
 1

AN IIOP ARCHITECTURE FOR WEB-ENABLED PHYSIOLOGICAL MODELS
Shixin Zhang and C. Forbes Dewey, Jr.

Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

Abstract- This paper develops a specific information
architecture to serve complex physiological information
models and a means of delivering these models in a
manner that allows interactive and distributed use. By
redesign of existing models for distributed use, the IIOP
(Internet Inter-ORB Protocol) architecture provides
general access across the Internet; the methods are
replicable with many different types of physiological
models that produce a variety of results.

This paper defines and explains the complete
architecture for the user interface, the model
encapsulation, and the communication layer between the
client and server by developing a general example.
Using the equivalent of interactive browsers to access
remote models and display the results, the IIOP
architecture is built up using platform-independent
technology such as CORBA, Java and XML. The
existing physiological models are first encapsulated by a
suitable software language respect to the legacy models.
Then CORBA IDL-XML interfaces are built accordingly
as a broker interface connecting user interfaces to
encapsulating interfaces. Therefore, the standard user
interfaces on the browsers are easily built to access these
models through the CORBA ORB and the encapsulating
interfaces. This interface software is capable of
interpreting and displaying very high-level descriptors
and model output such that the amount of data required
to be transmitted over the Internet is reduced.

1. INTRODUCTION

Models of human physiology are at the heart of clinical

prediction and the teaching process in biomedical
engineering. These Models, developed over past 30 years,
have become not only quantitative but also computationally
intensive. The power of these models to illustrate and
predict clinically relevant physiology has also become
enormously important in health care delivery. But in most
current embodiments, the user must sit at the same computer
upon which the model runs or use X-window to simulate the
environment. What is needed is a means of delivering these
models in a manner that allows interactive and distributed
use, such as Internet learning and distance education.

The comprehensiveness and complexity of
physiological models are increasing for two reasons. First,
the questions being asked are much more demanding.
Second, the level of interdependence of the component
models has increased dramatically in order to answer
complex physiological questions. Frequently the variety of
knowledge required to answer a single physiological
question exceeds the expertise of any individual group of

researchers, and one is required to interface different models
from many different sources with different local design
rules. [1]

An information architecture that will serve complex
physiological information models must support interactive
and distributed use. This may require the redesign of the
existing models for distributed use. The software methods
should be usable with many different types of physiological
models that produce a variety of results: graphical,
numerical, and images (including moving images). The
software developed should preferably be publicly available.

This need can be met by a web-based architecture that
uses the equivalent of interactive browsers such as Netscape
and Microsoft Explorer to access remote models and display
the results. This access route can be built up using platform-
independent technology such as HTML, XML, Java and
CORBA. In a nutshell, the existing physiological modeling
must first be encapsulated by a suitable software language,
such as Java and C++ with respect to the legacy language
and application. Then CORBA IDL-XML interfaces are
built accordingly as a broker interface connecting user
interfaces to encapsulating interfaces. Therefore, the
standard user interfaces on the browsers can be easily built
to access these models through the CORBA ORB and the
encapsulating interfaces. This interface software is capable
of interpreting and displaying very high-level descriptors
and model output such that the amount of data required to be
transmitted over the Internet is reduced.

The web-enabled information architecture and an
example are given in detail in this paper.

2. PHYSIOLOGICAL MODEL EXAMPLE

We have centered our project on many specific use

cases where there are existing models that either use X-
window interface or have an interface that is extremely
limited. Our experience is that having concrete examples
that range across the spectrum of possible applications is the
best way to insure that the software architecture and its
implementation will meet the general needs of users.

Limited by the paper space, this paper only uses one
general example to illustrate the IIOP architecture we
developed. The example is "A Systemic Circulation
Lumped-Parameter Model: Quantitative Physiology: Organ
Transport Systems", developed by Professor Roger D.
Kamm and his colleagues at MIT. In this model, a non-
linear, distributed model of the arterial system and heart is
developed which is based upon a numerical solution of the
one-dimensional equations of motion in a geometrically
accurate branching network of the arterial system. Inputs to
the model are hemodynamic parameters such as Systemic

Report Documentation Page

Report Date
25 Oct 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
An IIOP Architecture for Web-Enabled Physiological Models

