enriched set 
(typically 30-50% true positive cases) with subtle abnormalities; hence, they 
did not want to miss true-positive cases, resulting in a significant over-read. 

3. The lack of additional information, such as prior reports or images, for 
comparison. 

We are currently addressing the latter two issues, and we plan to perform a second study to 
verify that the over-read can be corrected. 

e)        Collecting  Objective  Performance  Measures  of Traditional  Systems:     We 
continue to record all objective performance measures using the conventional system (non- 
transmitted cases) as indicated before. 

/■ 



f) To date we used films only for evaluation of high levels of data compression, since all 
of our radiologists prefer to use the workstation for clinical review purposes. The use of 
fihns for selected difficult cases (in particular those with possible subtle microcalcification 
clusters) will be evaluated in the future. The FFDM interface was previously addressed. 

As a result of our initial experiences, we are in the process of adding the following 
capabilities to the system and evaluating their impact on performance. 

1) Real-time *'chat" - To facilitate effective communication between the technologists 
in the remote sites and experienced radiologists, we have implemented a "chat" box type 
function. The chat box provides a real-time interactive capability. Chat boxes on both sides 
contain: patient demographics; message area; pull-down menus; and a free typing text area. 
Typical communication includes the technologist sending a chat dialog with each case 
indicating: breast, left or right; view, cradiocaudal and/or mediolateral obUque; finding, 
mass or calcifications; comparison with prior exam, baseline, new, or increased; and possible 
additional procedure, additional views and/or ultrasound. The radiologists reply after 
reviewing the case to do recommended procedure as suggested; no additional procedures are 
necessary; and do not do suggested procedure, but do X, Y, and Z. We are currently 
performing an "on-line" experiment to test the reliability and ease of use of this 
communication tool, which will be followed by a simulated clinical study. 

2) Case Folder Enables More than Four Images - We are in the process of enabling 
the "case folder" to include scanned reports (text) as well as more than four images (e.g., 
prior examination). The former capabilities (scanned report) have been developed and are 
currently under testing. The latter will be implemented thereafter. 

It should be noted that many of the undertakings (tasks) in this section are designed to 
be completed in a comprehensive, multi-step approach and will continue throughout the 
whole project. 

Under Task 4, we performed the following: 

a) CAD Implementation: Although this task is not scheduled for the second year, we 
completed the design of a modular software package that will enable the different CAD 
routines to be incorporated into the telemammography system at the remote (sending) sites 
and transmit the results to the central site. This task is planned for implementation in the 
middle of year three of the project. Testing will commence shortly thereafter. Since our 
CAD efforts continue to result in performance improvements, we intend to finahze the actual 
scheme to be integrated as late as possible for optimal performance. The system will be 
operational with and without CAD. Some CAD modules have already been developed and 
are currently being tested. 

Key (Research) Accomplishments: 

During the first two years of the project, we have been progressing according to the 
original plan and are addressing many of the technical tasks and operational issues associated 



with the design and implementation of the multi-site telemammography system.   The key 
accomplishments for the second year were: 

• We implemented, tested, and installed a multi-site telemammography system that 
meets (and in some areas exceeds) the technical specifications we anticipated. 

• We successfully transmitted over 1000 cases firom three remote sites to the central 
site. 

• We initiated a step-by-step comprehensive, technical, and clinical assessment 
protocol in a clinically simulated environment. 

• We are refining the system based on preliminary results to address ease of use and 
utility issues in order to maximize the likelihood of success. 

• We have been able to coherently engage a large team of administrative, technical, 
clinical (i.e., technologist), and physician personnel in a large and complicated 
project. 

Reportable Outcomes: 

The nature of this project is such that most of the work performed during the first two 
and one-half years of the project does not result in a significant reportable outcome. 
However, as we develop the system, several tasks are being performed where partial support 
(albeit quite limited) is provided by this project. For example, we are developing a software 
package to incorporate CAD results into the telemammography system during the third year 
of the project. The development of our CAD schemes continue, and the performance seems 
to be improving as we progress in optimizing step-by-step the various schemes we have 
developed. Therefore, several of our scientific reports acknowledge this project. 

• Zheng B, Ganott MA, Britton CA, Hakim CM, Hardesty LA, Chang TS, 
Rockette HE, Gur D. Soft-copy mammographic readings with different 
computer-assisted diagnosis cuing environments: Preliminary findings. 
Radiology 2001; 221:663-640 

• Zheng B, Chang Y-H, Good WF, Gur D. Performance gain in computer- 
assisted detection schemes by averaging scores generated fi-om artificial 
neural networks with adaptive filtering. Med Phys 2001; 28: 2302-2308 

• Drescher JM, Maitz GS, Leader JK, Sumkin JH, PoUer WR, Klaman H, 
Zheng B, Gur D. Design considerations for a multi-site, POTS-based 
telemammography system. Proc SPIE 2002; 4685:416-421 

• Zheng B, Shah R, Wallace L, Hakim C, Ganott MA, Gur D. Computer-aided 
detection in mammography: An assessment of performance on current and 
prior images. Acad Radiol 2002; in press 

• Leader JK, Sumkin JH, Drescher JM, Maitz GS, Zheng B, Wallace L, Hakim C, 
Hertzberg TM, Hardesty L, Shah R, Clearfield R, Sneddon C, Lindeman S, 
Craig D, Pugliese F, Duffiier D, Lockhart J, Traylor C, Gur D. A multi-site 
telemammography system: technical challenges, operational issues, and 
preliminary clinical evaluation. To be presented at the Department of Defense 
"Era of Hope" meeting, September 25,2002. 

10 



We anticipate that some of the design parameters and image testing will be reported at 
upcoming national meetings (e.g., SPIE). 

Conclusions: 

There are several technical, clinical, and assessment tasks Usted in the Statement of 
Work of this project. During the first two years, we have addressed many technical tasks 
associated with the design and implementation of a multi-site telemarmnography system. We 
overcame many of the technical problems and assembled a multi-site system that exceeds 
several of the performance goals we originally proposed. The system is imdergoing a 
comprehensive step-by-step evaluation (and refinement as deemed appropriate), and the goal 
is to establish and test an environment with improved communications capabilities between 
remote (and often underserved) facilities and a central site. 

So What? 

The main goal of this project is to evaluate how the use of an "almost real-time" 
telemammography system (with and without the use of CAD results) may impact the 
diagnostic process in terms of complete cycle time and patients' recall rate. At this stage, 
when we focus on system implementation and initial evaluations, it is premature to consider 
any impact statements that are relevant to the clinical enviroiraient. The nature of this project 
necessitates that the clinical evaluation requires a multi-step approach, hence, actual clinical 
resuhs can only be provided at a later date. Success of this project will enable a 
demonstration and careful assessment of different ways to increase communication between 
remote (and potentially underserved sites) and a central site. Our hope is that by using this 
approach, one may be able to provide better, more cost-effective service at these sites, and 
reduce recall rates in these facilities by a significant amount. 
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ABSTRACT 

As the number of mammographic examinations increases, it becomes clear that in many underserved locations, there is a 
lack of expertise that is required for consistent, highly accurate, and timely diagnosis. Hence, mammograms are 
frequently sent to other medical facilities, and a significant fraction of women (typically 3-10%) are recalled for 
additional examinations. It is the purpose of this project to develop, test, and clinically evaluate a telemammography 
system that will operate between several remote locations and a large breast cancer center. In this manuscript we 
describe the design considerations, implementation, and initial testing that were imdertaken, to date. The system 
digitizes a mammogram at 50 ^m pixel size, compresses the resulting image file (-75:1), and transmits it over a 
telephone Une to the central site where the data received are decon^ressed and displayed on a high-resolution 
workstation in approximately 4 minutes per image. Initial testing of the system indicates that a relatively inexpensive 
system for "almost real-time" telemammography can be employed in any geographic area that possesses standard 
telephone lines, and this approach to enhance communication may make it possible to offer better mammographic 
services at remote locations. 

Key Words: Imaging, Teleradiology, Mammography, Data compression. Image display 

1.   INTRODUCTION 

Periodic mass screening of asymptomatic women is rapidly gaining approval and acceptance, and the population 
segment recommended for screening is increasing due to both longer life expectancy as well as earlier recommended age 
for initial examination [1-3]. The large variability in a number of important aspects related to mammography, as 
practiced in the U.S., resulted in the enactment of the Mammography Quality Standards Act, which mandates 
accreditation of each program (facility, technical and professional) [4,5]. Shortages of expert mammographers in many 
locations, combined with the desire to make it convenient for the patient to undergo the procedure, suggest that there 
may be a need for high-quality telemammography systems that enable a distributed acquisition-centralized expert review 
type solution to the problem [6,7]. The relatively high recall rates (5-15%) of screened women to supplement 
information that was not ascertained during the initial visit (e.g. magnification views) also make it desirable to enable 
physician "monitoring" and "management" of remote locations so that clinical and diagnostic decisions can be made 
while the patient remains in the clinic [8-11]. Early attempts to develop and inclement a practical telemammography 
solution to this problem failed due to several significant technical problems associated with acquisition, transmission, 
management, and display of the images [12-14]. Many of these technical issues have been resolved in recent years, but 
some remain [14-18]. Although an adequate communication infrastrucmre for high-quality telemammography is 
available within some urban regions, the fact remains that where it may be needed most (i.e. remote, non-urban 
locations), enabling (two-way) communication systems are limited mainly to the Plain Old Telephone System (POTS). 
Other communication technologies, such as satellites, are being evaluated for this purpose, but it is not likely that these 

*idrescher@inail.magee.edu; phone 412-641-2563; fax 412-641-2582://www.radiology.upmc.edu/University of Pittsburgh, Suite 
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will displace POTS in most underserved areas for quite some time [19-21]. Hence, the problem of cost effective, timely 
remote patient monitoring and management in many underserved areas is not a simple one. Usmg a umque data-handling 
scheme we have been able to demonstrate that high-quality, multi-site telemammography systems can be developed 
under these acquisition and communication constraints [22,23]. Using similar concepts, we have been developmg a 
multi-site system that enables "almost real-time communications" between the "spokes and the hub. Design 
considerations as well as implementations and initial testing procedures are described in the manuscnpt. 

2.   METHOD 

At the remote sites, we use a high resolution Lumiscan 85 fihn digitizer (Eastman Kodak, Rochester, NY) connected via 
SCSI to a Windows NT 2000 PC (900 MHz Athlon 512 MB) running multi-threaded software. The digitizer is equipped 
with a film feeder and is capable of digitizing up to six fihns in a batch at 50 nm pixel size over optical densities ranging 
from 0 to 4 0 OD Four slots of the film feeder are labeled for specific mammographic views (i.e. LCC, RCC, RMLO 
and LMLO) for ease of use during the digitization process. The user at the remote site (typically a technologist) selects 
either an option to digitize a "standard" protocol for an image set or any of the six films he/she chooses to send, by 
clicking on an appropriate icon. 

The user enters patient information into a computer data entry form during the digitization. At this time he/she also 
enters information for 'non-standard' cases by choosing from drop-down menus the anatomy and view for each of the 
films being digitized. Meanwhile the software on the PC estabhshes a connection with the central hub if a connection 
does not ah-eady exist. This is currently done via dial-up phone line or an Internet connection, but optionally ISDN or 
DSL can be used as well. For the dial-up connection, internal 56K hardware modems (U.S. Robotics, RoUmg Meadows, 
IL) are used The image data are processed in sections, segmented, and conqjressed using JPEG 2000 conqjatible 
irreversible wavelet compression and transmitted in packets to the central site. Optionally, a report or patient history can 
be transmitted along with the images by inserting them into an attached page scanner (OneTouch 8650, Visioneer, Inc., 

Fremont, CA). 

