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Abstractin this paper is reported the development of a neural
network (NN) based workstation for automated cell
proliferation analysis, of cytological microscope images. The
software of the system assists the expert biotechnologist during
cell proliferation and chromosome aberration studies by
automatically identifying metaphase spreads and stimulated
nuclei on each digital image. After manual edition of metaphase
false positives, the system automatically calculates the mitotic
index (M1) i.e. theratio of metaphases to stimulated nuclei of a
given tissue sample. The system reported has been able to
classify correctly approximatey 91% of the metaphases and
stimulated nuclei, in a test set of 191 mitosis, 331 nuclei, and 387
artefacts, obtained from 30 different microscope sides. Manual
edition of false positives from the metaphase classification
results allows the calculation of the M1 with an error of 6.5%.
Keywords - automated object recognition, mitotic index,
metaphase finder

|. INTRODUCTION

Moderndevelopmenbf a variety of chemicalproductsused
in industry, pharmaceuticalsgosmetics,and food additives,
has created the need for fast and effective methodsto

evaluateits effects on cellular proliferation [1]. A reliable
endpointto evaluateand comparecell proliferation ratesis

the mitotic index (MI), which is the percentagef cells that
arein the processof division. The mitotic index is usually
determined through light-microsope analysis of slide

preparations.The analystidentifies at least 2000 cells per
slide and calculatesthe percentageof metaphasespreads
found among the interphase or “stimulated” nuclei.

Metaphase identification on microscope slides is also
performed during the scoring of radiatiorinduced
chromosomahberrationsThis scoringis performedin order
to assesghe effects of radiation exposuredue to medical
treatment,accidental,or environmentalexposure.This type

of procedurés alsolabourintensive For examplejn order to
detectexposureto low radiationdosesof X or gammarays,
the frequencyof occurrenceof diccentric chromosomesn

1000 metaphases must be analysed [2].

Previouswork on automaticmetaphasedinders includes:
the Genetiscaner, with a true positive rate of 80% and a
false positive rate of 20% [3]. Reference[4] reports a
supervisedize andcircularity criterionto detectmetaphases,
which provides a 78% true positive rate. Reference[5]
reportsan automaticsystemfor metaghaseidentificationand
chromosomeaberrationanalysison preparationstainedwith
flourescent dyes, a true positive rate (during metaphase
identification) of 87.3%, and a false positive rate of 7.4%.

Referencd6] reportsa texturefeatureto classify previously
segmentedobjects, into metaphasespreadsand interphase
nuclei, with true positive ratesof 84% and87% respectively.
Reference[2] reports a system for automatic metaphase
identification using a secondderivative featureto detectthe
chromosomsinside of a metaphaseThe true positiverate of
the system is 74% with a false positive rate of 6 %.

In this paperis presenteda NN-basedworkstation for
improved automaticidentification of metaphasespreadsand
nuclei on microscopeslide images.Eachmicroscopeslide is
automatically scanned for each of the fields of the
microscope. Image processing techniques are used to
segment the objects on each image. Ten different
morphological features are measuredon each segmented
object.A neuralnetis usedto classifyeachtenfeaturevector
into metaphasespreadsand stimulatednuclei. Providing in
this way automatic metaphaseand nuclei identification
during MI calculation, as well as automatic metaphase
identification for manual chromosomeaberratim analysis.
Giventhe smallratio of metaphase® nucleiinvolvedduring
MI calculation, manualdeletion of false positivesfrom the
metaphases annotated by the system is necessary.

Il. SYSTEM DESCRIPTION

The image acquisition system consists of an optical
microscope (Olympus BH2) with a motorised plate
(Méarzhauser,Germany) and a CCD B&W video camera
attached(Cohu 4800). A 10X objectivelensis usedduring
image acquisition.A Matrox frame grabberwith a 512x480
pixel resolution was used for digitisation. The sample
preparation details are described in [6].

