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Abstract- This paper develops a specific information 
architecture to serve complex physiological information 
models and a means of delivering these models in a 
manner that allows interactive and distributed use.  By 
redesign of existing models for distributed use, the IIOP 
(Internet Inter-ORB Protocol) architecture provides 
general access across the Internet; the methods are 
replicable with many different types of physiological 
models that produce a variety of results.   

This paper defines and explains the complete 
architecture for the user interface, the model 
encapsulation, and the communication layer between the 
client and server by developing a general example.  
Using the equivalent of interactive browsers to access 
remote models and display the results, the IIOP 
architecture is built up using platform-independent 
technology such as CORBA, Java and XML.  The 
existing physiological models are first encapsulated by a 
suitable software language respect to the legacy models.  
Then CORBA IDL-XML interfaces are built accordingly 
as a broker interface connecting user interfaces to 
encapsulating interfaces.  Therefore, the standard user 
interfaces on the browsers are easily built to access these 
models through the CORBA ORB and the encapsulating 
interfaces.  This interface software is capable of 
interpreting and displaying very high-level descriptors 
and model output such that the amount of data required 
to be transmitted over the Internet is reduced.  
 

1.  INTRODUCTION 
 
Models of human physiology are at the heart of clinical 

prediction and the teaching process in biomedical 
engineering.  These Models, developed over past 30 years, 
have become not only quantitative but also computationally 
intensive.  The power of these models to illustrate and 
predict clinically relevant physiology has also become 
enormously important in health care delivery.  But in most 
current embodiments, the user must sit at the same computer 
upon which the model runs or use X-window to simulate the 
environment.  What is needed is a means of delivering these 
models in a manner that allows interactive and distributed 
use, such as Internet learning and distance education.  

The comprehensiveness and complexity of 
physiological models are increasing for two reasons.  First, 
the questions being asked are much more demanding.  
Second, the level of interdependence of the component 
models has increased dramatically in order to answer 
complex physiological questions.  Frequently the variety of 
knowledge required to answer a single physiological 
question exceeds the expertise of any individual group of 

researchers, and one is required to interface different models 
from many different sources with different local design 
rules. [1] 

An information architecture that will serve complex 
physiological information models must support interactive 
and distributed use.  This may require the redesign of the 
existing models for distributed use.  The software methods 
should be usable with many different types of physiological 
models that produce a variety of results: graphical, 
numerical, and images (including moving images). The  
software developed should preferably be publicly available.   

This need can be met by a web-based architecture that 
uses the equivalent of interactive browsers such as Netscape 
and Microsoft Explorer to access remote models and display 
the results.  This access route can be built up using platform-
independent technology such as HTML, XML, Java and 
CORBA.  In a nutshell, the existing physiological modeling 
must first be encapsulated by a suitable software language, 
such as Java and C++ with respect to the legacy language 
and application.  Then CORBA IDL-XML interfaces are 
built accordingly as a broker interface connecting user 
interfaces to encapsulating interfaces.  Therefore, the 
standard user interfaces on the browsers can be easily built 
to access these models through the CORBA ORB and the 
encapsulating interfaces.  This interface software is capable 
of interpreting and displaying very high-level descriptors 
and model output such that the amount of data required to be 
transmitted over the Internet is reduced.  

The web-enabled information architecture and an 
example are given in detail in this paper.   

 
2.   PHYSIOLOGICAL MODEL EXAMPLE  

 
We have centered our project on many specific use 

cases where there are existing models that either use X-
window interface or have an interface that is extremely 
limited.  Our experience is that having concrete examples 
that range across the spectrum of possible applications is the 
best way to insure that the software architecture and its 
implementation will meet the general needs of users.  

Limited by the paper space, this paper only uses one 
general example to illustrate the IIOP architecture we 
developed.  The example is "A Systemic Circulation 
Lumped-Parameter Model: Quantitative Physiology: Organ 
Transport Systems", developed by Professor Roger D.  
Kamm and his colleagues at MIT.  In this model, a non-
linear, distributed model of the arterial system and heart is 
developed which is based upon a numerical solution of the 
one-dimensional equations of motion in a geometrically 
accurate branching network of the arterial system.  Inputs to 
the model are hemodynamic parameters such as Systemic 
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Venous Resistance (SVR) which are critical parameters to 
evaluate the cardiovascular system but can usually be gained 
only through invasive measurements. Outputs of the model 
are pressure and flow waveforms at all locations of arterial 
system. [2]  

This computational model was originally written using 
the proprietary mathematical package MATLAB and 
worked only under the X-windows system (Fig. 1).  We 
have created a general interface for the model that can be 
executed under conventional web browser technology on all 
computers, and changed the model so it can be executed 
using a non-proprietary compiled and freely distributable 
executable.  The connection software between the model 
and the browser will meet the same design rules as all the 
other models that we support.  