The central site has a Windows 2000 Server workstation (Dual 1.2 GHz Athlon MP, 2 GB RAM) running specially 
developed software. Data received from remote sites is reconstructed from the packets, decompressed, and stored on a 
hard disk and/or in memory (if available). Several cases (depending on size) can be stored in memory for uistant access. 
Cases stored on disk take a few seconds to restore to memory. The display consists of a pan of high-resolution (2048 x 
2560) 8-bit grayscale portrait monitors at a nominal setting of 80 ftL (DS5100P, Clinton Electironics, Rockford, IL). The 
bottom of the displays holds a bar of icons and arrows for selecting cases, images, and other tools. The user can select 
from a patient list tiiat displays the unreviewed cases on the top (similar to a "worklist"). When a case is selected, four 
images appear in quadrants on the right monitor. The left monitor displays the currently selected image (the first image 
by default) at half the available resolution. Although images are displayed at window and level settmgs determined by 
the statistics of the signal from individual image data sets, the user may select tiie window and level tool and alter it in 
real time using a mouse. A "magnify" tool is also available that magnifies any square region under the cursor m real- 
time to fill! resolution as it is moved over die image. Among other tools on the tool bar are arrows that allow movement 
to the next or preceding case. 

We plan to add DICOM compatibility to the workstation at the cenfral site. This will include the capability to send and 
print selected images to a mammographic film printer (DryView 8610, Eastinan Kodak, Rochester, NY). This will also 
allow transferring workstation images to another DICOM device (workstation or storage) and also allow access to 
images from other DICOM compatible devices, such as fiill field digital mammography acquisition systems [24,25]. 

We also plan to add conqiuter-aided detection (CAD) software at the remote site. This would allow image analysis to be 
performed on the original images during the time the compressed data sets are b-ansmitted. The results can be sent 
immediately after the image data ti-ansfer, simply as coordinate data. Suspicious areas for masses and microcalcifications 
would then be marked on a removable overlay on the images at the hub. Figure 1 is a schematic diagram of the system as 
it is currently configured and being evaluated. 
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3.   SOFTWARE DESIGN 

Both the hub site and remote site computer programs are designed using multithreading to permit each task to be 
completed in a timely manner; yet, allow the system to be responsive to user input. The main threads commumcate with 
one other by sending thread messages to other threads. Each main thread handles the messages that are applicable to it 
and ignores any others. A main thread may spawn another thread to accomplish some subordmate task. These spawned 
threads do not receive messages, but they do send messages. 

The main threads for the hub site program are: 
Archive Manager that handles savmg and loading of images and cases and the deletion of uncompressed images when 

free disk space becomes low. 
The Case Manager handles the fiinctions of creating images and cases, in addition to most of the database fonctions. 
The Display Manager controls the display of images and forwards messages to the main application window. 
The Disttibution Manager handles the receipt and transmission of data and the processing (including decompression) ot 

the data. 

The main threads for a remote site are: 
Digitizer Manager that handles all the tasks related to the film digitization. 
The Case Manager handles the functions of creating images and cases, in addition to most of the database fimctions. 
The Display Manager controls the display of images and forwards messages to the mam application wmdow. 
The Distribution Manager handles the transmission and receipt of data and the processing (including compression) ot the 

data. 

The threads for the most part are synchronized using a Reader / Writer lock that is a combination of the built-in 
Microsoft Windows synchronization primitives. This lock allows either any number of readers or just one wnter to have 
access to a shared object. This allows greater concurrency than that which could be achieved by using a Mutex, which 
allows only a single thread to access an object at a time forcing all other threads to wait. 

4.   USER FUNCTIONALITY 

At the remote sites all data entry fimctions utilize pull-down menus supported by the use of a keyboard. A "start" 
command enables digitization of a case, and data entry can be performed within a predetermined time slot dunng the 
digitization process. At the central site, a high-resolution workstation is operated solely using a mouse, and several 
simple options are available by clicking on the appropriate button (e.g. flip, magnify, rotate, display on other niomtor, 
etc.). The cases in memory and those on disk are so indicated on patient lists, and automatic lookup tables (unage- 
statistic based) are used to display "reasonable" default settings. 

5.   RESULTS 

The system has been designed, assembled and tested for technical reliability. Currently the three sites (See Figure 1) are 
located anywhere from 15-90 miles away from our hub in Pittsburgh. The remote sites are all outpatient climes, which 
are staffed by a physician between one day a week to half a day every two weeks. Cases from multiple sites have been 
transmitted simultaneously and received successfiiUy at the hub. Average transmission times for a four-image case vary 
significantly based on bandwidth availability and film size and currently ranges from 9 to 25 minutes. We are currently 
evaluating different approaches to reduce the cycle time to below 15 minutes per case as an upper Imiit. To date we 
have received over 200 cases from the remote sites, and we are analyzing user fimctionality at all locations. 

Two mammographers performed an initial evaluation of a series of cases and the basic workstation's basic fimctionality. 
The quality of the images received was subjectively judged to be acceptable or better. A series of retrospective analyses 
on a large number of cases sent from all sites will follow. 
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6.   DISCUSSION 

Low cost telemammography is becoming feasible as communication technology and processing capabilities continue to 
inprove in tenns of cost, availability, and reliability. The system we designed is capable of variable compression rates 
should It be desired, as well as the ability to print images at the receiving site. As important, the incorporation of a CAD 
scheme mto the protocol may aid in decision making at both the sending (remote) sites as well as the receiving site. It 
should be noted that the system was not designed for electronic primary diagnosis, but rather to facihtate better 
communication between remote (and perhaps underserved) sites and a central hub where expertise is more readily 
available. 

Our initial assessment indicates that technically our objectives can be met, and we hope that our planned clinical 
evaluations will improve our understanding as to whether or not such systems can be used to enhance communication 
aid m timely decision making, help reduce recall rates, and ultimately enhance and improve the timeliness and quality of 
the service we can provide in locations where expert mammographers are not physically present at the time of the 
examination. 
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by averaging scores generated from artificial neural networlcs 
with adaptive filtering 
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The authors investigated a new method to optimize artificial neural networks (ANNs) with adaptive 
filtering used in computer-assisted detection schemes in digitized mammograms and to assess 
performance changes when averaging classification scores from three sets of optimized schemes. 
Two independent training and testing image databases involving 978 and 830 digitized mammo- 
grams, respectively, were used in this study. In the training data set, initial filtering and subtraction 
resulted in the identification of 592 mass regions and 3790 suspicious, but actually negative regions. 
These regions (including both true-positive and negative regions) were segmented into three subsets 
three times based on the calculation of the values of three features as segmentation indices. The 
indices were "mass" size multiplied by their digital value contrast, conspicuity, and circularity. 
Nine ANN-based classifiers were separately optimized using a genetic algorithm for each subset of 
regions. Each region was assigned three classification scores after applying the three adaptive 
ANNs. The performance gain of the CAD scheme after averaging the three scores for each suspi- 
cious region was tested using an independent data set and a ROC methodology. The experimental 
results showed that the areas under ROC curves (A^) for the testing database using three sets of 
optimized ANNs individually were 0.84±0.01, 0.83±0.01, and 0.84±0.01, respectively. The 
between-index correlations of three A^ values were 0.013, —0.007, and 0.086. Similar to averaging 
diagnostic ratings from independent observers, by averaging three ANN-generated scores for each 
testing region, the performance of the CAD scheme was significantly improved {p <0.001) with A^ 
value of 0.95 ±0.01. © 2001 American Association of Physicists in Medicine. 
[DOI: 10.1118/1.1412240] 

Key words: computer-assisted diagnosis, mammography, mass detection, artificial neural network, 
genetic algorithm, adaptive filtering 

I. INTRODUCTION 

A number of computer-assisted detection (CAD) schemes 
have been developed in recent years to detect masses and 
microcalcification clusters depicted in digitized 
mammograms.'"'^ Many researchers beUeve that eventually 
these CAD schemes will help radiologists to significantly 
improve their diagnostic accuracy and efficiency in diagnos- 
ing breast cancers at an earlier stage.""'^ Others question 
whether the high false-positive rates resulting from the CAD 
schemes could generate a large number of unnecessary re- 
calls or possibly biopsies, which might offset the possible 
gains in detection sensitivity.''**' Because of this potential 
negative effect (i.e., high false-positive rate) on diagnostic 
performance, significant effort has been invested in an at- 
tempt to improve CAD performance.'^"'^ In order to achieve 
high detection sensitivity, CAD schemes typically identify a 
large number of suspicious, but actually negative regions at 
the initial detection stage. Hence, an important task in CAD 
development is to improve accuracy of classifying a large 
number of identified regions. Previous studies in this area 
focused mainly on searching for an effective classifier in- 
cluding, but not limited to: a linear discriminant function, an 
improved artificial  neural  network (ANN),^°  a wavelet 

transformation,^ a set enumeration decision tree,^' a Baye- 
sian belief network,^^ and a knowledge-based expert 
system. Other efforts concentrated on determining a small, 
but optimal set of features that include moiphological 
features,'^ texture features,'* and derivative-based features.'* 

Because of the complexity and large variability of the 
abnormalities in question and the surrounding tissue struc- 
tures, it is quite difficult for a single universal scheme to 
accurately classify suspicious regions using a limited number 
of correlated features.^'^' To address this problem, two ap- 
proaches have been investigated to date. The first one is to 
segment the images or suspicious regions into different 
groups based on specific predetermined image characteristics 
(e.g., "image difficulty indices") and then optimize separate 
schemes with adaptive filtering for each group (class) of im- 
ages. Previous studies using this approach suggested prom- 
ising results for a rule-based CAD scheme^* and for a 
wavelet-transform based CAD scheme.^^ The second ap- 
proach that has been explored is to combine (or average) the 
detection results from different noncorrelated classifiers, 
such as the averaging of detection scores from a rule-based 
and ANN-based classifiers,'^ or those of an ANN and a set 
enumeration tree.^' Similar to improving diagnostic accuracy 
by averaging ratings from repUcated, but independent read- 
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ings or from different readers,^'^ averaging CAD scores 
generated by different classifiers could also be an effective 
approach to improve performance.""^' 

In our previously reported studies,^'"^* image databases 
were somewhat limited and the computation of the indices 
by which images were segmented into groups was quite 
complicated. In the present study, we combine the two ap- 
proaches. In addition, we use three image features that are 
well defined, easily computable, and widely used in CAD 
schemes to segment the image ensemble into different 
groups. This study focuses on detecting masses in digitized 
mammograms. Since studies have shown that high- 
performing CAD cueing could significantly improve the per- 
formance of radiologists in detecting subtle cancers''''""'^ 
and our study suggested that once detected, the task of clas- 
sifying masses as benign or malignant was not affected by 
the CAD detection performance, we assume here that detec- 
tion and classification are two distinct and largely indepen- 
dent tasks.^^ A detailed description of the development phase 
of the scheme and the initial test using a large independent 
data set are presented. 

II. MATERIALS AND METHODS 

A. Image databases 

Two independent image databases were used in this study. 
The first database (used as the training database) contains a 
total of 978 digitized mammograms. Of these, 545 images 
were acquired on patients who underwent mammographic 
examinations at the University of Pittsburgh Medical Center 
(Pittsburgh, PA) and its affiliated hospitals and clinics prior 
to April 1997, and 433 images were provided to us by an 
imaging research group at Washington University Medical 
School (St Louis, MO). A detailed description of this data- 
base has been reported elsewhere.^^ The second image data- 
base (used as the testing database) contains 830 images, of 
which 528 were provided to us by a research and develop- 
ment team at the Eastman Kodak Company (Rochester, 
NY)'° and 302 images collected more recently (> 10/98) on 
patients undergoing mammography examinations at the Uni- 
versity of Pittsburgh Medical Center. Aldiough the mammo- 
grams originated in different medical facilitates, these were 
all digitized in our laboratory using a laser-film digitizer (Lu- 
misys, Sunnyvale, CA) with a pixel size of 100/xm 
X 100 Aim and 12 bit gray-level resolution. For mass detec- 
tion, the images were then subsampled (pixel digital value 
average) by a factor of 4 in both directions to generate im- 
ages of approximately 600X450 pixels. All true-positive 
masses depicted in these images were pathologically veri- 
fied, and the locations of the masses were marked on the 
images by radiologists. 

