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1. INTRODUCTION

A criticality analysis is the term used to describe the vulnerability of a combat vehicle from the perspective of an
automotive engineer who understands the purpose, function, and design of the vehicle. The most basic unit that is
used in its construction is that of the critical component.” A criticality analysis does not itself describe the vulnera-
bility of its constituent components; there are other tools as well as test firings that are designed for this purpose.
Instead, the focus of the criticality analysis is to describe how the components work together as a system to support
the various functions of the vehicle. Much of this can be accomplished with the aid of engineering drawings and
verified by nondestructive testing, where one simply disconnects wires or components and notes the effect upon
vehicle function. The main emphasis is on the logical and engineering relationships of the components, rather than
the components themselves. In order to deal with the engineering complexity of a modern combat vehicle, an ana-
lyst will usually approach the task in a hierarchical manner. First, critical components are identified and assembled
into subsystems; next, subsystems are assembled into systems; and finally, systems are assembled into the various
functions of the vehicle, such as mobility, communications, firepower, etc. Fault trees are the basic building blocks
used in this construction of a criticality analysis.

This report deals with two aspects of fault trees and the role they play in a criticality analysis: how to represent them
and how to evaluate them. Fault trees have been represented as deactivation diagrams, an example of which is
shown in Figure 1.

!

Figure 1. Example deactivation diagram.

This particular deactivation diagram is made up of five critical components, a, b, ¢, d, and e. The system that this
deactivation diagram represents is considered fully functional if and only if there is at least one complete path from
the top node to the bottom node of the diagram. If there is no such path, the system is considered completely non-
functional. The more common term, which we shall use, is “killed.” Components are also treated as having only
two states: functional or killed. Now notice that this diagram has three possible paths so there is a certain amount of
redundancy that helps to reduce the vulnerability. Let’s suppose that components b and e are killed. Then we still
have a complete path through a and d. As far as the system is concerned, it would still be considered fully func-
tional.

Deactivation diagrams are also commonly referred to as fault trees. In this report we make the distinction that a
deactivation diagram will refer to the actual diagram or figure, whereas a fault tree will represent the abstract logical
structure that the diagram represents. For example, in Figure 1, components b and c are arranged in series and com-
ponents d and e are arranged in parallel. One of the goals of this report is to provide a structure that captures this
information without requiring a diagram. Deactivation diagrams are fine for illustrating fault trees, but that is also
their limitation. Often they are just figures in a report and cannot be used by other software. Even if they are written
in terms of a software drawing program, they describe the layout of the figure, not the logical relationships between
components; the emphasis is on appearance rather than logical structure. The other goal of this report is to show that
there is a very simple and efficient way to evaluate systems from their fault trees that avoids having to consider every
possible path through the deactivation diagram.

* The critical components that are used in a criticality analysis are at the level of a Line Replaceable Unit (LRU).




2. A (VERY) BRIEF INTRODUCTION TO XML

The Extensible Markup Language (XML)" will be used to represent fault trees. Here we give a short synopsis of
this language. Actually, XML is better characterized as a meta-language for creating other languages. It achieves
this by providing a means of creating markup (also called fags), which can then be embedded in a document to
describe its structure. Unlike HTML (Hypertext Markup Language), which has a fixed set of predefined tags, the
tags in XML are open-ended and of our own choosing. The particular meaning (semantics) and rules (grammar) that
we give to the tags must be described in a Document Type Definition (DTD), and so this is an ancillary file that must
accompany the structured document.

The idea of using tags to describe a document’s structure was the original intention of HTML., but over the years
these tags have become more commonly used for controlling the document’s appearance in a Web browser. The
emphasis in XML is on content rather than appearance since the whole purpose of the tags is to provide a facility for
describing document structure, and as such, is independent of how it might appear in a Web browser. In fact, it is
only recently that browsers have become capable of displaying XML directly. It turns out, however, that this is not
really a practical limitation, since there are other means of displaying XML in Web browsers.

The syntax in XML is stricter than that of HTML. Every opening tag must have a closing tag unless it is an empty
tag An opemng tag has the form

<element>, R

where element i 1s the name that we glve to the tag A closmg tag has the fonn -

</element>, SR
and an empty tag has the form
<eJ ement:/:z. ‘ i
Tags can also have attributes, in n which ¢ case they have the form S
<element attribute-"valueu >, e

Document content takes ona well-deﬁned meamng when it it sandw:ched between an openmg and a closmg tag, and
it is in this way that the document becomes structured. What makes all of this work is something called an XML
Parser. This is a piece of software that understands tag syntax irrespective of our particular tag semantics. Parsers
have been written for many different programming languages. At a minimum, parsers will automatically check for
proper tag syntax. Validating parsers go further and check that the document conforms to the grammar embodied in
the DTD.

This introduction barely scratches the surface, but it is enough for our purposes. The essential point is that XML
allows us to construct a markup language that can be used to describe fault trees. XML, along with its associated
technologies, is a burgeoning area in the software industry, and there are many resources available online that pro-
vide further information.*

3. FAULT TREE REPRESENTATION
We describe a Fault Tree Markup Language (FTML) with the following list of capabilities. '
» A fault tree written in FTML will be able to generate both
(1) the deactivation diagram, and
(2) the sysdef code that MUVES [1] requires.
« It canbe read (parsed) and used (interrogated and manipulated) by other programs.