 

 
Fig. 1: The current X-windows user interface for the cardiovascular model 
based on MATLAB proprietary technology[2] 

where: 
HR = Heart Rate (beats/min);  
EDV = End Diastolic Volume (ml); 
SVR = Systemic Vascular Resistance (dyn/cm5sec); 
ELV_Max = Left Ventricle Elasticity (Contractility) (dyn/cm5); 
Omega = Ejection Period (Timesystole/Timetotal); 
CO = Cardiac Output (L/min); 
SV = Stroke Volume (ml) 
EDP = End diastolic pressure (mmHg) 
 

3.  IIOP ARCHITECTURE 
 

As we discussed in the previous sections, our needs can 
be met using a web-based architecture that uses the 
equivalent of interactive browsers to access remote models 
and display results.  This access route can be built up using 
platform-independent language and technology such as 
JAVA, CORBA and XML.  The CORBA/IIOP architecture 
lets distributed objects communicate by use of object 
request brokers, or ORBs.  CORBA - which is, in itself, a 
complete distributed object platform - extends the reach of 
Java application across networks, languages, component 
boundaries, and operating systems [3].  Java begins where 
CORBA leaves off.  CORBA deals with network 
transparency and Java deals with implementation 
transparency.  The class of CORBA is neither part of an 

operating system nor an application, but is used to link 
together the various parts of a distributed application spread 
across geographically separated computers.  It is specifically 
designed to be the glue that binds disparate programming 
technologies together.  It does not exist as a point in the 
programming space; by design, it occupies the spaces 
between the peaks representing individual languages [4].  
From our standpoint, one of CORBA’s most valuable traits 
is that it is designed to be language and platform 
independent.  The cross-platform and cross-language nature 
of CORBA is definitely its powerful feature.  For our 
purposes, where models are naturally distributed and are 
implemented with a variety of different languages, CORBA, 
we’ll show, is a powerful implementation tool.  When a Java 
client uses CORBA technology to communicate with a C++ 
object, for example, both the C++ programmer are the Java 
programmer work completely within their respective 
language environments.  The CORBA ORB presents the 
Java client with a Java stub interface and the C++ 
programmer with a C++ skeleton interface.  CORBA takes 
care of the cross-language issues automatically. [4]  

The information system architecture we developed is 
illustrated in Fig. 2.  First, the client user loads the Java 
applet to his Web browser using HTTP protocol; then the 
applet sends a request to the CORBA-ORB server program 
through IIOP protocol. The server program communicates 
with the encapsulated models and then sends back the 
results from the models to the Java applet on the client side 
through IIOP or HTTP.  We find it is easy to build up an 
integrated system by using CORBA-ORB technology.  The 
same ORB can be used to communicate with databases and 
other model objects without any change of the whole 
architecture.  Another advantage of this architecture is that 
we can replace the legacy model with a new model (for 
example, a library), without any change of the architecture.  
The client user will never realize any difference.   

 
Fig.  2: Architecture design: IIOP Web application architecture 

In this architecture, we first need to build up an 
encapsulating layer for the existing model with a suitable 
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technology, according to the legacy language and 
application situation.  Second, since we use IIOP protocol, 
we need to define CORBA IDL interfaces for each model as 
a broker interface which connects the client Java applet to 
the encapsulating layers.  Third, we need to build a standard 
user interface that will be loaded on the browser.  

Implementation of the route of Fig. 2 involves the 
following activities usually: 

1. We need to perform modest surgery on the existing 
model, because it usually has its special GUI that we 
can’t deliver directly to the Internet.  So we need to 
understand which input variables and output variables 
the model uses and where they are.  Then we cut off 
the GUI section and keep the computation section 
separately.   

2. Design and implement the encapsulating layer's 
classes for the model.  This is a key step and there are 
many techniques for wrapper coding.  This is 
discussed in the next paragraph.  

3. According to the input and output variables and 
structure, we need to design and define a CORBA IDL 
interface.  

4. Automatically generate the stub and skeleton classes 
and interfaces using the ORB’s IDL compiler.  

5. Design and implement the server’s classes that 
implement the functionality defined by the server’s 
IDL interface and communicate with the encapsulating 
sections, including the server’s initialization code and 
the intersection of the server’s implementation classes, 
meanwhile linking with the skeleton classes produced 
by the IDL compiler.  

6. Design and implement the client Java applet based on 
the functionality of the original model GUI, and any 
other functionality necessary but not visible to the 
client applets and applications.  We can write a Java 
applet with the GUI style of original model in order to 
keep the user interface unchanged, or replace the 
orginal functionality with a new paradigm. 