Each image was processed by a multilayer topographic- 
based CAD scheme previously developed in our laboratoiy.^^ 
Each mammogram was processed as follows: Using dual- 
kernel filtering, subtraction, and simple thresholding meth- 
ods, the scheme identifies a large number of suspicious mass 
regions. A set of image features is then extracted from the 
mammogram, and a classifier (i.e., artificial neural network) 

is applied to assign the region as a positive or negative one. 
In brief, this scheme has three distinct stages for the identi- 
fication of masses. The first stage of dual kernel filtering, 
subtraction, and labeling resulted in the selection of a large 
number of suspicious regions (24067 and 19154 regions 
when applied to the two image databases, respectively, or 
approximately 24 regions per image). Based on local contrast 
measurements, the second stage used an adaptive region 
growth algorithm to define three topographic layers for each 
suspicious region. For each growth layer, a set of simple 
intralayer boundary conditions on region growth ratio and 
shape factor was applied to eliminate a large number of ini- 
tial suspicious regions. After the second stage, the number of 
suspicious regions (including both positive and negative re- 
gions) decreased to 4382 and 3623 (or approximately 4.4 
regions per image) in the training and testing databases. For 
each suspicious region, a set of image features was automati- 
cally computed by the scheme. Using these features, die third 
stage of the CAD scheme used a three-layer feed-forward 
ANN to classify these regions as positive or negative for 
mass 24 

The second stage of the scheme identified 592 and 358 
suspicious regions that depicted verified masses in die train- 
ing and testing databases, respectively. With the exception of 
these regions that matched verified masses, all other regions 
that were identified as suspicious by the scheme at this stage 
were determined to be negative. A total of 3790 and 3265 
negative regions were identified as suspicious (or false- 
positive) in the training and testing databases, respectively. 
For each region, 36 image features inside the suspicious re- 
gion (including its three topographic growth layers^^) and its 
surrounding background were automatically computed by 
the CAD scheme. These features include mainly geometri- 
cally related features, such as region size, circularity, or nor- 
malized standard deviation of radial length and intensity- 
related features (or distribution of pixel values), such as 
contrast, standard deviation, and skewness of pixel values' 
distribution and conspicuity. The definitions and the mediods 
of computation for these features have been reported in sev- 
eral previous studies.^^'^ To reduce the potential redundancy 
and improve the robustness of the scheme, we used a genetic 
algorithm (GA) to select an optimal subset of input features 
to be used in the ANN. 

B. Database segmentation 

The basic concept of adaptive filtering is to divide suspi- 
cious regions (or images) into several groups based on a 
computable index and then to optimize different ANNs for 
the regions (or images) in each group. Although several com- 
plicated indices have been used for segmentation with some 
success, • we searched here for new indices. The selection 
criteria were: (1) the index was easily computable; (2) the 
index had been used as a feature in other CAD schemes; and 
(3) the relationship between the index and the segmentation 
results is "interpretable" and has been demonstrated in pre- 
vious studies. Three indices were selected empirically for 
this study. The first is the size of the suspected region mul- 
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TABLE L The number of false-positive regions in the training data set seg- 
mented by each of the indices into the "easy," "moderately difficult," and 
"difficult" groups, respectively. 

Segmentation index "Easy" "Moderately difficult" "Difficult" 

SizeXcontrast 
Conspicuity 
Circularity 

454 
227 
366 

1002 
741 
849 

2334 
2822 
2575 

tiplied by its digital value contrast. This index could be in- 
terpreted to represent the "volume" of a suspicious mass. 
Studies have indicated that suspicious mass regions with 
large size and high contrast are easier to identify using CAD 
schemes than small regions with lower contrast.^^'^'* The sec- 
ond index is region conspicuity. This index has been exten- 
sively investigated for the detection of lung nodules on chest 
images.^^ Radiologists typically achieved better diagnostic 
performance in detecting lung nodules with higher conspicu- 
ity than those with lower conspicuity.^^ A similar relationship 
between CAD performance and conspicuity of mass regions 
has also been demonstrated.^^ The third index is the region 
circularity, an important feature in classifying suspicious 
mass regions in a variety of CAD schemes.^'^^ 

Using each of these indices, we divided suspicious re- 
gions into three groups, which were defined as "easy," 
"moderately difficult," and "difficult" regions. In order to 
have the same number of true-positive training samples in 
each of the three groups, two segmentation thresholds were 
determined based on the distribution of the feature values for 
the true-positive regions. As a result, the "easy" group in- 
cluded 198 true-positive regions, and the other two groups 
had 197 true-positive regions. The number of false-positive 
regions that resulted from such segmentation is Usted in 
Table I. The same thresholds were applied later to the testing 
database. 

C. GA optimization 

In each group, a different classifier was used on the cases 
with similar characteristics. To search for an optimal set of 
features to apply to each group, a genetic algorithm (GA) 
was used. The binary coding method was applied to create a 
chromosome used in the GA. Each extracted feature corre- 
sponded to a gene. To decide the number of hidden neurons 
in the second (hidden) layer of the ANN, we added four 
genes in the chromosome. The chromosome had a fixed 
length of 40, where the first 36 genes represent extracted 
image features, and the last 4 genes indicate the number of 
hidden neurons. The same GA software and initial setup pa- 
rameters have been reported previously.^^ In brief, the initial 
population size of chromosomes was set at 100. The cross- 
over rate, the mutation rate, and the generation gap were set 
at 0.6, 0.001, and 1.0, respectively. 

A training sample of equal number of true-positive and 
false-positive regions was then used to train the weights con- 
necting the neurons in the ANN. To minimize the over-fitting 
and keep the robustness of ANN performance when appUed 
to new cases, a limited number of training iterations as well 

as a large ratio between the momentum and learning rate was 
adopted.^'*'^^ The number of training iterations of the ANN 
was fixed at 1000, while the momentum and learning rate in 
the ANN training were set up as 0.8 and 0.01, respectively. 
ROC curves generated from the training samples (A^ values 
computed by the program ROCFTT)*' were used as a fitness 
function (or criterion) in the GA optimization. The chromo- 
somes that produced higher A^ values had higher probabili- 
ties of being selected in generating new chromosomes for the 
next generation using the methods of crossover and muta- 
tion. The GA was terminated when it converged to the high- 
est A^ value or reached a predetermined number of genera- 
tions (i.e., 100). The resulting set of features was assumed to 
be "optimal" and was implemented in the CAD scheme. 

D. Adaptive and nonadaptive optimization 

In this study we compared the performance changes of 
detection accuracy between the ANNs when optimized adap- 
tively versus nonadaptively. In the adaptive optimization 
method, the training database was first segmented into three 
subsets with a "similar" characteristic. ANNs with different 
topologies and input features were then optimized separately 
using the GA method for each subset. To train an ANN, all 
true-positive regions in the subset were used, and the same 
number of false-positive regions was also randomly selected 
from the larger dataset of false-positive regions in that group. 
Using the GA method an ANN was optimized specifically for 
this subset. Since three segmentation indices (size X contrast, 
conspicuity, and circularity) were used in this experiment, a 
total of nine subsets, hence ANNs were established (three 
subsets for each segmentation index and three indices of seg- 
mentation). 

In the nonadaptive optimization, the cases were not seg- 
mented into subsets. Because the number of training samples 
could affect performance,^ we used the GA method to opti- 
mize the ANN once with 198 randomly selected true-positive 
and 198 false-positive regions (ANN-1), then we repeated 
the procedure including all 592 true-positive regions in the 
training database and a randomly selected set of 592 false- 
positive regions (ANN-2). 

After optimization, an independent database, which in- 
cludes 358 masses and 3265 regions that had been identified 
as suspicious, but were actually negative, was used to evalu- 
ate and compare the performance of the adaptive and non- 
adaptive ANNs. To test the adaptive scheme, the program 
first segmented the database into subsets using the same in- 
dices developed for the training phase. The ANN results for 
all regions in the testing database were used to compute the 
area under ROC curves (A^. values) using the ROCFTT pro- 
gram. 

E. Performance gain by averaging scores 

Averaging ratings cases from different independent read- 
ings could improve the diagnostic accuracy.'*' Accuracy 
gains are strongly dependent on the number of observations 
(or schemes) and the correlation between observations. For 
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TABLE Q. Correlation coefficients between cases assigned to different 
groups using the segmentation rules based on the three features (size 
Xcontrast, conspicuity, and circularity). 

TABLE in. The number of true- and false-positive regions assigned to the 
difTerent groups using the three segmentation indices when applied to the 
testing database. 

bdices 
compared 

TP regions 
IB training 
database 

FP regions 
in training 
database 

TP regions 
in testing 
database 

FP regions 
in testing 
database 

Segmentation 
index 

Group 1 
true/false 
positives 

Group 2 
true/false 
positives 

Groups 
true/false 
positives 

ANN-1 to ANN-2 
ANN-1 to ANN-3 
ANN-2 to ANN-3 

0.148 
0.022 
0.219 

0.174 
-0.069 

0.018 

0.152 
0.008 
0.298 

0.209 
-0.004 

0.005 

Size Xcontrast 
Conspicuity 
Circularity 

120/514 
113/182 
106/290 

123/893 
116/612 
107/791 

115/1890 
129/2503 
145/2216 

example, by averaging the results from three observations, 
accuracy gains could range from 0 and 73.2% when the cor- 
relations range from 1 to 0.'" 

Similar to the multireader problem, we segmented the 
data set three times using each of the three segmentation 
features (sizeXcontrast, conspicuity, and circularity). Each 
segmentation resulted in three subsets of cases. Note that a 
case segmented into group one ("easy") based on one fea- 
ture (e.g., circularity) may be classified into group three 
("difficult") based on another feature (e.g., conspicuity). 
Each suspicious region was assigned to a specific category 
using each segmentation index, and the "optimal" ANN for 
that subset was applied by assigning a likelihood score. 
Hence, each region was assigned three different scores re- 
lated to its likelihood for depicting a true mass. These scores 
were averaged and a "combined" ROC curve was generated. 
Results were compared to those obtained using individual 
scores. In addition, we compared experimentally measured 
and expected gains due to averaging based on measured cor- 
relations 

Px,Y=- 
COV{X,Y) 

arxfTy 

where COV(X,y) is the covariance of two vectors X and Y, 
and cTx and ay are the standard deviations of the vectors, 
respectively.^^ The theoretical expected gains were computed 
for the averaging of multiple observations."*' 

III. RESULTS 

Table I summarizes the number of false-positive regions 
assigned to each group when different features were used for 
segmentation in the training data set. Noted is the large num- 
ber of regions assigned to the last "difficult" group. In gen- 
eral, this indicates that many of the false-positive regions 
were not "easy" to rule out as a true mass. The correlation 
coefficients between the classification assignment of regions 
based on the segmentation performed using the three features 
are summarized in Table II. The low correlations indicate 
that a large number of regions in each database were seg- 
mented into different groups when different features were 
used for segmentation. Only 12.5% of the true-positive re- 
gions and 25.2% of the false-positive regions in the training 
database were consistently assigned to the same group (e.g., 
easy). As a result, for the same training database, three sets 
of adaptive ANNs were actually trained with different cases 
for each group. When ANN scores from randomly selected 

groups with the same number of cases are compared, the 
correlation coefficients range from 0.712 to 0.963. These re- 
sults clearly demonstrate that additional information could be 
obtained from the adaptive approach. 