Contract Number

Grant Number

Program Element Number

Author(s) Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Department of Mechanical Engineering Massachusetts Institute
of Technology Cambridge, MA 02139

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and Address(es)
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document
contains color images.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
4

 2

Venous Resistance (SVR) which are critical parameters to
evaluate the cardiovascular system but can usually be gained
only through invasive measurements. Outputs of the model
are pressure and flow waveforms at all locations of arterial
system. [2]

This computational model was originally written using
the proprietary mathematical package MATLAB and
worked only under the X-windows system (Fig. 1). We
have created a general interface for the model that can be
executed under conventional web browser technology on all
computers, and changed the model so it can be executed
using a non-proprietary compiled and freely distributable
executable. The connection software between the model
and the browser will meet the same design rules as all the
other models that we support.

Fig. 1: The current X-windows user interface for the cardiovascular model
based on MATLAB proprietary technology[2]

where:
HR = Heart Rate (beats/min);
EDV = End Diastolic Volume (ml);
SVR = Systemic Vascular Resistance (dyn/cm5sec);
ELV_Max = Left Ventricle Elasticity (Contractility) (dyn/cm5);
Omega = Ejection Period (Timesystole/Timetotal);
CO = Cardiac Output (L/min);
SV = Stroke Volume (ml)
EDP = End diastolic pressure (mmHg)

3. IIOP ARCHITECTURE

As we discussed in the previous sections, our needs can
be met using a web-based architecture that uses the
equivalent of interactive browsers to access remote models
and display results. This access route can be built up using
platform-independent language and technology such as
JAVA, CORBA and XML. The CORBA/IIOP architecture
lets distributed objects communicate by use of object
request brokers, or ORBs. CORBA - which is, in itself, a
complete distributed object platform - extends the reach of
Java application across networks, languages, component
boundaries, and operating systems [3]. Java begins where
CORBA leaves off. CORBA deals with network
transparency and Java deals with implementation
transparency. The class of CORBA is neither part of an

operating system nor an application, but is used to link
together the various parts of a distributed application spread
across geographically separated computers. It is specifically
designed to be the glue that binds disparate programming
technologies together. It does not exist as a point in the
programming space; by design, it occupies the spaces
between the peaks representing individual languages [4].
From our standpoint, one of CORBA’s most valuable traits
is that it is designed to be language and platform
independent. The cross-platform and cross-language nature
of CORBA is definitely its powerful feature. For our
purposes, where models are naturally distributed and are
implemented with a variety of different languages, CORBA,
we’ll show, is a powerful implementation tool. When a Java
client uses CORBA technology to communicate with a C++
object, for example, both the C++ programmer are the Java
programmer work completely within their respective
language environments. The CORBA ORB presents the
Java client with a Java stub interface and the C++
programmer with a C++ skeleton interface. CORBA takes
care of the cross-language issues automatically. [4]

The information system architecture we developed is
illustrated in Fig. 2. First, the client user loads the Java
applet to his Web browser using HTTP protocol; then the
applet sends a request to the CORBA-ORB server program
through IIOP protocol. The server program communicates
with the encapsulated models and then sends back the
results from the models to the Java applet on the client side
through IIOP or HTTP. We find it is easy to build up an
integrated system by using CORBA-ORB technology. The
same ORB can be used to communicate with databases and
other model objects without any change of the whole
architecture. Another advantage of this architecture is that
we can replace the legacy model with a new model (for
example, a library), without any change of the architecture.
The client user will never realize any difference.

Fig. 2: Architecture design: IIOP Web application architecture

In this architecture, we first need to build up an
encapsulating layer for the existing model with a suitable

^^^HoDls WIrdow Help Pai-a_s lection Libtary Estimation

^miis!