A. Image Segmentation

The object types for automatedcell proliferation study
purposes are: Metaphases(M), which include compact
metaphasespreads(CM), and scatteredmetaphasespreads
(SM); Stimulated nuclei (SN); and Artefacts (AF), which
include nonstimulated nuclei (NSN) and cellular debris
(CD). Examplesof eachobjectare shownin Fig 1. Digital
images are pre-processedwith a fourth order function to
enhance the contrast of th@xwlated nuclei [6].

Recursivdlilation [7] is nextappliedto eachdigital image
to join the chromosomenside scatterednetaphasepreads.
Preprocessedimages are segmentedby minimisation of
within group variance [8]. The segmentation process
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annotateseachobject on the digital imagewith a onepixel
width, closed,contour,asshownin Fig.1.Largeartefactsand
non-stimulatednuclei are eliminatedat this stageapplyingan
outlier exclusioncriterionasfollows. All objectswith anarea
outsice of the range[meannucleiarea- 30, meanmetaphase
area+ 30] are discarded. This procedureeliminates an
average of 58% of the artefacts on each image.

I1l. FEATURE EXTRACTION
Tenmorphologicafeaturesvereusedto characteriseeach

segmented object. The approach followed to select
appropriateobject features wasto calculatefeaturessimilar

vectors,in order to detectthe heterogeneityin the depth
width ratios of the troughs of a given object.

Threeparameterselatedwith the relative extremadensity
[9] were included to detect, at different scales, textural
featuresdue to the chromosomednside of a metaphaseWe
definedthe absoluteextremadensity(AED) asthe numberof
crossingsof a certainthresholdvalue, on a horizontalscan
line of the objectimage as shownin Fig. 2. The threshold
value in Fig. 2 is calculatedusing the methoddescribedin
[8], which correspondgo the optimum grey level value to
segmentchromosomegrom the backgroundon a metaphase
image. Horizontal scan lines on each object image were

to those used by a human expert, during image annotation.sampledevery4 andevery 20 pixelsin the vertical direction.

Fig. 1. Segmented microscope image. 1. (SM) Scattered metagpinaad,

2. (CM) Conglomerated metaphase spread, 3. (SN) Stimulated nuclei, 4.

(CD) Cellular debris, 5. (NSN) Nestimulated nuclei.

A. Nuclei Identification Features

The humanexpertidentifies stimulatednuclei mainly by
its circular shape,grey levd characteristicsand size. In
consequencethe following featureswere included in the
featurevectorsof eachobject: form factor (FF), grey level
mean (GM) and standard deviation (GSD), area (A).

B. Metaphase identification features

Thehumanexpert identifies metaphasespreadamainly by
theinternaltextureproducedoy the chromosomesideeach
metaphaseThusin orderto increasethe percentagef true
positives,and to decreasehe percentageof false positives
during metaphasandnucleiclassification,5 texturalfeatures
were added to the feature vectors of each object.

The MDWRE [6] is the meanvalue of the depthwidth
ratio of the troughsin a horizontal scanline of the object
image (Fig. 2). The standarddeviation of the MDWRE
(MDWRESD) of each object was included in the feature

On eachscanline, crossingswere measuredas shown in

Fig.2. The total numberof crossingsat eachline-sampling
value were normaliseddividing by the total object areain

pixels Thesemeasuresvere namedNC4/areaandNC20/area
respectively An averagemeasure of texturewas calculated
as the total numberof crossingscountedin all imagelines
per object area. This measure was named NC/area.
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Fig. 2 Absolute extrema density measurement