Table HI provides the distribution of regions segmented 
into the different groups using the three segmentation indices 
in the testing database. While the percentage of large 
sizeXcontrast regions ("easy" regions) is somewhat higher 
than that assigned to this group in the training database, the 
general distributions are quite similar. The optimization pro- 
cess resulted in ANNs that included different input features 
and varying numbers of hidden neurons. The number of in- 
put features ranged from 9 to 15 and the number of hidden 
neurons ranged from 3 to 7. Table IV provides the results 
{A^ for the different schemes when applied to the testing 
database and a comparison {P values) to the nonadaptive 
scheme using 198 positive and 198 negative regions for 
training (ANN-1). The approach in ANN-2 is similar to 
ANN-1, only 592 positive and 592 negative regions were 
used for training purposes. Both ANN-1 and ANN-2 are non- 
adaptive schemes, and the significant improvement (P 
=0.03) in ANN-2 is largely the result of more complete 
feature domain coverage. Adaptive schemes 1-3 are the re- 
sults after optimization by segmentation based on individual 
indices. For example, scheme 1 was trained using the subsets 
of sizeXcontrast as a segmentation index. As can be seen, the 
results are somewhat better (albeit, not significantly) than the 
nonadaptive scheme using 198 positive and 198 negative re- 
gions (ANN-1), but these are not improved compared with 
ANN-2. On the other hand, by averaging detection scores of 
the different adaptive schemes (either two or all three), sig- 

TABLE IV. Areas under ROC curves (A^ values) for different schemes and 
their comparisons (two-tailed p values) with the nonadaptive scheme using 
198 positive and 198 negative regions (ANN-1). 

Scheme A," P 

Nonadaptive ANN-1 0.82 
Nonadaptive ANN-2 0.85 0.03 

Adaptive-1 0.84 0.18 
Adaptive-2 0.83 0.63 
Adaptive-3 0.84 0.21 

Average (1 + 2) 0.91 <0.01 
Average (1 + 3) 0.92 <0.01 
Average (2 + 3) 0.91 <0.01 

Average (1+2 + 3) 0.95 <0.01 

"Standard deviation for all A, values is 0.01. 
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^x 

—O— A non-adaptive ANN 

-Hi- Adaptive ANN-1 

-A- Adaptive ANN-2 

—X- Adaptive ANN-3 

0.2 0.3 0.4 0.5 0.6 0.7 

Fraction of felse-positi\« detection 

RG. 1. ROC curves from nonadaptive ANN-1 and three 
sets of noncombined adaptive ANNs. The A^ values for 
these curves are 0.82,0.84,0.83, and 0.84, respectively. 

nificant gains in detection accuracy (p<0.01) are achieved. 
Averaging results from two or three adaptive schemes re- 
sulted in a much larger performance gain (P<0.01) in the 
testing database as compared with ANN-2. Figures 1 and 2 
demonstrate the ROC curves for several different classifica- 
tion schemes. 

To verify the theoretical feasibility of obtaining the per- 
formance gains observed in this study, we used the correla- 
tions for the test results from the different adaptive schemes 
(Table V) in the estimation method proposed by Swensson 
et al.'^^ to compute expected improvements by averaging 
these schemes. Table VI summarizes the predicted Z values 
and percentage gain in accuracy by averaging scores of two 
or three adaptive schemes. Predicted Aj values using a gen- 
eral binormal model are also provided. These are consistent 
with the experimental results we computed directly using 
ROCFTT. 

IV. DISCUSSION 

Averaging diagnostic ratings from different readers'*' or 
scores from different machine learning classifiers'^'^' might 
significantly improve detection accuracy, if the ratings or 
scores from different observations have low correlations. 
ANN is one of the most commonly used machine learning 
classifiers in CAD developments, due to its ability to leam 
complex pattems directly from training samples with mini- 
mal requirement on prior knowledge of the input features or 
internal system operation.'*^ In this study, we explored a 
simple and novel method to segment and optimally train sets 
of adaptive ANNs. Since these produced extremely low cor- 
related classification results using a large and independent 
testing database, significant gains were realized by averaging 
the scores from the different ANNs. 

Given the large nimiber of independent variables that are 

I non-adaptiw ANN - 1 

-A non-adapti>e ANN - 2 

- A>eraging 3 adaptive ANNs 

0.3 0.4 0.5 0.6 0.7 

Fraction of false-positi\« detection 

FIG. 2. ROC curves of classification results from non- 
adaptive schemes (ANN-1 and ANN-2) as well as after 
averaging scores of three sets of adaptive ANNs. The 
A, values are 0.82±0.01, 0.85±0.01, and 0.95±0.01, 
respectively. 
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TABLE V. Conelation coefficients between testing results using adaptive 
ANN scores from different schemes 

Between adaptive 
schemes 

ANN-1 to ANN-2 
ANN-1 to ANN-3 
ANN-2 to ANN-3 

TP regions [p(a)'\   FP regions \_p(n)'\    Between A^ 

0.018 
-0.011 
0.116 

-0.004 
0.003 
0.011 

0.013 
-0.007 
0.086 

needed to characterize masses and normal tissue structure on 
digitized mammograms and the fact that many of the features 
are continuous and span a wide range of values, a large and 
carefully selected training data set is required to ensure ad- 
equate domain coverage that could result in robust 
performance.^ Finding an optimal feature set fixjm a Umited 
image database is an important factor in determining the per- 
formance and robustness of CAD schemes.**-''' Had it been 
possible to extract an "ideal" (or fully optimized) set of fea- 
tures that adequately covers the variables' domain from a 
limited data set, it may not be necessary to perform the adap- 
tive filtering and score averaging procedures described here. 
Using different training samples to optimize ANNs could 
result in different topologies (similar to using different input 
features or having different numbers of hidden neurons). 
However, our experiments showed that generally the corre- 
lations of the detection results when applying these ANNs to 
an independent testing database were quite high (p^O.7). 

In order to take advantage of possible improvement in 
performance due to score averaging, one should train differ- 
ent ANNs using the samples with different characteristics. 
The adaptive concept reported in previous CAD studies^*'^^ 
was used here to group images with similar characteristics. 
The three segmentation indices reported in this study re- 
sulted in 87% of true-positive and 74% of false-positive re- 
gions being classified in different groups. Hence, the ANNs 
for the "same" group (e.g.,"easy" group) were trained using 
different images in each of the subsets segmented based on 
values from one of the three features. As a result, the classi- 
fication scores generated by these three ANNs had low cor- 
relations. Similar to averaging ratings from independent 
observers,^'^'-'" averaging the scores from these "indepen- 
dent" ANNs yielded significant performance gains. 

Although quite encouraging, the results presented here are 
preliminary and have to be validated in larger independent 
databases. We explored here only three simple and com- 

TABLE VI The predicted performance gain of averaging scores from the 
three adaptive schemes using the methodology proposed by Swensson et al. 
(Ref. 41). 

Percentage gain 
Averaging Predicted in 

ad^tive schemes Z (average) Z value Predicted A^ Measmed A^ 

1+2 1.374 48.2 0.92 0.91 ±0.01 
1+3 1.420 53.1 0.92 0.92 ±0.01 
2 + 3 1.338 44.3 0.91 0.91 ±0.01 

1 + 2 + 3 1.644 77.3 0.95 0.95 ±0.01 

monly used features for segmentation purposes. Other fea- 
tures, including those extracted locally (firom a suspicious 
region) and globally (from a full image), should be explored 
as well. However, based on the results of this preliininary 
experiment, we believe that the approach taken may have 
significant advantages over a multifeature, single ANN ap- 
proach to the problem. 
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Soft-Copy Mammographic 
Readings with Different 
Computer-assisted Detection 
Cuing Environments: 
Preliminary Findings^ 

PURPOSE: To assess the performance of radiologists in the detection of masses and 
microcalcification clusters on digitized mammograms by using different computer- 
assisted detection (CAD) cuing environments. 

MATERIALS AND METHODS: Two hundred nine digitized mammograms depict- 
ing 57 verified masses and 38 microcalcification clusters in 85 positive and 35 
negative cases were interpreted independently by seven radiologists using five 
display modes. Except for the first mode, for which no CAD results were provided, 
suspicious regions identified with a CAD scheme were cued in all the other modes 
by using a combination of two cuing sensitivities (90% and 50%) and two false- 
positive rates (0.5 and 2.0 per image). A receiver operating characteristic study was 
performed by using soft-copy images. 

RESULTS: CAD cuing at 90% sensitivity and a rate of 0.5 false-positive region per 
image improved observer performance levels significantly (P < .01). As accuracy of 
CAD cuing decreased so did observer performances (P < .01). Cuing specificity 
affected mass detection more significantly, while cuing sensitivity affected detection 
of microcalcification clusters more significantly (P < .01). Reduction of cuing sen- 
sitivity and specificity significantly increased false-negative rates in noncued areas 
(P < .05). Trends were consistent for all observers. 

CONCLUSION: CAD systems have the potential to significantly improve diagnostic 
performance in mammography. However, poorly performing schemes could ad- 
versely affect observer performance in both cued and noncued areas. 

Breast cancer is one of the leading causes of death in women over the age of 40 years (1,2). 
To reduce mortality and morbidity with early diagnosis and treatment, current guidelines 
recommend periodic mammography screening for women aged 40 and over (3). Due to 
the large number of mammographies performed and the low yield of abnormalities 
detected in screening environments, detecting abnormalities (mainly masses and micro- 
calcification clusters) from the background of a complex normal anatomy is a tedious, 
difficult, and time-consuming task for most radiologists (4,5). 

Hence, there is a growing interest in the development of computer-assisted detection 
(CAD) schemes for mammography. It is generally believed that such schemes could 
eventually provide radiologists with a valuable "second opinion" and help improve accu- 
racy and efficiency of breast cancer detection at an early stage (6,7). 

To assess the potential for improving diagnostic accuracy and efficiency in mammog- 
raphy, several studies have been performed by using the CAD systems. These studies have 
demonstrated that with the appropriate assistance of CAD systems, radiologists could 
either detect more subtle cancers in a screening environment (8,9) or increase the accuracy 
of distinguishing malignant lesions from those that are benign (10-12). While some 
authors (13-15) indicated that CAD did not substantially decrease the specificity levels of 
the radiologists, others (16,17) indicated that current CAD systems could significantly 
decrease diagnostic accuracy and efficiency of radiologists due to high false-positive 
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detection rates. As there is difficulty in 
comparing the performance of different 
CAD schemes developed at various insti- 
tutions (18), the results of these studies 
are not easily comparable, since different 
CAD schemes, radiologists, and cases 
were included. Authors of these studies 
did not address in detail how CAD could 
affect the diagnostic performance of the 
observers or the level of CAD that may be 
required to be widely acceptable as a 
helpful tool in the clinical environment. 

Researchers have suggested that large- 
scale experiments are needed to assess 
the effect of CAD (eg, the false-positive 
identifications) on the diagnostic accu- 
racy of radiologists (19). Some doubt re- 
mains as to whether CAD systems might 
increase the number of unnecessary fol- 
low-up examinations or biopsies and 
thereby offset the benefits from the po- 
tential gains in sensitivity (20). 

The effect of precuing images (high- 
lighting suspicious areas) has been of 
great interest in the field of perception 
psychology in general (21,22) and of di- 
agnostic radiology in particular (23-25). 
Much of the work was associated with 
attempts to improve tumor detection on 
x-ray images of the chest. In a series of 
carefully designed experiments, Krupin- 
ski et al (26) demonstrated that in a cued 
environment, performance of radiolo- 
gists in detecting true-positive lung nod- 
ules that had not been cued was degraded 
substantially. The shapes of abnormali- 
ties (ie, masses and microcalcification 
clusters) and the complexity of the back- 
ground tissue seen on mammograms are 
somewhat different from those of lung 
nodules and the surrounding back- 
ground breast parenchyma. Therefore, it 
is not clear how CAD cuing may affect 
the performance of radiologists in mam- 
mography. 

The purpose of our study was to assess 
the performance of radiologists in the de- 
tection of masses and microcalcification 
clusters on digitized mammograms in a 
CAD environment after modulating cu- 
ing sensitivity levels and false-positive 
rates. 