* The complete specification of the open source language is available at www.w3.org/TR/REC-xml.

+ It is also possible to include the DTD directly in the document. In general, it can have both external and internal parts and has the syntax
<!DOCTYPE RootFElement SYSTEM ExternalDTD [InternalDTD)>,where RootElement is the actual name of the root ele-
ment, ExternalDTD is the name of the DTD file, and the square brackets contain any DTD definitions not contained in the external file.
Note that the square brackets must be present; they do not have their common meaning of indicating an option.

$ For example, just type in the keyword XML at www.google.com.




» Itis written as a standard text file—which makes it easy to edit and platform independent.
» TItcan be verified (checked for proper syntax) and validated (checked for proper grammar).

Of course we also need to write the software that makes use of the parser, extracts the information and then displays
it in various ways from deactivation diagrams to sysdef computer code. We will show how this can be done in a
Web-scripting language. But our first task is to describe the language itself.

3.1 Fault Tree Markup Language (FTML)

Fault trees are composed of critical components, or other fault trees, that are arranged in a combination of series
and/or parallel structure. As such, we need a language that can be used to describe both a fault tree and a component
(which will then act as nouns of the language). We also need to describe series and parallel arrangement of compo-
nents (verbs). Finally, the components and fault trees have certain attributes, such as a name and an identifier (adjec-
tives). XML is ideally suited for this purpose. As we already mentioned, tags defined through XML can be used to
describe the content of a document rather than its formatting appearance. In our case the content is precisely the
fault tree structure itself.

First, we define the semantics of the language by defining valid tags and attributes, as summarized in Table 1. The
actual grammar of the language is embodied in the DTD, to be described later (see section 3.2).

Table 1. Tags and attributes of FTML.

Meaning | Element | Attributes® Value Type ' Example
Fault Tree ft id string <ft id="5" name="fuel_system">
name string ..
</ft>
Component c ft ( true | false ) | <c id="1234" name="left_track"/>
id string The defaultis ft="false"
name string Notice that this is an empty tag.
Series s none not applicable <s>
</s>
Parallel P none not applicable <p>
</p>

% The order of the attributes is immaterial. For example, <c id="1" name="a"/> can also be written as <c name="a" id="1"/>.

These four tags and the three attributes are all there is to the language. This makes FTML very easy to learn, and
perhaps the quickest way to learn it is to simply code some fault trees. The simplest system is one that contains only
one component. An example of this is the supercharger system on the Paladin [2]; its deactivation diagram is
depicted in Figure 2.

I

Blower Housing
(6048)
!

Figure 2. Example of a single-component deactivation diagram.

The component’s name is Blower Housing and the number 6048 is referred to as the component’s ident, which is a
unique identifier. This fault tree expressed in FTML is as follows:
<?xml version="1.0%%> - ‘
<iDOCTYPE ft SYSTEM ®ft.dtd">
<ft 1d="8" name="supercharger_ system">
< 1d="6048" name="blower_ housing"/>
</ft> ‘ :

The first two lines of this file are boilerplate and will be the same for all fault trees. The first line indicates which
version of XML to use. (Currently, there is only one version.) The second line indicates that the root tag is £t and




that the full DTD is located in a file called ft.dtd. The id of the fault tree should be a unique identifier. A con-
venient choice—and the one used here—is the figure number of the deactivation diagram as published in the critical-
ity analysis report.

The next simplest system is that of two components in series. An example of this is the left-front shock absorber
system of the Paladin, as shown in Figure 3.

I

Shock Mounting Bracket (front left)
(3610)

Shock Cylinder (front left)
(3611)
l

Figure 3. Example of a simple series deactivation diagram.

This fault tree expressed in FTML is as follows:

-q:'?xml versimn-“'l 0"?3
«IDOCTYPE £t SYSTEM "ff.
‘<ft 1d="36" name-"sho

<8» i ‘
e id-"sélo” nanie shaakhmonnting hracket_front 1eft"/>
<c 4d="3611". name-“shoak.cylinder frant 1eft"/> :

</8». P : ‘ E

</ft>

ar> - . B :
absorber left,.fmnt,_system":

Notice that the two component tags are s1mp1y sandw1ched between an opening and a closmg series tag.

Before we go on, let’s make some adjustments in the deactivation diagrams. Notice that the component names can
get rather long, which forces us to use larger boxes (or smaller fonts). This can result in diagrams that span more
than one page (or have names that are difficult to read). To reduce the size of the diagrams, and to concentrate on
the relationship between components, we will use boxes of a standard size and list component names in a table,
which will be keyed to the diagram itself. Figure 4 shows the above diagram in this standardized form.

Fault Tree 16: shock_absorber_left_front_system
List of Critical Components/Systems

Label iD Name
1 3610 shock_mounting_bracket_front_left
2 3611 shock_cylinder_front_left

Figure 4. Simple series deactivation diagram in standard form.

We will also adopt the convention of always using lower case for names and using underscores instead of spaces.
Spaces are perfectly acceptable in FTML, but underscores will prove to be convenient later in case we want to use
the name as a variable in the sysdef code.

