
Abstract: This paper proposes a modified Windkessel model 
applied to the coronary circulation and first pass imaging 
techniques. A compartmental description of the blood flow is 
used. The compartments taken into account are the arteries, 
capillaries, lymphatic and venous systems, extravascular 
/extracellular and cellular domains. In addition the model 
includes mass transport by blood flow between compartments. 
The predictions of the model are presented in the simple case of 
first pass output concentration curves obtained with MR 
contrast agent in a non-beating blood perfused pig heart. The 
first results are obtained for low and high input flows in a 
normal heart. The last one is a simulation of an ischemic heart 
behavior. 
The results are in a good agreement with the experimental data 
from the normal heart and with the characteristic behavior of 
the microcirculation in the ischemic heart. 
In conclusion this method which integrates both pressure-flow-
volume and mass transport models would be well adapted for 
the modelisation of perfusion imaging studies. 
Keywords: Windkessel, Coronary circulation, Capillaries, 
Resistances, Compliances, Non-beating heart, MRI data. 

 
I. INTRODUCTION 

 
The aim of this paper is the development of a clinically 
oriented lumped-parameter model of the coronary system. It 
is based on a modified nonlinear Windkessel model [5, 9] and 
takes into account the mass transport effects. A compartment 
schema is used. Each compartment is characterized by both 
mechanical parameters to represent blood flows and mass 
transport. The initial data is the input flow and the resulting 
variables are flux, flow and pressure for each compartment.  
 
In the literature, several authors developed pressure-flow-
volume models of the cardiovascular system (Rideout [9], 
Clark [5], Snyder [10]). Other ones, have been interested by 
modelling the mass transport of tracers and other matters 
such as water, oxygen, protein, see Bassingthwaighte [1]. 
These models are generally characterized by black box 
behavior and are not able to identify normal from abnormal 
cases. 
 
The first aim of the present model is to discriminate between 
normal from abnormal myocardial micro-circulation behavior 
for a given indicator by using MR intravascular perfusion 
images [2, 3, 8]. Then, the pressure-flow-volume relations are 
combined with those of mass transport between 
compartments. In the present study, a linear case is presented 
and the results obtained are compared to MRI data for blood 
perfused non-beating pig hearts. 
 
This model will be used later to identify, for an individual 
case, the coronary circulation parameters. It can be easily 
adapted to another system such as the lung circulation. The 
non linearity of arteries and capillaries resistances can be 

taken into account easily. In the present study, a linear case is 
presented and the results obtained are compared to MRI data 
for non-beating pig hearts. 

 
II. THE MODEL 

 
We use a compartmental diagram of an open circuit to 
simulate the coronary circulation system of a non-beating pig 
heart with a constant input flow Qa, see the figure 1. We 
assume arteries, veins and capillaries to be made up of 
cylindrical vessels with linearly elastic walls. Then, blood 
and fluid may be regarded as incompressible fluids with 
simple Newtonian characteristics. The pressure is considered 
to be uniform in the cross-sectional area of the vessel. And, 
we assume that the resistance R to flow is given 
approximately by the Poiseuille law. The compliance C of a 
vessel is defined by the slope of pressure versus volume 
curve. This parameter can be regarded as a constant for 
limited range of positive transmural pressure. 
 
Each compartment is then characterized by physical 
parameters such as resistances to flow or to diffusion and 
compliances. The principal compartments taken into account 
in this diagram are the coronary artery, capillaries, lymphatic 
and venous systems, cellular and extravascular/extracellular 
domains. A given compartment is characterized by three 
equations which calculate the flow, the pressure and the 
relation between flow/diffusion and pressure. For example, 
the following equations characterize the first compartment 
representing the coronary artery. 
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Where: 
�� Va, Ve, Va0 and Ve0 are respectively the actual and 

initial [5] blood volumes in the coronary artery and 
the extravascular/extracellular domain; 

�� PTMa is the aortic transmural pressure; 
�� Qa and Qc are respectively the blood flow in the 

coronary artery and the coronary capillary; 
�� Pao, Pa and Pe are respectively the aortic pressure, 

the arterial coronary pressure and the extravascular/ 
extracellular domain pressure; 

�� Ra is the resistance to flow in the coronary artery; 
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�� Ca and Ce are respectively the compliance in the 
coronary artery and in the extravascular/extracellular 
domain. 

 
Ordinary differential equations of the compartment volumes 
(Va, Vc, Vv, Vat, Ve, Vcell) are then derived: 
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with: vccap QQQ −=  (7) 

We denote by Qi the longitudinal or transversal flow 
(diffusion) in the ith compartment. 
The Ordinary Differential Equation (ODE) system (6) 
depends on the resistances and compliances, which 
characterizes the model, see figure 1. These parameters 
connect pressures and volumes to flows. We denote by : 

�� Ra, Rc, Rv, Rcs and Rat the resistances to flow, 
respectively in, the coronary artery, the coronary 
capillary, the venous, the coronary sinus and the 
atrium; 

�� Rcap the transversal resistance from the capillary 
system to the extravascular domain; 

�� Rcell the transversal resistance from the extravascular 
/extracellular compartment to cellular one; 

�� Rlym lymphatic compartment resistance; 
�� Rmyo mechanical resistance of the myocardial system 

around the capillaries; 
�� Pmyo the myocardial pressure around the capillaries; 
�� Pe the extravascular/extracellular pressure; 
�� Ppi the osmotic pressure; 
�� Patm the atmospheric pressure. 