MATERIALS AND METHODS 

Seven board-certified radiologists (includ- 
ing M.A.G., C.A.B., C.M.H., L.A.H., T.S.C.) 
with a minimum of 3 years experience in 
the interpretation of mammograms partic- 
ipated in this observer performance study. 
None of the seven observers had partici- 
pated in the case selection process. All im- 
ages used in this study were selected from a 

large and diverse image database established 
at Magee Womens Hospital, with Institu- 
tional review board approval and exemp- 
tion of patient consent. The original data- 
base contained mammograms that were 
collected mainly from several thousand pa- 
tients undergoing routine mammographic 
screening at three medical centers (27). 

All positive masses were verified at bi- 
opsy. All negative cases were rated by ra- 
diologists according to the level of con- 
cern by using standard Breast Imaging 
Reporting and Data System, or BI-RADS, 
recommendations. The negative cases 
had been diagnosed during at least two 
subsequent follow-up examinations. Al- 
though we routinely acquire four images 
in a single examination (two views of 
each breast), for some cases in our digi- 
tized database, we have only two images 
of one breast due to a variety of clinical 
reasons. By using an established digitiza- 
tion protocol, all mammograms were dig- 
itized with a laser-film digitizer (Lumisys, 
Sunnyvale, Calif), with a pixel size of 
100 X 100 jjLm and 12-bit digital-value 
resolution. The quality of the digitizer 
was monitored routinely to ensure that 
in the optical density range of 0.2-3.2, 
digital values were lineariy proportional 
to optical densities (28). 

The selection of subtle or difficult cases 
included several steps. First, we selected a 
large set of positive cases (200 in this 
experiment) for which the output scores 
generated by the CAD scheme were low 
for the likelihood that the abnormality in 
question was present (27). Similarly, we 
used a set of suspicious negative cases (80 
in this experiment) for which CAD scores 
were high for the likelihood that a mass 
or a cluster of microcalcifications or both 
were present. Then, two experienced ob- 
servers pruned the data set by means of 
visual inspection on the same display as 
that used in the study with the "true di- 
agnosis" to select the final 120 cases. The 
total number of positive cases was se- 
lected to include a reasonable mix of be- 
nign and malignant cases of single and 
multiple abnormalities, with a minimum 
of 25 malignant cases of each of the ab- 
normalities. 

The resources that were required, in 
terms of radiologist effort (reading time), 
were a factor in limiting the number of 
cases to 120 and the reading modes to 
five. In 85 cases, mammograms depicted 
either masses or clusters of microcalcifi- 
cations or both, and 35 cases were nega- 
tive for these abnormalities. In 10 of the 
positive cases, both a mass and a micro- 
calcification cluster were depicted. In all 
other positive cases, only one abnormal- 

ity (either a mass or a cluster) was de- 
picted. Hence, the positive cases con- 
sisted of 38 verified microcalcification 
clusters and 57 verified masses. Biopsy 
results indicated that 27 of clusters and 
39 of masses were malignant, while the 
remaining 11 clusters and 18 masses were 
benign. Since we were interested in the 
detection (not classification) of abnor- 
malities, cases were selected on the basis 
of subtleness of the depicted abnormal- 
ity, and no attempt was made to balance 
the number of benign and malignant 
cases in the dataset. Although study find- 
ings suggested that to preserve subtle mi- 
crocalcifications, mammograms should 
be digitized with pixel sizes of 50 x 50 
fx,m or less (15,29), all microcalcification 
clusters in this study were detectable 
with our CAD scheme. In addition, we 
verified that all clusters were visible on 
images that were digitized with 100 X 
ICK) Jim pixel size. 

In this study, radiologists were asked to 
detect masses and microcalcification clus- 
ters on digitized mammograms displayed 
on a monitor. In most of the 120 cases (n = 
89), two contralateral images (the same 
view of left and right breasts) were dis- 
played on the monitor side by side. For 
some cases (;i = 31), only a single image 
was displayed. The latter group was se- 
lected from the cases in our database for 
which we have only two views of one 
breast. Hence, only one view was displayed 
in this study, following our study protocol. 
Table 1 summarizes by type and verified 
finding the distribution of the abnormali- 
ties depicted in the 120 cases. The observ- 
ers interpreted each case only on the basis 
of the images displayed on the monitor. 
No images from previous examinations or 
other clinical information about the pa- 
tients was made available during the inter- 
pretation. 

Each radiologist interpreted the same 
120 cases five times by using five display 
modes. Suspicious regions, as identified 
with our CAD schemes, were cued on the 
images in all modes, with the exception 
of the first mode, in which no CAD re- 
sults were provided to the radiologists. 
Two true-positive cuing sensitivity levels 
(90% and 50%) and two false-positive cu- 
ing rates (0.5 or 2.0 per image) were used 
in these four cuing modes (Table 2). Dur- 
ing the cuing modes, when a new case 
was loaded into the display, radiologists 
viewed the cued images first. Then they 
could remove the prompts from the dis- 
play or add them back at their discretion. 

To generate the cues, CAD schemes de- 
veloped by our group (27) were applied 
to these 209 images (or 120 cases). The 
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TABLE 1 
Number of Mammographic Cases in Different Categories 

No. of 
Masses 

No. of 
Micro- 

calcification 
Clusters 

No. of 
Masses 

and 
Clusters 

Cases M M B M B 

No. of 
Negative 

Cases 
Total 
Cases 

Single-image 
Two-image 

Total 

10 
20 

1 
16 

n 
7 

4 
31 

31 
89 

30 17 10 35 120 

Note.—B = benign, M = malignant. 

TABLE 2 
CAD Cuing Conditions of the Five Display Modes 

Reading Mode CAD Cuing Cuing Sensitivity Cuing False-Positive Rate 

No 
Yes 
Yes 
Yes 
Yes 

Not applicable 
0.9 
0.9 
0.5 
0.5 

Not applicable 
0.5 
2.0 
0.5 
2.0 

schemes use filtering, subtraction, and 
topographic region growth algorithms to 
identify suspicious regions, including 
masses and microcalcification clusters 
(30,31). Then, by using nonlinear multi- 
layer multifeature analyses, two artificial 
neural networks, which have been opti- 
mized in our previous studies and re- 
ported before (32), were used to classify 
each region as positive or negative for the 
presence of an abnormality in question. 
One network was designed to assess re- 
gions suspicious for masses, and the 
other was for microcalcification clusters. 
Before applying the artificial neural net- 
works, the schemes initially identified 
133 suspicious regions for microcalcifica- 
tion clusters and 831 for masses. Of the 
133 clusters, 38 represented true clusters 
and 95 were false identifications (or a rate 
of 0.45 [95 of 209 mammograms] false- 
positive detections per image). Of the 
831 mass regions, 57 were true-positive 
and 774 were false-positive (or 3.7 per 
image, or 774 of 209 mammograms). The 
artificial neural networks were then ap- 
plied to classify all of these regions. Each 
suspicious region received a likelihood 
score (from 0 to 1) for being positive. The 
larger the score, the more likely the re- 
gion was to represent a true-positive re- 
gion. 

Selection of true-positive and false-pos- 
itive cues for each display mode was per- 
formed separately. Two cuing sensitivi- 
ties (90% and 50%) were applied to 
masses and microcalcification clusters. 

Each abnormality was assigned a number 
(eg, 1-57 for masses or 1-38 for clusters). 
A computer program randomly selected 
the regions to be cued until the required 
number was reached for the sensitivity 
level being evaluated. In display modes 2 
and 3, with the cuing sensitivity set at 
90%, 51 of 57 true masses and 34 of 38 
clusters were selected. In modes 4 and 5, 
with the cuing sensitivity set at 50%, 29 
of 57 masses and 19 of 38 clusters were 
selected. Two false-positive cuing rates 
(approximately 0.5 and 2.0 false-positive 
regions per image) were used. Because the 
number of false-positive clusters identi- 
fied with the scheme was 95, all of these 
regions were used in display modes 3 and 
5, which provided a false-positive cuing 
rate of 0.45 (95 of 209 mammograms). In 
modes 2 and 4, the total false-positive 
desired cuing rate was 0.5 per image, 
which was one-fourth of that in modes 3 
and 5. Hence, one-fourth of the available 
false-positive clusters (24 of 95) were se- 
lected on the basis of artificial neural net- 
work-generated scores, with the 24 high- 
est scoring regions being selected in 
descending order and resulting in a cuing 
rate of 0.11 (24 in 209 mammograms). 

To reach the overall target of 0.5 and 
2.0 false-positive cuing rates per image 
(including both mass and microcalcifica- 
tion cluster regions), 774 false-positive 
mass regions were also sorted on the basis 
of the artificial neural network-gener- 
ated scores. Then, 82 of the highest scor- 
ing false-positive regions were selected 

from the list for display in modes 2 and 4, 
and 324 false-positive masses were se- 
lected for display in modes 3 and 5. Thus, 
the false-positive cuing rates for mass 
only were 0.39 (82 in 209 mammograms) 
and 1.55 (324 in 209 mammograms) per 
image, respectively. In summary, modes 
2 and 4 included 106 false-positive cues 
(or 0.5 per image), and modes 3 and 5 
included 419 false-positive cues (or two 
per image). 

Each of the 20 reading sessions for in- 
dividual observers included 30 randomly 
selected cases that used one reading 
mode. To eliminate the potential for 
learning effects, the order of display 
modes (or cuing rates) for each observer 
was preselected by using a counterbal- 
anced approach. The 20 sessions were di- 
vided into four blocks, with five sessions 
each. In each block, one observer read 
five sessions with five different modes in 
random. However, at each session num- 
ber in the series (eg, session 6), at least 
five observers read with different modes, 
and no more than two readers read with 
the same mode. For example, in the first 
session for all the observers, observers 
started reading with different modes. Be- 
cause there were seven observers and five 
display modes, observers 1-5 read with 
modes 1-5, respectively, while observer 6 
read with mode 3 and observer 7 read 
with mode 2. Last, a study management 
program was used to randomly select the 
cases and their sequential order in each 
session. The random "seed" used in the 
program was date dependent. Because 
each observer had a different reading 
schedule, the cases selected in each ses- 
sion (eg, session 4) and their sequential 
order for each observer were different. A 
minimum time delay (10 days) between 
the two consecutive readings of the same 
case was implemented. 

A standard landscape workstation (Sparc 
20; Sun Microsystems, Mountain View, 
Calif) was used to display the images. Im- 
ages were not preprocessed, but we did op- 
timize the contrast of each image by means 
of window and level manipulation for op- 
timal visual display. The image parameters 
were then fixed. The observers could not 
manipulate the contrast and brightness 
settings during the readings. Initially, im- 
ages were displayed on the screen as sub- 
sampled (ie, at low spatial resolution) to fit 
the screen (with approximately 1,200 x 
850 pixels). With zoom and roam func- 
tions, the radiologists were able to view the 
images at full spatial resolution by clicking 
the appropriate control button or scroll 
bars. A "Display/Remove" button could be 
used to superimpose or delete the CAD 
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cues on the images. Radiologists could 
make diagnostic decisions while viewing 
either subsampled or full-spatial-resolu- 
tion images. 

Observers were asked to perform and 
score two separate tasks. First, they were 
asked to identify (detect) suspicious areas 
for the presence of an abnormality and 
then classify the suspected abnormality 
as benign or malignant. Once a radiolo- 
gist pointed to and clicked the cursor on 
the center of a suspected abnormality, a 
scoring window appeared, followed by a 
confidence-level sliding scale. The pro- 
gram automatically recorded all of the 
diagnostic information entered by the ra- 
diologist, including the type of detected 
abnormality (mass or microcalcification 
cluster), location (the center of the de- 
tected region), and two estimated likeli- 
hood scores (from 0 to 1) for the detection 
(presence or absence) and classification 
(benign or malignant) of any identified re- 
gion that was suspected of an abnormality. 
The likelihood scores were used to generate 
the free-response receiver operating char- 
acteristic curves. 