: ascending aorta
2. aortic arc
3: aortic arc

i. abdominal aorta
Et abdominal aorta
7: common iiac
a lamaal aileiy
9 anterior tiUal artery
ft brachiocephalcy
1:rt)radiial

3' 1 oomnor carotid
4lbrachial
5: r radial
Rrulnar

a r Intemai carotid
3: lir^tamal carotid

20 laiiternal carotid
21:1 ulna
221 radial
23: coelao
24: renal
25!upma5ertaric
26' irt meserteric
27' protund5
28: post tibial
29:at.tlibial

31 :r radial distal

33: aorlb root

35 rtofSrial di^al'
36: 1 radal dbtal

W~ ..■• ^ 1

18

12

.^^21

HH: IMirl |

« J J
12

y\ 160 \
t_may:l(tirL'cm;i| 1 10500

^ 300 _J J y\ 1500

EDV: (mil |

30 jj J
120

6
24

14 aSs,^

4 36

23

Omega 1

02 ^ J
05

^ OS

SVH.|djin-E/cm b| |

300 ^ J
1253

fl 350C

^
li 1 Rm Default Qu Halp?

X ^'V
C^.F„..

/
Output Parameters

CO.ll/minl:

EDP(nimHa)

SV m

29

liniEii 1

i

 3

technology, according to the legacy language and
application situation. Second, since we use IIOP protocol,
we need to define CORBA IDL interfaces for each model as
a broker interface which connects the client Java applet to
the encapsulating layers. Third, we need to build a standard
user interface that will be loaded on the browser.

Implementation of the route of Fig. 2 involves the
following activities usually:

1. We need to perform modest surgery on the existing
model, because it usually has its special GUI that we
can’t deliver directly to the Internet. So we need to
understand which input variables and output variables
the model uses and where they are. Then we cut off
the GUI section and keep the computation section
separately.

2. Design and implement the encapsulating layer's
classes for the model. This is a key step and there are
many techniques for wrapper coding. This is
discussed in the next paragraph.

3. According to the input and output variables and
structure, we need to design and define a CORBA IDL
interface.

4. Automatically generate the stub and skeleton classes
and interfaces using the ORB’s IDL compiler.

5. Design and implement the server’s classes that
implement the functionality defined by the server’s
IDL interface and communicate with the encapsulating
sections, including the server’s initialization code and
the intersection of the server’s implementation classes,
meanwhile linking with the skeleton classes produced
by the IDL compiler.

6. Design and implement the client Java applet based on
the functionality of the original model GUI, and any
other functionality necessary but not visible to the
client applets and applications. We can write a Java
applet with the GUI style of original model in order to
keep the user interface unchanged, or replace the
orginal functionality with a new paradigm.

7. Define XML elements to encapsulate the structure
data during the transmitting process, in order to
communicate efficiently with applet, databases and
other models. This means encoding and decoding of
all object classes as shown in Fig. 3.

Fig. 3: Encapsulating technology

Fig. 3 indicates that to use IIOP architecture, we need to
design the wrapper codes for the legacy system. There are
many technology choices for this wrapping:

• Use C link libraries provided by original language,
such as FORTRAN using "cfortran.h", MATLAB etc;

• Use intersection programs to connect each software
component, such as a . DLL or temporary text files;

• Use a third bridge language, such as Tcl/Tk when
working with text files and programs;

• Use a translator, for example, IDL2XXX; xxx means
the other language, such as PASCAL, C++, JAVA,
PERL;

• Use COM/OLE technology;
• Use some special interface, such as Java RMI.

For our physiological example – which used a MATLAB
model – there were two open system choices for
encapsulation:

• Use the C/C++ language to call the MATLAB engine
libraries (C/C++) provided by MATLAB, such as
libmx.lib, libeng.lib and libmat.lib;

• Use the MATLAB C/C++ compiler (mcc.exe) to
convert MATLAB files (. m files) to C/C++ programs
first, then link with the MATLAB C/C++ Math &
Graphics Library.

After comparison, we used the first method to encapsulate
the model. It cost less work than the second method.

The new model with Web-based architecture gives
correct results as Fig. 4 illustrates. We can type the
parameters in or use drag bars to choose the values.
Clicking the “run” button will call the calculation model and
display the results on the left-bottom of the window;
clicking the “interpolation” button will get the results from
the interpolation table. If you click the numbered points on
the diagram of cardiovascular system after calculating, a
window with three choices (pressure, velocity and area) will
be displayed; then, according to your choice, the program
will produce the graphs of the pressure, velocity or area of
that point (location), as shown in Fig. 4. There is an “output
window” that we use to display the intermediate results.

Fig. 4: User interface for the new cardiovascular model based on Java

applet technology and IIOP architecture; this picture also shows the results
response to the remote user request.