Next, is an example of a system consisting of two components in parallel, as shown in Figure 5.
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Fault Tree 66: fire_control_system
List of Critical Components and/or Systems

Label ID Name
1 69 automatic fire control system
2 67 backup fire control system

Figure 5. Example of a simple parallel deactivation diagram.
Shaded boxes will indicate that the “component” is actually a system with it’s own fault tree.”
This fault u'ee expressed in FTML is as follows

(‘?xml version="1 0"?> :
<IDOCTYPE ft SYSTEM "ft.dtd">
<ft id="66" namex"fjre control system >
p>
<¢ ft="true* 1d="69" name=Yautomatic_fire_ control system"/>
, <¢ ft==“true" 3d="§7" name="backup_fire_control_ system"/>
< /p> ‘ . . B :
</£t>

Notice that the system names are underlined, indicating that these are clickable links when displayed in a Web
browser. Clicking on them brings up the corresponding deactivation diagram for that system. Also notice that the
attribute £t has been set to true to indicate that these “components” are systems in their own right. (The default
value for this attribute is false.) This attribute will prove to be essential when we wish to determine the proper
order for evaluating the fault trees.

Notice that the syntactic structure of this fault tree is virtually identical to the series fault tree. The only difference in
the FTML is that now the component tags are enclosed between parallel tags instead of series tags. Notice that
series and parallel tags have no attributes. It may also be worth mentioning again that the attributes in components
and systems can be in any order.

Next we consider a system that has a combination of both series and parallel arrangement of components. An exam-
ple of this is shown in Figure 6, which was taken from the Paladin criticality analysis [3].

* There is no hard-and-fast rule for the distinction between components and systems, as it depends upon the context. In practice, anything that is

represented with a deactivation diagram is considered a system. The authors of the criticality analysis on the Paladin [3] also adopted the con-
vention of using the suffix system to aid the reader.




Fault Tree 27: 1eft_segment_board_power_system
List of Critical Components and/or Systems

Label 1D Name
1 9142 left_segment_board
2 9160 external_receptacle
3 9090 harness_ext_receptacle_to_left_segment_board
4 9027 power_lead_to_left_segment_ board
5 26 slave receptacle power system
6 25 battery supplied power system
7 24 engine suppled power system

Figure 6. Example of a deactivation diagram with both series and parallel.
ThlS fault tree expressed in Frm, isas follows
c?xml veraicn-"l 0"’?>

 <IDOCTYPE ft SYSTEM "ft.dtd"s :
<ft idw"27". name-"Left segment_board_pewer system"

<8>
<g’ id-'9142“ namea“left Begmeut_board"/>
<ps T
<g> ‘ .
: <c id-"9160" namea“external receptacle“/> '
<¢ id—"9090" nameB”harness extmreceptacle to_left eegment board"/>
</8> ‘ g . :
<E> ‘
' <c id-”9027" nameu"powex 1ead_to left segmentwboard"/>
<p>
<o fi="true" id="26" name-‘slave receptacle_power syatem”/>
<o ft="trye" id="25" pname="battery supplied power system"/>
RO ftw"true" 1d="247 name-“engine_ﬁuppled,.pawez Msystem" />
</p> R
g/
</p>
</8>
</ft>

The knack of coding fault trees comes with experience, but one can take either a top-down or a bottom-up approach,
or some combination of the two. For example, with this diagram, we might find it easiest to use a bottom-up
approach by first handling the parallel structure of components 5, 6, and 7, then combine that result with component
4 in a series structure, then turn to the left path and combine components 2 and 3 in series, then combine the two
parallel paths, and finally combine that result with component 1 in series. The top-down approach, on the other




hand, would first recognize that what we have essentially is component 1 in series with some combination of the
rest. The combination is then recognized abstractly as a parallel structure. The parallel structure would then be
expanded in terms of two paths, each of which is in series, etc. In the bottom-up approach, we are regrouping and
collapsing, whereas in the top-down approach we begin with the overall abstract form and expand out from there.
Both methods of coding use a systematic stepwise approach. Which approach to use is simply a matter of taste; the
final result is what is important, not how we get there. Later, we will describe tools that will allow us to generate the
deactivation diagram, and this will then provide visual confirmation that the fault tree is being coded properly.

Any mistakes that may arise in coding fault trees are likely to be due to lapses in concentration rather than any lack
of understanding of how to do it. This is because the coding process is mostly common sense and doesn’t require
any specialized knowledge. The rules used in coding fault trees, which are embodied in the DTD, are therefore
mostly to avoid these types of errors.

3.2 FTML Content Rules
There are a few simple content rules for writing valid FTML.

£t There must be exactly one £t (fault tree) tag per fault tree file. This is the root tag. After the first two lines
of boilerplate, there must be an opening £t tag and the last line of the file must be the closing ft tag. Itis
a requirement of XML that there be only one root tag.

c There must be at least one ¢ (component) tag per fault tree file. If there are two or more c tags, they must
be enclosed by either an s or a p tag.

s An s (series) tag must enclose either
+ ac followed by another c or a c followed by a p, or
+ ap followed by either a ¢, s, or another p tag.

P A p (parallel) tag must enclose either
+ ac followed by either another ¢, an s, orap, or
¢ an s followed by either a ¢, another s, or a p, or
¢ ap followed by either a c, an s, or another p.