The results of each observer, abnormal- 
ity, and display mode were qualitatively 
viewed, and free-response receiver oper- 
ating characteristic curves were plotted 
for individual readers and modes, as well 
as for pooled confidence ratings for all 
readers since their general patterns were 
consistent. For testing the hypothesis of 
equality of the free-response receiver op- 
erating characteristic curves (or the de- 
tection sensitivities at the same false-pos- 
itive rates) across four CAD cuing modes, 
we compared sensitivities among the 
curves at 10 false-positive rates that were 
uniformly distributed over the measured 
range. Sensitivity levels across modalities 
were compared by using a repeated mea- 
sures logistic regression model, where the 
binary outcome variable was replicated 
over patients, and the independent vari- 
ables included reader and modality. Esti- 
mation was done by using a Generalized 
Estimating Equation approach (3.3). 

In addition, we analyzed the changes 
in performance indices (ie, the number of 
missed true-positive regions in the cued 
or noncued areas) for the two sensitivity 
levels (50% and 90%) and the two false- 
positive cuing rates (0.5 and 2.0 per im- 
age). The hypotheses of the equality of 
the number of missed abnormalities were 
also tested by using a repeated measures 
logistic regression, with reader and mo- 
dality in the model. To examine poten- 
tial biases for reading the same case five 
times, the reading results were reordered 
and analyzed for all cases that were read 

0.7 0.8 0.2 0.3 0.4 0.5 0.6 

False-positives per Image marked by the observers 
Figure 1. Free-response receiver operating characteristic curves for the average detection of 
mammographic abnormalities (including both masses and microcalcification clusters) by seven 
participating radiologists using five display modes. O = mode 1, ■ = mode 2, A = mode 3, * = 
mode 4, and ♦ = mode 5. 

the first time (regardless of mode) as one 
group and the second time as another 
groups, and so on. Performance curves 
were computed separately for these five 
mutually exclusive groups and were com- 
pared by using the analysis of variance 
test. 

RESULTS  

Performance curves varied among ob- 
servers, but the general pattern was con- 
sistent. Figures 1-3 demonstrate curves of 
the average performance of the seven 
observers for the detection of either ab- 
normality, masses, or microcalcification 
clusters, respectively. As can be noted 
from the noncued results (mode 1), the 
task in general was challenging because 
of the display environment, the subtlety 
of the abnormalities, or both. 

Figure 1 demonstrates that both sensi- 
tivity and specificity of the CAD results 
affected observer performance. The dif- 
ferences among modes 2-5 were highly 
significant (P < .01). However, the results 
showed different patterns for the detec- 
tion of masses compared with microcal- 
cifications. In the case of masses (Fig 2), 
specificity of the CAD results (or cuing 
false-positive rate) affected the observers 
in a more significant manner. The differ- 

ences among modalities were statistically 
significant (P < .01), with the perfor- 
mance decreasing as the number of cued 
regions increased. In the case of clusters 
(Fig 3), observer performance was af- 
fected to a greater extent by the cuing 
sensitivity. The combination of case sub- 
tlety and viewing of soft copies rendered 
the test of microcalcification cluster de- 
tection so difficult that only approxi- 
mately 60% were detected without cuing 
or with cuing at low sensitivity (modes 4 
and 5). With the support of highly sensi- 
tive cues, the performance improved to a 
detection rate of approximately 75% (P < 
.01). 

Highly accurate cuing (ie, 90% sensi- 
tivity and 0.5 false-positive cue per im- 
age) helped the observers to improve 
their performance, compared with the 
noncued environment (P < .01). As the 
accuracy of the cuing decreased, so did 
the performance of the typical observer. 
This effect continued for either detection 
task, but the detection of microcalcifica- 
tion clusters was more significantly af- 
fected by sensitivity of the cuing in our 
case. Most important, perhaps, our study 
results clearly indicate that poorly per- 
forming CAD (Fig 1) can result in signif- 
icant degradation of observer perfor- 
mance (P < .01). 
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False-positive masses per image marked by the observers 
Figure 2.   Free-response receiver operating characteristic curves for the average mass detection 
by seven radiologists using five display modes. O = mode 1,1 
4, and ♦ = mode 5. 

mode 2, A = mode 3, * = mode 
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False-positive clusters per image marked by the observers 

Free-response receiver operating characteristic curves for the average niicrocalcifica 
tion cluster detection by seven radiologists using five display modes. O 
▲ = mode 3, * = mode 4, and ♦ = mode 5. 

■- mode 1, ■ = mode 2, 

Table 3 demonstrates the number of 
CAD-cued abnormalities that were iden- 
tified by each radiologist in mode 1 (non- 

cuing) but were missed in other (cued) 
modes. Some increases in rejection rates 
of true-positive regions were observed 

when the number of cues increased, but 
the results were not significant (P > .05). 

Table 4 summarizes the number of 
missed abnormalities in noncued areas 
during CAD-cued observations. The table 
data show that for the highly sensitive 
cuing modes (eg, modes 2 and 3, where 
only 10% of true-positive regions were 
not cued), the majority of missed abnor- 
malities (>94%) were also missed in 
mode 1. As CAD cuing sensitivity was 
reduced to 50%, the average number of 
missed abnormalities in noncued areas 
increased significantly (P < .05). More 
important, approximately 30% of these 
regions were detected by the radiologists 
in mode 1. The increase of the false-pos- 
itive cuing rate from 0.5 to 2.0 per image 
(mode 4 vs mode 5, respectively) in- 
creased the number of missed abnormal- 
ities in noncued areas, from an average of 
14.4 to 18.0, which was not significant 
(P = .16) and most likely due to the small 
sample size. In this case, the observers 
also missed significantly more regions 
that were detected in mode 1 (P = .03). In 
general, the number of missed abnormal- 
ities (false-negative rate) in the noncued 
areas increases as the cuing sensitivity 
decreases and the false-positive cuing 
rate increases. As a result, mode 5 had the 
highest miss rate in noncued areas. 
When we compared detection perfor- 
mances for benign and malignant abnor- 
malities, the latter group was somewhat 
better detected (probably due to differ- 
ences in subtleness), but the differences 
between modes were similar to those of 
the benign group. 

The pooled classification confidence 
ratings (malignant vs benign) provided 
by the seven observers on all identified 
true-positive regions for each mode were 
used to generate and compare the area 
under the receiver operating characteris- 
tic curve {A^ values for the different 
modes (ROCFIT; Metz CE, Herman BA, 
Shen JH, University of Chicago, II) (34). 
A^ values were estimated by using maxi- 
mum likelihood estimation under the 
binormal assumption. The A^ values for 
the classification performance over all 
readers were 0.70 ± 0.02, 0.69 ± 0.02, 
0.69 ± 0.02, 0.70 ± 0.02, and 0.68 ± 0.02 
for modes 1-5, respectively. Comparison 
of each pair of modes did not result in 
any significant differences (P > .05). 
Hence, once the abnormality was identi- 
fied (detected), the ability of the observer 
to distinguish between benign versus ma- 
lignant abnormalities (classification) was 
not significantly affected (P > .05) by the 
cuing mode or lack thereof. Although 
there were differences in performance 
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among the observers, we did not identify 
any correlation of eithier the detection or 
classification tasks with observer experi- 
ence, as measured by the number of years 
of interpreting mammograms or the av- 
erage number of mammograms inter- 
preted per year. The performance trends 
we observed were consistent for all ob- 
servers. 

The minimum time delay between two 
consecutive readings of the same case by 
the same observer was set at 10 days, but 
the actual time delay ranged from 12 to 
154 days, with an average time delay of 
48 days. When we examined the results 
after reordering the cases by their order 
of appearance (ie, first time, second time, 
etc), regardless of the mode, no signifi- 
cant (P > .8) difference between the 
groups was identified (Fig 4). Similar per- 
formance patterns were observed when 
31 cases that included only one image 
were excluded from the analyses, and the 
detection results were not significantly 
altered in any comparison between those 
for the whole group (120 cases) and the 
subset of 89 cases containing two images 
(P > .5). 

DISCUSSION  

This preliminary study has to be clearly 
viewed as a study performed under labo- 
ratory conditions. Before any generaliza- 
tion of the results is contemplated, it has 
to be considered that conditions in this 
study were removed from the typical 
clinical environment. However, the con- 
sistency of the patterns observed for the 
individual readers and the group as a 
whole warrant further assessment of the 
affect of CAD performance on the ob- 
server. 

Clearly, the expectation that observers 
can readily and easily discard most false- 
positive cues regardless of their presenta- 
tion or prevalence was not what we 
found (14). Both true- and false-positive 
cues affected the results. The effect was 
also dependent on the type of abnormal- 
ity and its subtleness (detection diffi- 
culty). Despite significant reader, case, 
and mode variability, the results we ob- 
tained were consistent and interpretable. 
As expected, at low specificity levels, all 
CAD-cued modes aid in increasing sensi- 
tivity of observers, as can be seen from 
the tendency to cross the noncuing per- 
formance curve. This observation is con- 
sistent with some of the results previ- 
ously reported by others, but it may not 
be clinically relevant in situations in 
which most abnormalities are not as dif- 
ficult to detect as those in this study. 

TABLE 3 
Number of Missed Abnormalities Identified as Suspicious in Mode 1 (Noncued) 
but Missed in Other Modes Despite the Fact that the Abnormality in Question 
Was Cued 

Reader Mode 2 Mode 3 Mode 4 Mode 5 
1 
2 
3 
4 
5 
6 
7 

Average 

5 
5 
5 
3 
1 
5 
3 
3.9 

5 
4 
6 
1 
9 
4 
1 
4.3 

3 
4 
3 
5 
5 
8 
4 
4.6 

3 
3 
6 
4 

11 
5 
2 
4.9 

TABLE 4 
Number of Missed Abnormalities in Noncued Regions 

Reader Mode 2 Mode 3 Mode 4 Mode 5 
1 
2 
3 
4 
5 
6 
7 

Average 

5(1) 
6(0) 
5(1) 
5(0) 
6(0) 
7(1) 
6(0) 

5.7 (0.4) 

5(1) 
8(0) 
5(0) 
6(0) 
4(0) 
7(2) 
5(0) 

5.7 (0.4) 

13(3) 
19(2) 
11(2) 
19(3) 
10(4) 
14(4) 
15(3) 

14.4(3.0) 

14(5) 
21(7) 
15(3) 
25(5) 
13(5) 
20(9) 
18(6) 

18.0(5.7) 

Note.—Data in parentheses are the number of missed regions that were detected in mode 1 
(noncued). 

False-positives per image marl<ed by the observers 
Figure 4.   Free-response receiver operating ciiaracteristic curves for ttie average detection of 
abnormalities by seven radiologists as a function of the order of appearance: O = first time, ■ = 
second time, ▲ = third time, * = fourth time, and ♦ = fifth time, regardless of the reading inode. 

Our results suggest that the use of a 
CAD-cued environment during the inter- 
pretation of mammograms has to be 

carefully investigated and fully under- 
stood before it is widely accepted in a 
routine clinical practice. In particular, 
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one should consider the cuing perfor- 
mance level of the scheme itself and the 
potential increase in missed abnormali- 
ties in noncued regions, because the pos- 
sible liability associated with false-nega- 
tive interpretations far exceeds that of 
false-positive readings (26). 