Pa'a_£alacUon Ubrary Es

 4

After the above work, one serious problem remained:
the model was not interactive. The orginal MATLAB model
took several hours/case. Each calculation of our compiled
model spent from half an hour to several hours on our
Pentium III 400MHz machine. Nobody can wait such a
long time on the Internet. How do we get the result during a
short online time? Our answer is to use a library (database)
of precomputed results and an interpolation technique
instead of the real calculation (Fig. 5). This solution can
save time from several hours to half a minute. The new
model using a five-dimensional interpolation runs in
seconds without any change in either the client or the
network architecture.

Fig. 5: The performance solution: rip out the existing MATLAB

model and replace it with a five-dimensional interpolation table (results
library).

5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8
-20

-10

0

10

20

30

40

50

60

70
point 4 Velocity

Time (s)

V
el

oc
ity

 (c
m

/s
)

Fig. 6: Comparison of a typical result from the interpolation with that from

the calculation of the original model

Fig. 6 illustrates that the results from 5-D linear
interpolation has good accuracy although the error is about
five percent. It is good enough for most clinical and
teaching purposes. There are several ways that one could
increase the accuracy:

• Increase the number of tabulated values in the library;
• Smooth each curve of one set of variables in the

library first, but this will increase the time of
computing;

• Use nonlinear interpolation.

4. CONCLUSIONS

CORBA is an open standard for distributed technology.
It is therefore not surprising to see Web-based healthcare
and physiological applications using CORBA as the
underlying technology. Automated memory management,
built-in thread support, and applet mobility make Java an
ideal choice to implement CORBA clients and servers.
With the backing of major players like Sun Microsystems,
Netscape, and Oracle, the combined use of Java and
CORBA will become commonplace in healthcare and
biology, even in enterprise systems. Because of wide
support for IIOP in firewall proxies, the availability of free
or low cost ORB implementations, and built-in support for
IIOP in server-side Web applications such as Web servers,
however, IIOP may not become the standard Internet
protocol. [3]

XML retains the key SGML advantages of extensibility,
structure and error checking, and has been designed for
maximum expressive power, a minimal learning curve, and
maximum ease of implementation. Being intended for the
storage and manipulation of text making up humane-
readable documents like Web pages, it is already used in
many fields.

A composite solution using CORBA/IIOP, Java,
(JDBC) and XML is replicable with many different types of
physiological models that produce a variety of results:
graphical, numerical, and images. This concept and the
underlying software should be reusable by others. It is a
good means of delivering physiological models that allows
interactive and distributed use over the Internet. The IIOP
architecture can be considered as a precursor to a large
Physiome project [5] with much more complex distributed
models.

REFERENCES

[1] C. Forbes Dewey, Jr. 1, Ben Fu 1 , Shixin Zhang 1, Ngon
Dao 1, William Chuang 1 and Zheng LI 2 , “An Information
Architecture for Physiological Models, Clients and
Databases,” paper submited to 23rd Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society, Istanbul, Turkey, 25-28 October 2001.
[2] Xinshu Xiao, “Noninvasive Assessment of
Cardiovascular Health,” the thesis of the Degree of Master
of Science in Mechanical Engineering of MIT, 1 August
2000.
[3] Reaz Hoque, CORBA 3, ISBN 0-7645-3200-6, IDG
Books Worldwide, Inc, An International Data Group
Company, pp. 21-27, 347-352, 402, 1998.
[4] Java, RMI and CORBA,
 http://www. omg. org/library/wpjava. html.
[5] Bassingthwaighte, J. B., “Strategies for the physiome
project,” Annals of Biomedical Engineering, vol. 28, pp.
1043-1058, 2000.