The complete set of rules for FTML is embodied in the DTD shown here:

: '<1ELEMENT ft ' ( c i 8- p ) >
" <JATTLIST -t
S - id NMTORKEN  ¥REQUIRED
. name CDATA #REQUIRED
5 N R S
| «1ELEMENT & ( : :
o / e, (elpr )
5‘( p. (o ls | pi)t)
> o o
<|ELEMENT p { . ‘
(e, (eclslp)¥y)|
(&8, (cls|p)t) |
, {p, (cls|pit)
> : .
<{BLEMENT ¢ EMPTY » ,
<IATTLIST . ¢ B L
: : fr ( true | false ) "false"
id CDATA : $#REQUIRED
name CDATA , #REQUIRED
o 2 ) . ’ X

This file, although cryptic, concisely and completely describes valid tags, attributes, and content. Once a fault tree
has been written in FTML, it can be validated against the DTD. For example, a free service is provided by the
Scholarly Technology Group at Brown University (www.stg.brown.edu/pub/xmlvalid/), which allows one to validate
an XML document online. Not only does it check for syntax errors, but it will also check that the document con-
forms to the rules expressed in the DTD. Current versions of Web browsers that have the capability of displaying




XML will also display FTML." However, they will only check for proper syntax, not the more stringent requirement
of conforming to the DTD.

3.3 Criticality Analysis

Once all the fault trees have been coded, they need to be assembled into a criticality analysis file. This is a necessary
step before software can analyze dependencies between fault trees. Assuming that the individual fault trees reside in
files with names of the form ft.*.ftml, then the following shell script, ft2ca, will assemble them into a criti-
callty analysis file called ca. ftml

#l/binssh : '
# ft2ca: Assemble the criticality analysis f11e from the indiv:dual fault tree :
files. fhe individual fault tree files must have names of the form
NEL W ftml“, where "** ig usually the figure. nunber of the fault tree
-as; it ‘appears in a report ‘fhis script assembles the fault trees in.
: ng order on figure number and writes to st ouf 5 .

R

echo ’<?m1 veraion-"l O"?:" Ces AT S . RO
echo -/ <IDOCTYPE .ca SYSTEM "ca. atans’ AT e T g
.~ -echo ’<ca name="Criticality Analysis-of Paladm M109A3EZ">' : IR
-~ for file in. ‘lrs g id P ftm.l ! sart A -t. +1‘ S L

(o)
‘ cat $file * Qrep "’V "varsien' f gx:gp vy 'DOCTYPE"

done s s e
echo '</ca>' . : : .

This sample script is for the Paladm, the name should be changed as appropriate for another vehicle. The cntlcahty
analysns DTD is basxcally the fault tree DTD with the change that the root tag is now ca instead of ft:

<|ELEMENT ca. { ft )+ > .
<|ATTLIST ca o o
%) ume‘sx‘:cgwrh - #REQUIRED

, s ref. CDATA . #IMPLIED
L _ nqte.‘cm-\‘.t'A ; ‘ #IMELIED
i< BLEMENT. -( ¢ I s | p) B
K INTTLIST: - ft e ’
ToAdl .moxmv..,. '#REQUIRED
g “opname,  CDATR: mnoummn
1y s L
" <! BLEMENT . I GRS S .
g e Ko I Y+ Yo
.).(p, -x&‘,;.a }p)«k)
> . P o
<IELEMBENT. p 50 o e cio
R te, Lo g p)+ Y1
oo se e s by ) L
')_( p; (B lis Lp)y )
<|BELEMENT ‘e -5 . EMPTY: o >
S <ATTLIBT ..oic 0 S o
' B 4 o ( true | false )  "falge®"
-id CDATA B " #REQUIRED
- nane ;- CDATA - . #REQUIRED
> L

The ca tag has three attributes: name, which is required; ref, which is an optional reference such as a published
report; and note, which is an optional note which documents the criticality analysis (such as assumptions or limita-
tions). A criticality analysis must consist of at least one fault tree. Once the ca . ftml file has been constructed, the
software described in this report no longer has a need for the individual fault tree files and they can be safely deleted.

* Incidentally, the display of FTML by current browsers looks very much like what is in the fault tree file, including indentation (even if indenta-
tion is not in the original), and there is a good reason for this: The content of FTML is the structure. That is to say, the only structure that the
browser knows about is the tag structure based upon tag syntax, and that is precisely the tree structure of the fault tree. This is another reason
why fault trees are such a natural application for the use of XML.




3.4 Fault Tree Tools

FTML is an XMIL.-based markup language for describing and storing fault trees. It is a very simple language, con-
sisting of only four tags; and yet these four tags are all that is necessary to code any set of fault trees in a criticality
analysis, no matter how complex. As a language, FTML does not require the Web—provided we still have an XML
parser! And up to this point, the only use we have made of FTML is to provide a structure so that fault trees can be
described and stored as text files. But the fact that XML is so closely associated with the Web means there are sub-
stantial benefits if we take advantage of this fact. And so the Web-scripting language of PHP" has been used to
design some Web-based tools that extend the usefulness of FTML. These tools are able to display a criticality analy-
sis in a Web browser, as both a deactivation diagram and as MUVES sysdef code. In either display mode, system
names are formatted as hyperlinks, in order to facilitate navigating through the criticality analysis. Using the fault
tree in Figure 6, here is an example of how this tool (hsplays sysdef code

left segment boardwpower system -

left, segment board :

}
(

ext ernal receptacle

harness ext receptacle to_left segment,jooard
&
power_lead_to_left segment_ board

( EWQ-MM

WM@M
yi _

This Web-based tool also has the capability to analyze a criticality analysis and perform the following functions:

«  List all the critical components along with their idents;

»  List all the systems along with their IDs;

e Search for a specific component and list all its idents;

»  Search for a specific system and list all its components;

» Find all the systems that contain a given component;

»  Find all the systems that contain a given system as a subsystem;

«  Find all the components that occur more than once along with the systems in which they occur;

»  Find all the systems that contain repeated components.