 
These ODE equations are solved by using a numerical code 
[6] based on Backward Differentiation Formula method 
(BDF) using Newton iteration. 
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Fig. 1. Linear compartmental diagram of an open circuit 
representing coronary circulation of a non-beating heart. 

III. EXPERIMENTAL DATA 
 

The experiments investigate the first-pass from intravascular 
MR contrast agent for blood perfused non-beating isolated 
pig hearts. The details of the preparation have been described 
elsewhere [2, 4]. Proximal left and right coronary arteries 
were isolated and selectively cannulated to avoid any leakage 
through the aortic valve. Both cannulas were connected to the 
same pump. The heart was perfused at controlled flow levels 
with a modified Krebs-Henseleit bicarbonate buffer [4], 
mixed with heparinized blood in a 4:1 proportion and 2,3 
Butanedione monoxime (30 mmol/l). The perfusate was 
oxygenated and warmed at 38°C. 
A constant quantity of 0.05 mmol of CMD-A2-Gd-DOTA [7] 
was injected into the perfusate. Ouput concentration curves 
were obtained by atrial blood sampling. 
Figures 2 represents the experimental output concentrations 
curves. These results are obtained for a low and a high 
constant input flow (150 ml/mn and 400 ml/mn). The 
experimental output flow is given by: 
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where q is the quantity of contrast agent injected and Cout(t) is 
the output concentration function. The output flow is 
determined by using gamma variate functions to fit 
experimental data. The output flow obtained for the low input 
one is 134.67 ml/mn. For the high input flow we obtain, 
360.26 ml/mn. 
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Fig. 2. Experimental curves  

for a low and a high input flow. 

 
IV. RESULTS AND DISCUSSION 

 
A. Normal Heart 
 
The results obtained from the theoretical model of a normal 
pig heart presented above for the low input flow (150 ml/ mn) 
are : 

�� the evolution of the different compartmental 
pressures, figure 3; 

�� the evolution of the different compartmental flows 
figure 4. 
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Fig. 3. Theoretical pressure curves of the different  

compartments for a low input flow. 
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Fig. 4. Theoretical flow curves of the different  

compartments for a low input flow. 

 
The results obtained from the theoretical model of a normal 
pig heart presented above, when we increase the flow from 
150 ml/mn to 400 ml/mn (rest to stress), are : 

�� the evolution of the different compartmental 
pressures, figure 5; 

�� the evolution of the different compartmental flows, 
figure 6. 
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Fig. 5. Theoretical pressure curves of the different  

compartments for a high input flow. 
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Fig. 6. Theoretical flow curves of the different  

compartments for a high input flow. 

 
It can be shown that the predicted behavior of the heart, by 
the theoretical model, is in agreement with the expected 
physiological behavior. The pressure distribution in the 
principal branch present a good agreement with the 
physiological one. The theoretical output flow Qat, for the 
low input one, is equal to 140.81 ml/mn, which represents a 
relative error of 4.56 % with the experimental value. For the 
high input flow the theoretical value is 378.58 ml/mn, the 
error is of 5.08 %. These results present a good agreement 
with the experimental data. 
 
B. Ischemic Heart 
 
Figures 7 and 8 represent the behavior of an ischemic heart. 
This behavior is obtained by increasing the different 
resistances of the theoretical model, in order to modelize 
ischemia. It is shown that the prediction is in agreement with 
the physiological behavior of such a heart. In fact, for a given 
constant input flow, we observe an increase of the pressures, 
and an important decrease of the flows. This matches some 
characteristics behaviors of an ischemic heart. For an input 
flow Qa equal to 150 ml/mn the output flow Qat is equal to 
52.81 ml/mn. These predicted results allow to discriminate 
between normal and abnormal heart behavior. 
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Fig. 7. Theoretical pressure curves of the  

different compartments for a low input flow. 
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Fig. 8. Theoretical flow curves for a low input flow. 

 
V. CONCLUSION 

 
The presented model, based on a linear lumped schema, 
modelizes the behavior of the principal components of the 
coronary circulation system. It is based on a compartmental 
description of the blood flow in the heart. The compartments 
taken into account are the arteries, capillaries, lymphatic and 
venous systems, extravascular/extracellular and cellular 
domains. 
 
Compared to other pressure-flow-volume models, the 
presented model includes as well mass transport by blood 
flow between compartments. The theoretical results obtained 
at two flow levels in a normal heart were compared to the 
experimental data with a good correlation. The third one 
presented is the prediction of an ischemic heart behavior. 
This last simulation has been obtained by increasing the 
resistances of the model, in order to modelize the spasm of 
the heart. Hence, for a given input flow, the model allows to 
discriminate between a normal from an abnormal heart, by 
comparing the theoretical and experimental output flows. As 
this is a non-beating heart the mechanical system can be 
considered as linear with constant resistances. 
 
This model can be easily transformed to take into account 
mass transport by diffusion and nonlinear effect of coronary 
arterial behavior in the beating heart or pharmaceutical 
stimulations. It can also be adapted to another system such as 
the lung circulation. 
 
In perspective, this model could be used to identify, for an 
individual case, the coronary circulation parameters. It can be 
easily adapted to other microcirculation systems such as 
cerebral, pulmonary or renal ones. The non linearity of 
arterial and capillaries resistances can be taken into account 
easily. Moreover, it can be applied to both global and 
regional perfusion measurements obtained by first-pass 
imaging techniques. As both flow and mass transports are 
included in the model, these predictions can be used to 
explore targeted effects of therapies in the post-ischemic 
heart. 
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