	Main Menu

	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering
	1.1.Cardiac Electrophysiology and Mechanics
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells
	1.1.4 Arrhythmogenesis and Spiral Waves

	1.2. Cardiac and Vascular Biomechanics
	1.2.1 Blood Flow and Material Interactions
	1.2.2.Cardiac Mechanics
	1.2.3 Vascular Flow
	1.2.4 Cardiac Mechanics/Cardiovascular Systems
	1.2.5 Hemodynamics and Vascular Mechanics
	1.2.6 Hemodynamic Modeling and Measurement Techniques
	1.2.7 Modeling of Cerebrovascular Dynamics
	1.2.8 Cerebrovascular Dynamics

	1.3 Cardiac Activation
	1.3.1 Optical Potential Mapping in the Heart
	1.3.2 Mapping and Arrhythmias
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue
	1.3.4 Forward-Inverse Problems in ECG and MCG
	1.3.5 Electrocardiology
	1.3.6 Electrophysiology and Ablation

	1.4 Pulmonary System Analysis and Critical Care Medicine
	1.4.1 Cardiopulmonary Modeling
	1.4.2 Pulmonary and Cardiovascular Clinical Systems
	1.4.3 Mechanical Circulatory Support
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects
	1.5.2 Heart Rate Variability II: Nonlinear processing
	1.5.3 Neural Control of the Cardiovascular System II
	1.5.4 Heart Rate Variability
	1.5.5 Neural Control of the Cardiovascular System I

	2. Neural Systems and Engineering
	2.1 Neural Imaging and Sensing
	2.1.1 Brain Imaging
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology
	2.2.2 Neural Computation

	2.3 Neural Interfacing
	2.3.1 Neural Recording
	2.3.2 Cultured neurons: activity patterns, adhesion & survival
	2.3.3 Neuro-technology

	2.4 Neural Systems: Analysis and Control
	2.4.1 Neural Mechanisms of Visual Selection
	2.4.2 Models of Dynamic Neural Systems
	2.4.3 Sensory Motor Mapping
	2.4.4 Sensory Motor Control Systems

	2.5 Neuro-electromagnetism
	2.5.1 Magnetic Stimulation
	2.5.2 Neural Signals Source Localization

	2.6 Clinical Neural Engineering
	2.6.1 Detection and mechanisms of epileptic activity
	2.6.2 Diagnostic Tools

	2.7 Neuro-electrophysiology
	2.7.1 Neural Source Mapping
	2.7.2 Neuro-Electrophysiology
	2.7.3 Brain Mapping

	3. Neuromuscular Systems and Rehabilitation Engineering
	3.1 EMG
	3.1.1 EMG modeling
	3.1.2 Estimation of Muscle Fiber Conduction velocity
	3.1.3 Clinical Applications of EMG
	3.1.4 Analysis and Interpretation of EMG

	3. 2 Posture and Gait
	3.2.1 Posture and Gait

	3.3.Central Control of Movement
	3.3.1 Central Control of movement

	3.4 Peripheral Neuromuscular Mechanisms
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I

	3.5 Functional Electrical Stimulation
	3.5.1 Functional Electrical Stimulation

	3.6 Assistive Devices, Implants, and Prosthetics
	3.6.1 Assistive Devices, Implants and Prosthetics

	3.7 Sensory Rehabilitation
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech
	3.7.2 Sensory Systems and Rehabilitation

	3.8 Orthopedic Biomechanics
	3.8.1 Orthopedic Biomechanics

	4. Biomedical Signal and System Analysis
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II

	4.2 Intelligent Analysis of Biosignals
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis
	4.2.3 Intelligent Systems in Speech Analysis
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis
	4.2.5 Neural Network Approaches to Biosignal Analysis
	4.2.6 Hybrid Systems in Biosignal Analysis
	4.2.7 Intelligent Systems in ECG Analysis
	4.2.8 Intelligent Systems in EEG Analysis

	4.3 Analysis of Nonstationary Biosignals
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II

	4.4 Statistical Analysis of Biosignals
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals
	4.4.2 Detection and Classification Algorithms of Biosignals I
	4.4.3 Special Session: Component Analysis in Biosignals
	4.4.4 Detection and Classification Algorithms of Biosignals II

	4.5 Mathematical Modeling of Biosignals and Biosystems
	4.5.1 Physiological Models
	4.5.2 Evoked Potential Signal Analysis
	4.5.3 Auditory System Modelling
	4.5.4 Cardiovascular Signal Analysis

	4.6 Other Methods for Biosignal Analysis
	4.6.1 Other Methods for Biosignal Analysis

	5. Medical and Cellular Imaging and Systems
	5.1 Nuclear Medicine and Imaging
	5.1.1 Image Reconstruction and Processing
	5.1.2 Magnetic Resonance Imaging
	5.1.3 Imaging Systems and Applications