The tool will also analyze dependencies in order to display the systems, and the sysdef, in the proper order for evalu-
ation. If there are cyclic dependencies among the systems, this will be detected and all the systems involved will be
listed. Repeated components and cyclic dependencies among systems become important when it comes to actually
evaluating fault trees (as we show in the next section).

A Web browser provides an excellent environment for navigating through a set of fault trees in a criticality analy sis
and should be particularly helpful in the actual construction of the criticality analysis.” However, it is not the best
medium if one wants a record of the criticality analysis that can be included in a report. To satisfy this need, the tool
was extended to provide the option of saving the criticality analysis as a PDF document (see Figure 15 on p. 22).

* This is an open-source language that is available online at www.php.net. Originally, PHP stood for Personal Home Page but has now taken on
the (recursive) meaning of PHP Hypertext Preprocessor.

1 Notice that the tools described in this report are all based upon the FTML text file, which must be constructed first before the deactivation dia-
gram can be displayed. Another tool has been developed recently that facilitates the construction of deactivation diagrams by providing a
graphical interface, and also has the capability of writing out the FTML {4].



Finally, in order to facilitate the conversion to FTML, another tool has been developed which converts legacy sysdef
code to FTML.

4. FAULT TREE EVALUATION

Evaluation of a fault tree means a determination of whether the system it represents is functional (not killed) or non-
functional (killed), given the state of each of its constituent components (as either killed or not killed). There are
two different ways that a fault tree can be evaluated. One is based on Monte Carlo sampling, and the other is based
on probability algebra.

4.1 Monte Carlo Sampling

In Monte Carlo sampling, components and systems are represented as having only two states: either killed or not
killed. We will use 1 (true) to represent a killed state and 0 (false) to represent a non-killed state. Given that
the probability of killing component i is p;, one performs a Bernoulli trial on each component by drawing a uniform
random number r; between 0 and 1—more precisely, r; € [0,1)—and assigning the state k; of the component
according to

k= 1if r; < p; (killed), N
P71 0 if ;2 p; (not—Kkilled).

Once all the components are assigned, the state of the fault tree itself can be determined. This is accomplished by
breaking it down into its arrangement of series and/or parallel subsystems and systematically evaluating each of
these. First consider a system consisting of just two components, a and b, arranged in series. The system will be
killed (i.e., no complete path from top node to the bottom node of the deactivation diagram) if and only if either a is
killed, or b is killed, or both are killed. Next consider a system consisting of two components, a and b, arranged in
parallel. This system will be killed if and only if both a and b are killed. This means that the OR operator, |, will
represent two components in series and the AND operator, &, will represent two components in parallel, as demon-
strated in Table 2. For completeness, we also include the XOR (exclusive or) operator, ~, which is true only when
one or the other is true, but not both.

Table 2. Truth table for series, parallel, and exclusive OR.

Component Series Parallel Exclusive OR
a b al|b ash a"b
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

The beauty of this method is its s1mp11c1ty For example, the C code to evaluate the fault tree deplcted in Flgure 1 is
' system-ai((blc)&(dse)).. o s

Parentheses perform the function of grouping the components into sunple series and parallel subsystems In th1s
way, it is very straightforward to write the C code to evaluate the most complicated fault tree, since it is nothing
more than components arranged in nested series and parallel. Indeed, one of the tools will do this automatically -
from the FTML description of the fault tree. The downside of this approach is that one needs to sample the compo-
nents and evaluate the system a number of times from the given component kill probabilities in order to generate sta-
tistically significant results. We will continue this discussion of the pros and cons of the Monte Carlo approach after
we have first described the probability algebra approach.
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4.2 Probability Algebra

In this approach we use the component kill probabilities directly. If p, represents the probability that component a
is killed, and p, represents the probability that component b is killed, then the kill probabilities for series, parallel,

. and exclusive OR arrangement are given in Table 3. It should be emphasized that these formulas are strictly valid
only when there is independence (i.e., no correlation) among the individual kill probabilities.

Table 3. Kill probabilities for series, parallel and exclusive OR.

Combination Expression
Series 1-(1- p)(1 - py)
Parallel DPaPb
Exclusive OR Pa(1 = pp)+ pp(l — po)

To make these expressions as simple to use and as transparent to verify as the Boolean expressions, we encapsulate
the probability algebra into a C++ class,” as summarized in Table 4.

Table 4. Probability algebra with the Prob class.