The general consistency of our results 
is somewhat surprising in view of the fact 
that cuing rates were maintained only for 
short durations (within a single session 
of 30 cases). Unlike the display environ- 
ment, the CAD results in our study emu- 
lated what can be expected by using cur- 
rent levels of CAD performances, as well 
as what one hopes to achieve by using 
CAD in the future. The range of CAD 
performances that were used for cuing at 
90% sensitivity at 0.5 false-positive iden- 
tification per image to 50% sensitivity at 
two false-positive identifications per im- 
age clearly makes this study interesting 
in enabling an assessment of what could 
be expected with improved CAD results. 
It is interesting to note that for all display 
modes, the use of CAD cuing with either 
high or low performance had a limited 
effect on observers when they operated at 
a conservative level. Namely, they indi- 
cated only regions they were confident 
about, and, therefore, they had low false- 
positive rates. This stemmed largely from 
the fact that the CAD cuing depicted 
mainly areas on the image that were truly 
appropriate (reasonable) as suspicious. As 
observers loosened their criteria (ie, indi- 
cated a larger number of suspicious re- 
gions), the CAD-cuing performance af- 
fected observers in a more significant 
manner. Namely, the use of a better per- 
forming cuing scheme significantly ini- 
proved observer performance, while the 
use of poorly performing cuing schemes 
significantly degraded observer perfor- 
mance. 

Analysis of the data sets after the reor- 
der of cases by appearance indicates that 
learning effects, if any, were not a signif- 
icant factor in this study. Although all 
selected abnormalities in this study were 
detectable with CAD schemes and visible 
on displayed images, the relatively low 
detection levels of the seven participat- 
ing observers in the case of subtle clus- 
tered microcalcifications suggest that this 
task is likely to be a continuing challenge 
when soft copy is used for this purpose. 
We are not aware of any comprehensive 
study in which this issue was assessed, 
and our results, albeit preliminary, sug- 
gest that such a study should be per- 
formed. 

Despite the limited information (no 
prior studies or reports and only a single 

view for each breast) and the fact that 
different abnormalities were detected in 
each mode, the classification perfor- 
mances of determining that an identified 
abnormality was either benign or malig- 
nant were reasonable and consistent. It 
was encouraging to learn that once de- 
tected, the task of classifying the abnor- 
mality as benign or malignant was not 
affected by the detection cuing perfor- 
mance, which points to the fact that 
these are likely to be two distinct and 
largely independent tasks. Our CAD 
scheme was designed solely for detection 
purposes. Other classification schemes (12) 
have been shown to perform well, and, 
when used during interpretation, signifi- 
cantly improved tissue classification per- 
formance of the observers (10,11). 

The overall detection sensitivity of the 
radiologists was in general relatively low 
compared with that observed in the clin- 
ical environment. This may be due to the 
fact that most of the cases selected for 
this study were subtle, and reading was 
performed on soft copy by using a lim- 
ited number of views without prior ex- 
aminations being available for compari- 
son. We note a difference between this 
and other reported studies (14,15) where 
observers could view both film hard-copy 
images and low-spatial-resolution soft- 
copy images with CAD-cued areas on the 
screen. Not providing film hard-copy im- 
ages to the observers could have been a 
significant factor in lowering detection 
sensitivity in this study. This resulted in a 
crossing of the performance curves for 
the detection of microcalcifications (Fig 
3), since the noncued mode exhibited a 
"capping" effect (an imposed upper 
limit) that was removed with the aid of 
CAD cuing. This does not invalidate any 
of the analyses or observations made in 
this study. Despite the generally low level 
of performance and the high prevalence 
of abnormalities in our data set, we be- 
lieve that on a relative scale, the results 
concerning the general trends we ob- 
served are valid. We emphasize that our 
study design called for a change in mode 
(hence, abnormality rates) at each ses- 
sion. The effects we observed under these 
conditions are probably different and 
likely minimized, as compared with those 
in a study design in which each mode is 
read to its completion before any prevalent 
changes (ie, change to a different mode). 

In conclusion, our preliminary study 
results indicate that in a laboratory envi- 
ronment, observer performance in the 
detection of subtle mammographic ab- 
normalities is significantly affected by 
the inherent performance of a cuing sys- 

tem. High-performance cuing systems 
can significantly improve observer per- 
formance. On the other hand, low-per- 
formance cuing systems can significantly 
degrade observer performance. These 
findings, together with the intermode 
consistency we observed, are important, 
since there could be diagnostic implica- 
tions associated with the inappropriate 
use of or reliance on CAD results during 
the interpretation. These issues have to 
be further investigated with larger data 
sets and a more closely simulated clinical 
environment. 
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definitely benign findings (Breast Imaging Reporting and Data 

System rating, 1 or 2). The study involved images of 400 

examinations acquired in 200 patients. Radiologists identified 

172 masses and 128 clusters of microcalcifications on the current 

images. The performance of the CAD scheme was analyzed and 

compared for the current and latest prior images. 

Results. There were significant differences (P < .01) between 

current and prior images in many feature values. The performance 

of the CAD scheme was significantly lower for prior than for 

current images (P < .01). At 0.5 and 0.2 false-positive mass and 

cluster cues per image, the scheme detected 78 malignant masses 

(78%) and 63 malignant clusters (80%) on current images. Only 42% 

of malignant cases were detected on prior images, including 40 

masses (40%) and 36 microcalcification clusters (46%). 

Conclusion. CAD schemes can -defflo^ag^fe-garfee—ar-64g^ifi-ea-Hrt■<b> fraction 

of masses and microcalcification clusters depicted on prior 

images. To improve performance with prior images, the scheme may 

have to be adaptively rebptimized with increasingly more subtle 

abnormalities. 

Key Words. Breast, calcification; breast neoplasms, diagnosis; 

breast radiography; computers, diagnostic aid. 
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Breast cancer is a common cancer in women over the age of 40 

years (1). Early detection is believed to be important for 

improved prognosis and therapy and for reducing associated 

mortality and morbidity (2). Mammography is a well-established 

and accepted method for screening the general population. Current 

guidelines in the United States recommend periodic mammographic 

screening for women aged 40 years or older (3). Because of the 

large voliomes, low expected detection rate of abnormalities in 

screening examinations, and the complexity of tissue patterns 

depicted on a large fraction of images, it is both difficult and 

time consuming to interpret mammographic cases (4). Independent 

double reading is a well-documented method to improve early 

detection of breast cancer (5,6), but this approach is often not 

practical due to personnel and logistic constraints (7). 
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After extensive investigations and development efforts for 

more than a decade, computer-aided detection (CAD) systems have 

been accepted as clinical tools that provide radiologists with a 

useful "second opinion." Three CAD systems, ImageChecker (R2 

Technology, Los Altos, Calif), Second Look (CADx Medical Systems, 

Quebec, Canada), and MammoReader (Intelligent Systems Software, 

Clearwater, Fla) have been approved to date by the U.S. Food and 

Drug Administration for this purpose. Their performance has been 

evaluated (8-10). While in general the systems have been shown to 

increase sensitivity, these results are not universal. One study 

reported that, with the help of a commercially available system, 

two radiologists detected 19.5% more cancers with only a slight 

increase (from 6.5% to 7.7%) in recall rate (11). Another study 

reported that use of a comparable system did not affect the 

performance of three radiologists retrospectively interpreting a 

set of mammograms depicting 59 breast cancers in 280 patients (no 

increase in sensitivity or decrease in specificity) (12). Our own 

preliminary study, in which seven radiologists interpreted 120 

mammographic cases under five different CAD cueing conditions, 

suggested that highly performing CAD schemes can significantly 

improve the diagnostic performance of radiologists, while poorly 

performing schemes can adversely affect performance (13). 

One objective of using CAD is the potential to detect breast 

cancers at an earlier stage. It is well known that a large number 
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of breast abnormalities (ie, masses and microcalcification 

clusters) are visible in retrospect on prior mammograms but are 

not interpreted at the time as highly suspicious. In one study, 

427 breast cancer cases were reviewed, and the abnormality in 

question was visible on the latest prior mammograms in 286 (67%) 

(9). When 115 of the "more obvious" cases (27% of the original 

427 cases) were processed by a CAD system, 89 cancers (or 77%) 

were identified as suspicious on the prior mammograms, with an 

average of one false-positive cue per image (14). Commercial 

systems generally provide only a binary outcome for each 

suspicious region (cued or not cued) based on a predetermined 

(and undisclosed) threshold. Therefore, the difference in 

performance between different groups of images (in this case 

"current" and "prior") can be measured only at one operating 

point. Hence, complete characterization (eg, a free-response 

receiver operating characteristic [FROC]-type curve) of the 

performance cannot be estimated (8,14). 

In the study reported here, we applied a CAD scheme 

previously developed in our laboratory to a set of 200 selected 

cases with mammograms from two consecutive examinations. At the 

latest examination (current images), at least one suspicious mass 

or microcalcification cluster was identified by the interpreting 

radiologist, resulting in breast biopsy. For the prior 

examinations, all images were interpreted as "negative" or 



"benign finding." 

MATERIALS AND METHODS 

The mammographic cases used in this study were selected from 

biopsy records of two medical facilities in Pittsburgh, Pa. In 

one facility we collected all available biopsy cases performed in 

1997, and in another we ascertained a fraction of the biopsy 

cases performed in 2000. First, we excluded cases for which all 

the original mammograms from the latest prior examination were 

not available. Second, we excluded cases in which the 

recommendations for biopsy had not been based on either the 

finding of mass or microcalcification cluster. Third, we selected 

only cases whose findings had been interpreted as either negative 

or benign (Breast Imaging Reporting and Data System<c> rating on 

the latest prior examination, 1 or 2). 

From the remaining pool, 200 cases were selected 

sequentially for the study. Each case included images acquired 

from two consecutive examinations. In this set of 200 cases, the 

interval between the current examination (when the patient was 

sent to biopsy) and the latest prior examination varied from 10 

to 22 months. Radiologists identified 172 masses and 128 

microcalcification clusters in this data set. Of the 172 

identified masses, 164 were visible (in retrospect) on both views 

=Au: Addition OK, as in the abstract? (X^^ 
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(craniocaudal [CC] and mediolateral oblique [MLO]),<<i> and eight 

were visible only on one view. One hundred twenty of 128 

microcalcification clusters were visible on two views, and eight 

on only one. Hence, there were a total of 33 6 mass regions and 

248 cluster regions depicted on these mammograms. One hundred 

masses and 79 clusters were associated with malignancies. Two 

masses and four clusters were visible on only one view. 

Therefore, 198 mass regions and 154 cluster regions depicted on 

the current images were associated with malignancy. Table 1 

summarizes the distributions of abnormalities by type and 

abnormality in the database. A fraction of the masses and 

clusters were visible on the prior images. Therefore, the 

corresponding locations of all mass and cluster regions on prior 

images were determined visually during a side-by-side inspection 

and after differences in breast positioning and compression were 

accounted for subjectively. 

All mammograms were digitized in our laboratory with a laser 

film digitizer (Lumisys; city, state<e>) with a pixel size of 50 

X 50 iini and 12 bits of gray levels. Each image was then 

subsampled by a factor of two in both dimensions with a pixel 

averaging method to reduce the spatial resolution to 100 x 100 

pm. Our previously described CAD scheme (15) was applied to the 

•^Au: Verify expansions of CC and MLO. |fi-^ 

®Au: Please provide the manufacturer's location 
0\cu\O^aci^^^^( 
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images to detect suspicious regions for microcalcification 

clusters. Images were then subsampled again by a factor of four 

in both dimensions to reduce the effective pixel size to 400 x 

400 ym, and a "mass" detection scheme (16) was applied. 

The CAD scheme developed in our laboratory (15-17) was 

applied without modifications ("as is") to all images in the 

database. After image segmentation and topographic multilayer 

region growth (15,16), the scheme extracts a set of image 

features for each identified suspicious region and its 

surrounding tissue background. Two artificial neural networks 

(ANNS), one for mass detection and one for microcalcification 

cluster detection, were used to classify each suspicious region 

by assigning it a likelihood score for the abnormality in 

question (for the likelihood of being positive) (17). With these 

detection scores used as the input values of an ROC curve-fitting 

routine (18), performance curves were generated. After 

normalization for the maximum false-positive rates, the 

performance results were transformed into FROC curves. FROC 

curves were compared for the corresponding current and prior 

image data sets. 