Cumulativegrey level histogramsof scatterednetaphases
showeda characteristislopechangeasshownin Fig. 3. This
is becausescatterednetaphasebavea significantamountof
homogeneouslear background(P1-P2 region), with dark
stainscorrespondingo the chromosome$P0-P1 region).P1
correspondso the BCV (BetweenClassVariance)grey level
[8]. This grey level valueis the optimal thresholdseparating
backgroundfrom chromosomesSince PO, P1 and P2 are
located just in the kneesof the cumulatedhistogram, we
definedintermediatepoints PO, P1', P1" and P2'in orderto
characterisghe line segment¢P0-P1") and(P1-P2"),where:
PO'=P0+0.1*P2; P1'=0.9 *P1; P1"=1.1*P1; P2'=0.9*P2.
The histogramslopedifference(CHSD) wascalculatedasthe
absolutedifference of slopesof the first (P0-P1’) and the
second(P1”-P2’) histogramsectionsasshownin Fig.3. The
measurewas normaliseddividing by the total object area
(CHSD/area).
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Fig. 3, Histogram slope difference calculation
IV. NEURAL NET CONSTRUCTION AND EVALUATION

A three layer feedforward architecturewas usedin this
work for the different neural nets implemented for
metaphasenuclei, and artefactclassification[10]. A dataset
of 909 patterns- 191 metaphases331 nuclei, and 387
artefacts- takenfrom 30 different microscopeslides, was
used to train and test each different NN. Each pattern
includedthetenfeaturesdescribedn sectionlll. Thetraining
data consistedof 80 metaphases135 nuclei and 150
artefacts takenat randomfrom the dataset. The evaluation
set consistedof the remaining norttraining patternsin the
dataset- 111 metaphases] 96 nuclei,and 237 artefacts All
NNs were trained using backpropagatiorwith momentum
(0.95) and adaptive learning rate (initial value of 0.01,
learnirg rate increaseof 1.05, learningrate decreasef 0.7,
and maximum error ratio of 1.04). The hidden units use a
hyperbolictangentasactivationfunction, andthe outputunits
use the logistic function [11].

SinceeachNN output cantake any valuesbetween0 and
1, we followed an error criteriain orderto assigna patternto
a certainclass.The usualapproachis to calculatethe mean
squareerror (4) and assignthe patternto the class with
maximum output if the error is smaller than a selected
thresholdvalue. In this work a thresholdvalue of 0.05 was
used, this value minimises the number of misclassified
objects. If the output error (4) is larger than 0.05 the
corresponding input pattern is counted as aclassified.

[Ere ., [09if Oi= MAXD
e= ;[O‘ b] ’b_B).l otherwise [

where
k is the number of classes (k=3 in this case);
Oi is the output unit i of the neural net.

(4)

TwelveNNs were constructedeach with 10 input units,a
varying numberof hiddenunits (betweer2 and15), andthree
output units one for eachclass. In orderto selectthe best
performingNN (optimal numberof hiddenunits), we haveto
take into account the different missclassification errors
producedby the NN, emphasizinghoseerrorsthat are most

costly. Theseerrors are typically specifiedin a confusion
matrix [12]. Since we developedthreeclass classifierswe
havea 3-by-3 confusionmatrix for eachNN, with 3 correct
classificationsand 6 different errorsthe classifiercan make.
Additionally we have a certain numberof non-classified
objects(i.e. the objectsthatthe NNs werenot ableto include
in any of the specified three classes).

In orderto considerall the termsin the confusionmatrix
plus the proportion of nonclassified objects, an adhoc
performance measure has been corstructed. We have
consideredhe differenceof all correctly classifiedpatterns
(true positives) minus the sum of the lost (false negatives)
and misclassified(false positives) patternsmultiplied by a
weight (i.e. error cost value). The bestNN is the one that
maximises(5). A perfectNN would have a value of 1 (for
100% efficacy), and a totally imperfect one would have a
value of-1 (for 0% efficacy).

NN = Ep.@c - Z[C" +C--]—NCL-% )
P iD{M;,AF& §<i H ' ' ! %

JEdl
j&XM,SN, AR}
where

p; is the weight (i.e. error cost value) of the i class;

Ki is the number of patternsassignedo eachof the classes
metaphases, nuclei, and artefacts;

Cij are the elements of the confusion matrix;

NCLi is the number of neulassified objects of each class.

The mitotic index is defined as the ratio of metaphases
(scatered + conglomerated) to stimulated nuclei as shown in
(3). Usually 2000 objects (metaphases stimulatednuclei)
are used in the calculation of the Ml

MI= NM/NSN (3)
where N indicates the number of objects of the classes
metaphases (M) and stimwddtnuclei (SN).