Operation Mathematical Notation Computer Code
Definition Let p be a probability, Prob p;
where0< p<1 assert (0<=p&sp<=1);*°
Let p=0.5 Prob p( 0.5 ); or
Prob p = 0.5;
Logical OR 1-(1-p)1 - pp) a | b;
Logical OR assignment Pe=1-(1-p)1-pp) a |= b;
Logical AND PaDb a & b;
Logical AND assignment Pa < PaPp a &= b;
Logical EXCLUSIVE OR P =p)+U~-pps a ~ b;
Logical EXCLUSIVE OR assignment Pa = Pl —pp)+(A—pdps a "= b;
Logical NOT 1-p lp; or
~Pi
Input a probability p NA cin > p;
Output a probability p NA cout << p;
Assign one probability to another Let p,=p,or b = a; or
Py & Pa b( a );
Addition Pa+ Db a + b;
Addition assignment Pa &= DPat Py a += b;
Subtraction Pa— Db a - b;
Subtraction assignment Pa = Pa— Db a -= b;
Multiplication by a scalar s Pp=Spgor b =3s*a; or
Py =DaS b=a*s;
Multiplication assignment Do &= Spgor a *= s;
Pa & PaS
Division by a scalar s pls P/ s;
Division assignment p< pls p /= s;
Check for equality Is it true that p, = p,? a == b;
Check for inequality Is it true that p, # p,? a = b;

% It is not necessary for the user to explicitly code this assertion, as the Prob class constructor enforces it automatically.

Note: NA = not applicable.

* Defining a class in C++ effectively extends the language, so that variables that are now declared Prob can be used just as easily as native types

suchas int or bool.
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This C++ class gives us the ability to use the same simple expressions in the computer code regardless of whether
the components are being represented by discrete Boolean states or by continuous probabilities. This makes it very
easy to verify fault tree coding— where we would otherwise be confused by a sea of parentheses. To take a simple
example, the coding of Figure 1 is p=1—(1 - p,)(1 - (1 = (1~ pp)(1 - pc))pap.), using parentheses only where
they are essential! Using the Probclass,p=a | ( (b | c ) & (d & e ) ).

However, there is an important issue that must be addressed in this probability approach—which is not an issue with
the Monte Carlo approach— and that is the problem of repeated components.

4.3 How to Handle Repeated Components
Consider the deactivation diagram shown in Figure 7, where component a has been repeated.

Figure 7. Deactivation diagram with repeated component.

The Bradley A2 degraded states [5] deactivation diagrams are expressed in this manner. It’s important to realize that
the diagram expresses the logical arrangement of components, and not their actual physical arrangement. One will
get the wrong answer if this is not taken into account. If component a gets killed, for instance, then it gets killed
everywhere. To properly evaluate fault trees with repeated components, we factor out the repeated component and
systematically reduce the fault tree to a sum of simpler fault trees that have no repeated component. We can factor
out the dependence on component a, as depicted in Figure 8.

a ( ) + (1-a)( )

Figure 8. Decomposition of repeated component diagram.

The component a is either killed, in which case we have the diagram on the left, or it is not killed, in which case we
have the diagram on the right. The probabilities are additive because this decomposition represents a partition of the
probabilities into disjoint cases of either a (with probability a) or la (with probability 1 — ). The diagram on the left
is killed (i.e., no complete path from top node to bottom node) if and only if either b or c is killed. The diagram on
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the right, on the other hand, already has a completed path, regardless of the state of b or ¢, and thus cannot be killed
(i.e., its kill state is 0). Therefore, the diagram evaluates to

a(blc)y+({(-a)(0) = as& (b]| c).

This final expression shows that the original diagram is equivalent to the one shown in Figure 9.

!

Figure 9. Equivalent diagram without repeated component.

Now, this example is simple enough that we could easily recognize the diagram in Figure 7 could be replaced by the
diagram in Figure 9. But the fact remains that this method of factorization of repeated components and systematic
decomposition into simpler diagrams can always be carried out. Formally, if A represents the diagram in Figure 7,
and f(a, b, c) is the function defined by the expression { a & b ) | ( a & c"),then

A= f(a,b,0)
=af(1,b,¢)+(1-a)f(0,b,c)
=af(1&b) | (1asc)]+(1-a)[t0&b) | (0s&c)]
=a[b | c]+({1-a)[0 | O]
=al | ©)
=a& (b c), €))

where we have made use of the correspondence between the Boolean expression and probability algebra summa-
rized in Table 5.

Table 5. Correspondence between Boolean expression and probability algebra.

Code Boolean Expression Probability Algebra
a&b a &b ab

1 & a a a

0 & a 0 0

alb alb 1-(1—-a)1-b)

11| a 1 1

01| a a a

a”b a”" b a(l-b)+b(l1-a)
1° a la l—a

0~ a a a

Next, suppose that the function f(a, b, c) represents a diagram where both components a and b are each repeated.
Then, the factoring and decomposition proceeds as follows:

f(a,b,0)=af(1,b,c)+(1-a)f(0,b,c)
=albf(1,1,0) +(1 - b) f(1,0,0)]1 + (1 — &)[Bf (0, 1, ) + (1 - b) £(0,0, c)]
=abf(1,1,c)+a(l —b)£(1,0,¢) + (1 — @)bf(0,1,¢) + (1 — a)(1 - b) £(0,0,¢)

resulting in four terms. Finally, suppose that all three components are repeated. This will produce 23 = 8 terms:
fla,b,c)=(1-a)1-b)1-0c)f(0,0,0) + (1 -a)(1-b)cf(0,0,1) +
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(1-a)b(1 -¢)f(0,1,0) + (1 —a)bef(0,1,1) +
a(l-b)(1-¢)f(1,0,0) + a(l - b)cf(1,0,1) +
ab(1-¢)f(1,1,0) + abcf(1,1,1).