7. Define XML elements to encapsulate the structure 
data during the transmitting process, in order to 
communicate efficiently with applet, databases and 
other models.  This means encoding and decoding of 
all object classes as shown in Fig. 3. 

Fig. 3: Encapsulating technology 

Fig. 3 indicates that to use IIOP architecture, we need to 
design the wrapper codes for the legacy system.  There are 
many technology choices for this wrapping: 

• Use C link libraries provided by original language, 
such as FORTRAN using "cfortran.h", MATLAB etc; 

• Use intersection programs to connect each software 
component, such as a . DLL or temporary text files; 

• Use a third bridge language, such as Tcl/Tk when 
working with text files and programs; 

• Use a translator, for example, IDL2XXX; xxx means 
the other language, such as PASCAL, C++, JAVA, 
PERL; 

• Use COM/OLE technology;  
• Use some special interface, such as Java RMI.  

For our physiological example – which used a MATLAB 
model – there were two open system choices for  
encapsulation:  

• Use the C/C++ language to call the MATLAB engine 
libraries (C/C++) provided by MATLAB, such as 
libmx.lib, libeng.lib and libmat.lib; 

• Use the MATLAB C/C++ compiler (mcc.exe) to 
convert MATLAB files ( . m files) to C/C++ programs 
first, then link with the MATLAB C/C++ Math & 
Graphics Library.  

After comparison, we used the first method to encapsulate 
the model. It cost less work than the second method. 

The new model with Web-based architecture gives 
correct results as Fig. 4 illustrates.  We can type the 
parameters in or use drag bars to choose the values.  
Clicking the “run” button will call the calculation model and 
display the results on the left-bottom of the window; 
clicking the “interpolation” button will get the results from 
the interpolation table.  If you click the numbered points on 
the diagram of cardiovascular system after calculating, a 
window with three choices (pressure, velocity and area) will 
be displayed; then, according to your choice, the program 
will produce the graphs of the pressure, velocity or area of 
that point (location), as shown in Fig. 4.  There is an “output 
window” that we use to display the intermediate results.  

 

 
Fig. 4: User interface for the new cardiovascular model based on Java 

applet technology and IIOP architecture; this picture also shows  the results 
response to the remote user request.  
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After the above work, one serious problem remained: 
the model was not interactive. The orginal MATLAB model 
took several hours/case.  Each calculation of our compiled 
model spent from half an hour to several hours on our 
Pentium III 400MHz machine.  Nobody can wait such a 
long time on the Internet.  How do we get the result during a 
short online time? Our answer is to use a library (database) 
of precomputed results and an interpolation technique 
instead of the real calculation (Fig. 5).  This solution can 
save time from several hours to half a minute.  The new 
model using a five-dimensional interpolation runs in 
seconds without any change in either the client or the 
network architecture.  

 
Fig. 5: The performance solution: rip out the existing MATLAB 

model and replace it with a five-dimensional interpolation table (results 
library). 
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Fig. 6: Comparison of a typical result from the interpolation with that from 

the calculation  of  the original model 
 

Fig. 6 illustrates that the results from 5-D linear 
interpolation has good accuracy although the error is about 
five percent.  It is good enough for most clinical and 
teaching purposes.  There are several ways that one could 
increase the accuracy: 

• Increase the number of tabulated values in the library; 
• Smooth each curve of one set of variables in the 

library first, but this will increase the time of 
computing; 

• Use nonlinear interpolation. 
 

4.  CONCLUSIONS 
 

CORBA is an open standard for distributed technology.  
It is therefore not surprising to see Web-based healthcare 
and physiological applications using CORBA as the 
underlying technology.  Automated memory management, 
built-in thread support, and applet mobility make Java an 
ideal choice to implement CORBA clients and servers.  
With the backing of major players like Sun Microsystems, 
Netscape, and Oracle, the combined use of Java and 
CORBA will become commonplace in healthcare and 
biology, even in enterprise systems.  Because of wide 
support for IIOP in firewall proxies, the availability of free 
or low cost ORB implementations, and built-in support for 
IIOP in server-side Web applications such as Web servers, 
however, IIOP may not become the standard Internet 
protocol.  [3] 

XML retains the key SGML advantages of extensibility, 
structure and error checking, and has been designed for 
maximum expressive power, a minimal learning curve, and 
maximum ease of implementation.  Being intended for the 
storage and manipulation of text making up humane-
readable documents like Web pages, it is already used in 
many fields.   

A composite solution using CORBA/IIOP, Java, 
(JDBC) and XML is replicable with many different types of 
physiological models that produce a variety of results: 
graphical, numerical, and images.  This concept and the 
underlying software should be reusable by others.  It is a 
good means of delivering physiological models that allows 
interactive and distributed use over the Internet. The IIOP 
architecture can be considered as a precursor to a large 
Physiome project [5] with much more complex distributed 
models.  
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