TypicalMI valuesare between2% to 5% for 20000bjects
counted (M + SN = 2000). We assignedthe following
weights(p;) for a meanMI of 3,5%: py = 0,965,p,, = 0,035,
par = 0.0. We have assigneda value of zero to this last
weight since artefacts AR are not involved during Ml
calculation. Artefacts is a class created for a better
identification of the two relevantclassM and SN. In other
words, we don't mind if artefactsare for example non
classifiedor well classified,but we careif they areassigned
erroneouslyto the otherclassegin which casepy andp, take
thisinto account).The two bestperformingNNs werethe 10-
9-3 (NNpim= 0.776) and the 205-3 (NNym= 0.777). Table |
showsa comparisorof the confusionmatricesfor theseNNs.
Table 1l shows the proportion of natassified objects.



TABLE |
CONFUSION MATRICES F® THE10-9-3 AND 10-15-3 NNs
M N AR
10-9-3 10-15-3 | 10-9-3 10-15-3 | 10-9-3 10-15-3
M 0.918 0.918 0 0 0.054 0.027
SN 0 0 0.918 0.939 0.046 0.030
AR | 0.029 0.029 0.025 0.034 0.894 0.848
TABLE Il
NON-CLASSIFIED OBJECTS
Non-Classified
10-9-3 10-15-3
M 0.027 0.054
SN 0.036 0.031
AR 0.051 0.088
V. DISCUSSION
Table lll shows, for the best two selectedNNs, the

expectednumbersof metaphasesjuclei and artefactsfor an
MI of 3.5%. The expectedsample sizes would be: 68
metaphases, 1932 stimulatadclei, 4900 artefacts.

TABLE Il
EXPECTED NUMBERS OF ELLS AND ARTEFACTS ®R10-9-3 AND 10-15-3
NNS FORMI CALCULATION (MI=3.5%). ALL VALUES ARE IN NO. OF

OBJECTS
M SN AR
10-9-3  10-15-3 10-9-3  10-15-3 10-9-3 10-15-3
M 62 62 0 0 4 2
SN 0 0 1774 1814 89 59
AR 145 145 124 165 4383 4156
Total 207 207 1898 1979 4476 4217

Aswe canseein Tablelll the numberof metaphaséalse
positives (145 for both NNs) is small enoughfor manual
selectionof true metaphasesAt the last stageof analysis,
our instrumentdisplaysto the usera final screencontaining
the shapesof all objectsclassifiedas metaphasesThe user
investsaroundtwo additionalminutesto selectwith a pointer
the true metaphasesthis is a negligible amount of time
comparedo the 40 hours neededor completelymanualMl
calculation. With this simple user intervention, the overall
accuracyof the instrumentincreasego 6.47%for the 10-9-3
NN.

VI. CONCLUSIONS

The development of an automated sygem for cell
proliferation analysis has been presented.A neural net
classifieris usedfor semiautomaticM| calculationduring
cell proliferation studies as well as for chromosome
aberration analysis, providing automatic identification of
metaphasspreasandnuclei. Theuseof 10 morphometrical,
photometrical,and textural featuresto train neuralnetworks
for automaticrecognitionof metaphasesjuclei,andartefacts
in microscopemagesat low magnificationvalues(10X), has
been reported. Low magnification values enable a fast
scanning of the microscopeslides. The best performing

neural net classifier (10-9-3) hasbeenable to provide false
negative,and false positive rates, suitablefor practical use
during automaticidentification of metaphasesutperforming
all previouslyreportedsystemdor automaticdentificationof
metaphases.

The system reported here used in conjunction with a
systematidi.e. repeatablepreparationof tissuesampleg6],
hasthe potentialto achievea performancesutablefor regular
laboratoryuse during automaticidentification of metaphases
and semiautomaticMI calculationin microscopeimages at
low (10X) magnification.
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