This can also be written as

-

f(a,b,c) = i i 2 - a)'"bi(1 - b) iK1 - ) £, 4, KD, )

=0
with an obvious generalization to n components, a;,---, ap:
fay,ap,«,a,) = 3y z at(1—a)' a1 - ap)' - (1 - ap) T f i, -0 ®)

iy =0iy=0 i=0

With the Prob class, evaluation of fault trees is simple. For example, suppose that a system is defined by the follow-
mg functlon
Pmb system( vector< Pmb > p ) { .
ret;u:cn '
p[OJ Yo/ a
( ptll /Db

i plal 2

& . '
E{BJ‘ /7 a
plal . // e

, )
Y
=y P ORARE
Thls can be evaluated by sunply callmg the functlon

system( p ) : ' |
But now consider the case where one or more components occur more than once in the fault tree. Let’s say b is
repeated

Prob system( vector< Prob > p ) {

return

1}010] /s .a

( e
( ;([;.1] // b
) pi21 = //¢c
) :

ptil /7 b again
]
, pi3} /7 d

S )i

1 ‘ .
We will get the wrong answer unless we account for this repeated component. This prompts us to extend the Prob
class and develop methods that handle any number of repeated components. The result of these efforts is summa-
rized in Table 6.
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Table 6. Probability methods with the Prob class.

individual kill probabilities
pi»wherel<n< N

such thati; +:--+i,=n

Description Mathematical Notation Computer Code
Probability of exactly zero | N i vector< Prob > p;
kills, given N individual kin | 11— P9 zero( p ); or
probabilities p; none( p ); or

P].'Ob( P, 0 )i
Probability that all are killed, | ¥ vector< Prob > p;
given N individual kill prob- £I1 b all( p ); or
abilities p; prob( p, p.size() );
Probability that exactly (any) 1-i iy =i vector< Prob > p;
n items are killed, given N 112_:0 ‘Nz_ pi (1 —p) ey (- py) T prob( p, n ); or

prob( p, n, ANY };

Probability that n or more
items are killed, given N
individual kill probabilities
pi-wherel1<n< N

1 1 . ,
EO 2 pi( —pl)“" P - py)'
iy= IN=

suchthat n<i; +.--4+i,<N

vector< Prob > p;
prob( p, n, OR_MORE);

Probability that n or less
items are killed, given N
individual kill probabilities
pi,wWherel1<n< N

): z Pi(l=p)h e (L - py)tH

i =0 iy =0

suchthat 1 <i; +---+i,<n

vector< Prob > p;
prob( p, n, OR_LESS);

Probability that n adjacent
items are killed, given N
individual kill probabilities

1 1 . . , .
Y- Y pid—p)tee pli (1 - py)

Q=0 iy=0
suchthati; +---+i,=n

vector< Prob > p;
prob(p,n, ADJACENT) ;

f(p1, P2+, pw) is killed,
given the individual (non-re-
peating) kill probabilities

where no p; occurs more than once

pi;wherel<n<N and ij,-+,i, are consecutive indicies
Probability that n non-adja- 1-i iy (=i vector< Prob > p;
... - N
cent items are killed, given ;,Z-:O ,NZ_ P =p)'™ e Py (1= py) prob(p,n, NON_ADJACENT ) ;
N individual kill probabili- | gyuch thati, +---+i,=n
ties p;, where 1 S n< N and i,,---, i, are not consecutive indicies
Probability that a system | f(p1,p2. ", PN) Prob(*f) (vector<Prob>) ;

vector< Prob > p;
£f( p )i or
evaluate( £, p );

Probability that a system
f(ph P2 ',PN) is killed,
given that only one index, i,
occurs more than once

f(p1, 2.5 Pw)
where only index i occurs more than once

Prob(*f) (vector<Prob>) ;
vector< Prob > p; -
evaluate( f, p, i );

F(p1, pa,+++, py) is Kkilled,
making no assumptions

about repeated indicies

where any or all of the indicies may occur
more than once

Probability that a system | f(py,P2--"sPN) Prob(*f) (vector<Prob>) ;
f(pisP2,+++, py) is killed, | where indicies iy,---,i, occur more than | vector< Prob > p;

given that many indicies | once vector< int > i;

occur more than once evaluate( £, p, i );
Probability that a system | f(pi,p2,-*-,Pn) Prob(*f) (vector<Prob>) ;

vector< Prob > p;
evaluate_all( £, p );

With these methods the case con31dered last i is s1mp]y

evaluate( system, p, 1 ),

since 1 is the repeated index.
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4.4 How to Handle Circular Dependency of Fault Trees

Beyond the problem of lack of independence among components due to their repeated occurrence is the problem of
cyclic dependence among fault trees. One finds instances of this in the Abrams M1A2 criticality analysis [6], so it is
a real issue that must be dealt with. Consider a simple example, as illustrated in Figure 10.

A B c

Figure 10. Example of cyclic dependence among fault trees.
In terms of Boolean logic, the state of each diagram is easy to express in code:

But in order to evaluate system A, we need to know system B, which involves system C, and that, in turn, involves
system A again. Each system is defined recursively, and we don’t seem to be able to get started.