	5.2 Image Compression, Fusion, and Registration
	5.2.1 Imaging Compression
	5.2.2 Image Filtering and Enhancement
	5.2.3 Imaging Registration

	5.3 Image Guided Surgery
	5.3.1 Image-Guided Surgery

	5.4 Image Segmentation/Quantitative Analysis
	5.4.1 Image Analysis and Processing I
	5.4.2 Image Segmentation
	5.4.3 Image Analysis and Processing II

	5.5 Infrared Imaging
	5.5.1 Clinical Applications of IR Imaging I
	5.5.2 Clinical Applications of IR Imaging II
	5.5.3 IR Imaging Techniques

	6. Molecular, Cellular and Tissue Engineering
	6.1 Molecular and Genomic Engineering
	6.1.1 Genomic Engineering: 1
	6.1.2 Genomic Engineering II

	6.2 Cell Engineering and Mechanics
	6.2.1 Cell Engineering

	6.3 Tissue Engineering
	6.3.1 Tissue Engineering

	6.4. Biomaterials
	6.4.1 Biomaterials

	7. Biomedical Sensors and Instrumentation
	7.1 Biomedical Sensors
	7.1.1 Optical Biomedical Sensors
	7.1.2 Algorithms for Biomedical Sensors
	7.1.3 Electro-physiological Sensors
	7.1.4 General Biomedical Sensors
	7.1.5 Advances in Biomedical Sensors

	7.2 Biomedical Actuators
	7.2.1 Biomedical Actuators

	7.3 Biomedical Instrumentation
	7.3.1 Biomedical Instrumentation
	7.3.2 Non-Invasive Medical Instrumentation I
	7.3.3 Non-Invasive Medical Instrumentation II

	7.4 Data Acquisition and Measurement
	7.4.1 Physiological Data Acquisition
	7.4.2 Physiological Data Acquisition Using Imaging Technology
	7.4.3 ECG & Cardiovascular Data Acquisition
	7.4.4 Bioimpedance

	7.5 Nano Technology
	7.5.1 Nanotechnology

	7.6 Robotics and Mechatronics
	7.6.1 Robotics and Mechatronics

	8. Biomedical Information Engineering
	8.1 Telemedicine and Telehealth System
	8.1.1 Telemedicine Systems and Telecardiology
	8.1.2 Mobile Health Systems
	8.1.3 Medical Data Compression and Authentication
	8.1.4 Telehealth and Homecare
	8.1.5 Telehealth and WAP-based Systems
	8.1.6 Telemedicine and Telehealth

	8.2 Information Systems
	8.2.1 Information Systems I
	8.2.2 Information Systems II

	8.3 Virtual and Augmented Reality
	8.3.1 Virtual and Augmented Reality I
	8.3.2 Virtual and Augmented Reality II

	8.4 Knowledge Based Systems
	8.4.1 Knowledge Based Systems I
	8.4.2 Knowledge Based Systems II

	9. Health Care Technology and Biomedical Education
	9.1 Emerging Technologies for Health Care Delivery
	9.1.1 Emerging Technologies for Health Care Delivery

	9.2 Clinical Engineering
	9.2.1 Technology in Clinical Engineering

	9.3 Critical Care and Intelligent Monitoring Systems
	9.3.1 Critical Care and Intelligent Monitoring Systems

	9.4 Ethics, Standardization and Safety
	9.4.1 Ethics, Standardization and Safety

	9.5 Internet Learning and Distance Learning
	9.5.1 Technology in Biomedical Engineering Education and Training
	9.5.2 Computer Tools Developed by Integrating Research and Education

	10. Symposia and Plenaries
	10.1 Opening Ceremonies
	10.1.1 Keynote Lecture

	10.2 Plenary Lectures
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and
	10.2.2 Microbioengineering: Microbe Capture and Detection
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure
	10.2.5 Hepatic Tissue Engineering
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation
	10.3.2 Nanotechnology in Biomedicine
	10.3.3 Functional Imaging
	10.3.4 Neural Network Dynamics
	10.3.5 Bioinformatics
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management

	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help

	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print

	Query
	Query Results

	Exit CD-Rom