False-positive cueing rates are extremely important in the 

screening environment (12,13). Therefore, in our analysis, we 

used as operating points false-positive rates of 0.5 per image 

for masses and 0.2 per image for microcalcification clusters. 
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similar to the reported performance levels of commercially 

available CAD systems (10,11) and our own experimental results 

(13). At these false-positive rates, we compared the detection 

sensitivities for masses and clusters between the current and 

prior images. For malignant mass and microcalcification cluster 

regions that were initially identified as suspicious by the CAD 

scheme on both current and prior images but were ultimately cued 

only on current images, we analyzed changes in the main features 

used in the ANN, to clarify why low output scores were generated 

for these regions on prior images (or why these were ultimately 

discarded by the scheme).<f> 

Both "case-based" and "region-based" sensitivities were 

assessed in this study. Case-based sensitivity includes correct 

cues of an abnormality (eg, a mass or cluster) on one or both 

views (CC, MLO, or both); a "case" here means one abnormality and 

not necessarily one patient. Region-based sensitivity includes 

correct cues of an abnormality depicted independently on either 

view^"g> (CC or MLO) . The same abnormality depicted on both views 

(CC and MLO) is considered two independent true-positive 

findings. Region-based sensitivity was computed according to the 

number of correctly detected regions, rather than abnormalities. 

^Au: Verify or correct rewording. C> r\ 

^Au: Verify "either view." '^P^ 
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RESULTS 

Figures 1 and 2 demonstrate the case-based FROC curves for 

current and prior images for the detection of masses and 

I microcalcification clusters, respectively. Figures 3 and 4 

LN KX  demonstrate the region-based FROC curves for mass and cluster 

' '^^ ^  detection. Figures 5 and 6 demonstrate FROC curves of case-based 

X f\   detection sensitivity versus false-positive rate for malignant 
'-\ 

& 

mass and cluster detection, respectively, after the exclusion of 

biopsy-proved benign cases. The CAD scheme detected (though at a 

high false-positive rate) 94% of masses (162 of 172) and 95% of 

microcalcification clusters (122 of 128) in the current image 

database. 

For the prior image database, the maximum detection 

sensitivities were 86% for masses (148 of 172) and 73% for 

clusters (93 of 128), as shown in Figures 1 and 2. After benign 

abnormalities were excluded, similar maximum sensitivities were 

obtained for mass and cluster detections: 95% for both masses (95 

of 100) and clusters (75 of 79) on the current images and 76% (76 

of 100) and 59% (47 of 79) for masses and clusters, 

respectively,9ii>' on prior images (Figs 5, 6). The scheme has 

comparable performance levels for detecting malignant or benign 

findings on current images. Its sensitivity for malignant 

lesions, however, is significantly lower than that for benign 

''Au: Verify editing. (j\\ 
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lesions on prior images (P < .01). 

With specific thresholds set on the ANN-generated scores 

(0.55 for mass detection and 0.5 for cluster detection), the 

false-positive rates in our database were 0.5 per image for 

masses and 0.2 per image for microcalcification clusters. At 

these threshold levels, our CAD scheme detected 78% of malignant 

masses (78 cases or 109 regions) and 80% of malignant clusters 

(63 cases or 92 regions) on the current images. Suspicious 

regions that were cued in the corresponding areas of prior images 

were 53 "mass regions" (or 40 "masses") and 51 "cluster regions" 

(or 36 "clusters").<i> The case-based sensitivities for prior 

images were 40% (40 of 100) for malignant masses and 46% (36 of 

79) for malignant clusters. 

For mass detection, 24 malignant regions were cued on the 

current images but not on the prior images. In six features used 

in the ANN (17) for mass detection, the average feature values 

changed significantly (P < .05) between current and prior images. 

Table 2 summarizes the changes in these features. The estimated 

"size" and "contrast" of the cued regions were significantly- 

smaller (P < .05) on prior images. In general, because of these 

changes, the mass regions depicted on prior images are more 

difficult to identify, not only for human observers but also for 

the CAD schemes optimized on a different set of cases (19,20) . 

^Au: Are the quotations marks necessary here? N6-^ 
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For microcalcification detection, 21 malignant cluster 

regions were cued on the current images but not on the prior 

images due to lower ANN-generated scores. Of 13 features used in 

the ANN for cluster detection (17), only two had a significant 

change (P <   .05) in average values between current and prior 

images. As may be expected, one was the number of single 

/microcalcifications/ detected in a cluster, which was 25% 

smaller on prior images (5.6 per cluster vs 8.2 on current 

images) Mi>  The second was the average digital value contrast of 

a single microcalcification, which was 24% less on prior images. 

DISCUSSION 

There is a growing interest in using CAD to help detect 

breast cancers at an earlier stage. Hence, there is a need to 

detect some abnormalities depicted on prior images (9,14,21). In 

previous studies, CAD schemes were applied mainly to cases 

interpreted as recommended for recall by a panel of radiologists 

during retrospective reviews. In this study, we applied a CAD 

scheme to prior examinations of cases that ultimately underwent 

biopsy because of findings during a subsequent examination. Our 

experimental results showed that 76% of malignant masses and 59% 

of clusters associated with malignancies were detected as 

^Au: Verify the rewording in this passage. Does  s \ 
"microcalcifications" need to be in quotation marks? NO ■ 
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suspicious with the CAD scheme (Figs 5, 6). By applying 

thresholds on the ANN scores to generate false-positive rates of 

0.5 per image for mass regions and 0.2 per image for cluster 

regions, the scheme ultimately detected 42% of cancers depicted 

on prior images. This is in the range of the fraction of cases 

reported to be visible at prior examinations in other studies 

(9). 

The detection of abnormalities was found to be more 

sensitive to changes in feature values on the prior images. For 

example, reducing the false-positive rate for mass detection from 

1.0 to 0.5 per image decreased sensitivity by 14% (from 0.88 to 

0.76)%> on the current images and 31% (from 0.58 to 0.40) on the 

prior images (Fig 5). Our experiment also suggested that the set 

of features that optimally represent malignant masses may be 

somewhat different on current and prior images (Table 2). This 

observation is in agreement with that in another study in which a 

stepwise linear discriminant analysis selected different sets of 

optimal features to represent masses depicted on current and 

prior images (22). 

Unlike other studies using a commercial CAD product (8,14), 

for which only one operating point (detection sensitivity at a 

given false-positive rate) can be analyzed, this study generated 

'^Au: Verify expression of sensitivities as decimals, and Q 
note other editing in this paragraph. 

s\/ 



14 

complete FROC curves. Hence, one can compare the performance 

difference at any operating point and investigate the effect of 

feature changes on performance. This approach may represent an 

important first step toward reoptimizing CAD schemes that improve 

the detection of breast cancers at an earlier stage. Such early 

detection will become increasingly important, because the average 

stage at detection will gradually shift toward that seen on prior 

images as compliance improves and women undergo several periodic 

examinations. 

Finally, full-field digital mammographic systems are rapidly 

becoming available (23,24). Although we did not include them in 

this study, we expect that the questions we considered are as 

relevant to full-field digital mammograms as to digitized film 

images.<1> 
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Figure 1. Comparison of case-based CAD performance for detection 
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of masses on 200 current and prior mammographic cases. The test 

set included 172 masses. 

Figure 2. Comparison of case-based CAD performance for detection 

of microcalcification clusters on 200 current and prior 

mammographic cases. The test set included 128 true-positive 

clusters. 

Figure 3. Comparison of region-based CAD performance for 

detection of masses on current and prior images. The test set 

included 336 mass regions. 

Figure 4. Comparison of region-based CAD performance for 

detection of microcalcification clusters on current and prior 

images. The test set included 248 cluster regions. 

Figure 5. Comparison of case-based CAD performance for malignant 

mass detection. The test set included 100 malignant masses. 

Figure 6. Comparison of case-based CAD performance for malignant 

microcalcification cluster detection. The test set included 79 

malignant clusters. 
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Table 1 
Distribution of Selected Masses and Microcalcification Clusters 

All Cases Malignant Cases 

Type of Abnormality Total 
Visible on 

2 Views 
Visible on 

1 View Total 
Visible on 
2 Views 

Visible on 
1 View 

Mass only 
Cluster only 
Mass and clusters combined 

153 
109 

19 

145 
101 

19 

8 
8 
0 

83 
62 
17 

81 
58 
17 

2 
4 
0 

Table 2 
Average Values of Six Features and Change in Values between Current and Prior Images for 24 Malignant Masses 

Value 

Average for current images 
Average for prior images ■ 
Change (%) 

Region Size 
(mm^) 

Contrast 
{digital value) Circularity 

Standard 
Deviation of 

Radial Length 

Pixel Ratio of 
Local Minimum 

Digital Value 
Region 

Conspicuity 

133.1 ± 100.2 42.1 ± 10.7 0.83 ± 0.07 0.21 ± 0.07 0.13 ± 0.05 4.7 + 1.5 

66.3 ±   41.4 
-50.2 

33.9 ± 12.3 
-19.5 

0.76 ± 0.09 
-8.4 

0.29 ± 0.08 
+38.1 

0.21 ± 0.07 
+61.5 

3.7 ± 0.7 
-21.3 

Note.—These 24 masses were ultimately cued on the cun-ent images but not on the prior images (P < .05 for each of the six fea- 
tures). Mean values are given ± standard deviations. 
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Table 1 

All Cases Malignant Cases 

Type of Abnormality Total 
Visible on 
2 Views 

Visible on 
1 View Total 

Visible on 
2 Views 

Visible on 
1 View 

Mass only 
Cluster only 
Mass and clusters combined 

153 
109 

19 

145 
101 

19 

8 
8 
0 

83 
62 
17 

81 
58 
17 

2 
4 
0 

Table 2 
Average Values of Six Features and Change in Values between Current and Prior Images for 24 Malignant Masses 

Value 
Region Size 

(mm^ 
Contrast 

(digital value] Circularity 

Standard 
Deviation of 

Radial Length 

Pixel Ratio of 
Local Minimum 

Digital Value 

133.1 ± 100.2 
66.3+   41.4 

-50.2 

42.1 ± 10.7 
33.9 ± 12.3 

-19.5 

0.83 ± 0.07 
0.76 ± 0.09 

-8.4 

0.21 ± 0.07 
0.29 ± 0.08 

+38.1 

0.13 + 0.05 
0.21 + 0.07 

+61.5 

Region 
Conspicuity 

4.7 + 1.5 
3.7 ± 0.7 

-21.3 

Average for cun-ent Images 
Average for prior images 
Change(%)   

Note.—These 24 masses were ultimately cued on the cun-ent images but not on the prior images {P < .05 for each of the six fea- 
tures). Mean values are given ± standard deviations. 
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Table 1 
Distribution of Selected Masses and MIcrocalcification Clusters 

All Cases Malignant Cases 

Type of Abnormality Total 
Visible on 
2 Views 

Visible on 
1 View Total 

Visible on 
2 Views 

Visible on 
1 View 

Mass only 
Cluster only 
Mass and clusters combined 

153 
109 

19 

145 
101 

19 

8 
8 
0 

83 
62 
17 

81 
58 
17 

2 
4 
0 

Table 2 
Average Values of Six Features and Change in Values between Current and Prior Images for 24 Malignant Masses 

Value 

Standard Pixel Ratio of 
Region Size Contrast Deviation of Local Minimum Region 

(mm^ (digital value) Circularity Radial Length Digital Value Conspicuity 

133.1 ± 100.2 42.1 ± 10.7 0.83 ± 0.07 0.21 ± 0.07 0.13 ± 0.05 4.7 + 1.5 
66.3 ±   41.4 33.9 ± 12.3 0.76 ± 0.09 0.29 ± 0.08 0.21 ± 0.07 3.7 ± 0.7 

-50.2 -19.5 -8.4 +38.1 +61.5 -21.3 

Average for current images 
Average for prior images 
Change (%) 

Note.—These 24 masses were ultimately cued on the current images but not on the prior images (P < .05 for each of the six fea- 
tures). Mean values are given ± standard deviations. 