But it’s also possible to write down the kill probabilities for each diagram:

pa=1-(-p)1-pyps),

PB = PcPc >

pc=1—-(1-pa)1-py).
This is simply a system of three equations in three unknowns, which is easily solved:
_ (1= pa)[1 = pp + (1 — pc)]

1-(1=ppprp:(1—pg)

pp=pc—p(1-paXl—p1),
pc=1-(1-py)1-p)).

pa=1

So, it’s clear that there is indeed a solution, and the problem is well defined. The problem, though, is that we would
rather not have to perform this algebra. This example happens to be very simple; a real criticality analysis can
involve many more than three fault trees, where each fault tree can involve many more components, resulting in
some very messy algebra.

But the fact that the problem is well defined leads to another approach. Notice that no matter how complicated each
system may be, they are still probabilities, and as such, must lie between 0 and 1. Consequently, we could try find-
ing a solution by iteration using either a Newton-Rhapson or bisection algorithm. But a better idea is to simply use
recursion. The idea here is that we initially assign kill probabilities to each of the systems involved in the cyclic
dependence and then iterate a number of times until each of the system probabilities converges to a solution. It turns
out that this seems to work well and is very easy to implement. For example, here is the code for this example:
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Pvrob A 0. Y, BJ(‘ 0. ), C( 0. ); // using 0 pmbabllltxes as a startxng po:mt :
const int N_ ITERATIONS = 15; - /7 numbet of iterat icms -

for (int i = 0; 4 < N_ lTERATIONS, i+ )
b&B);

Q>
nonon
oo

I
& O
| &;

}
By trial and error, fifteen iterations were found to be more than sufficient, not only for this example, but also for
many others that were tried, including the Abrams criticality analysis which involved dozens of fault trees.

Monte Carlo sampling, in which components and systems are represented by Boolean variables, can also deal with
cyclic dependence usmg thls same prmc1p1e of recurswn

bosl a( 0 )., ( 0 ), C¢ 0 Y /7 using 0 Bcoleans as a starting point
const int N_ITERATIONS = 15; J/ number of iteratwns :

for ( int i = 0; i < N_ITERATIONS; 14+ ) {
b & B };

0w
Bt

a | (
c & C;
, d ] B;
This effectively primes the systems, and this becomes the starting point for gathering statistics. This procedure
amounts to taking N + 15 samples, but then performing the statistics on the last N.

4.5 Comparison of Monte Carlo Sampling and Probability Aigebra

The coding for normal fault trees, which have no repeated components and no cyclic dependencies, is the same for
both methods, only the variable declaration is different (bool for the Monte Carlo method and Pxob for the proba-
bility algebra approach). Table 7 summarizes the differences between the two approaches.

Table 7. Comparison of Monte Carlo sampling and probability algebra.

Issue Monte Carlo Sampling Probability Algebra

Component Representation Discrete killed or not-killed Continuous kill probability
Accuracy Increases with the number N of Exact

samples, but no better than N~
Able to handle dependencies Yes? No*
among components?
How to handle repeated Done automatically Identify components and call the
components appropriate class method
How to handle cyclic dependence | Slight increase in number of samples | Iterate small number of times first
Requirements Random number generator Prob class
Speed with a normal fault tree Depends on number of samples, but Fast

each sample is very fast
Speed with repeated components | Not any slower than normal case Could be significantly slower
Speed with cyclic dependence Negligibly slower than normal case Negligibly slower than normal case

% The component dependency issue merits some elaboration. Let’s suppose that every time component a is killed, component b is not, perhaps
due to mutual shielding. So every time that a is 1, b is O, and vice versa. If the component state vector is a Boolean vector of I’s and 0’s, then
the Monte Carlo approach would reflect this dependency. However, the component state is usually not (never?) in this form, Rather, it is a pk
vector of component kill probabilities. This vector contains no information regarding dependencies or correlations among the components,
and, consequently, the Monie Carlo method would not be able to extract any. So, for all practical purposes with current MUVES runs, neither
method handles dependencies among components because it is not contained in the input. Nevertheless, the Monte Carlo approach is capable
of dealing with dependencies, whereas the probability algebra approach described here is not because it assumes independence.
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5. FAULT TREE BROWSER

The Web-scripting language of PHP is particularly well-suited for writing applications based on FTML, for two pri-

mary reasons:

+ PHP was and is designed for the Web, with a rich set of features that support a number of technologies includ-
ing XML, graphics, and PDF.

« It is also an interpreted language—which means that it doesn’t need to be compiled first—and this results in a
very interactive environment for the user.

The combination of FTML and PHP makes it possible to design interactive software for displaying in a Web browser

or for generating other interactive (PDF) documents. Here we describe one such application, a Fault Tree Browser

for viewing a criticality analysis.

After the individual FTML files have been assembed into a criticality analysis (as explained in section 3.3), we

would like to be able to browse through the complete set of fault trees. This is the purpose of the Fault Tree

Browser. The home page for this application is shown in Figure 11.

Figure 11. Fault tree browser home page.
The user selects the particular target of interest and the desired order for a listing of its various systems. These
include the order as they are documented in an existing report (i.e., by figure number), alphabetical order by system
name, or the order in which they depend upon one another. In the last case, the ordering is done by making sure that
if system A depends upon system B, then system B is listed before system A. This ordering is important for proper
initialization, and with the number of dependent systems in a typical criticality analysis, the required ordering is not
at all obvious. In some cases, such as the Abrams M1AZ2, it is even possible to have circular dependencies. The
software is able to detect this and isolate all those systems that are involved in circular dependencies. These are
reported separately from all the other systems that are either independent of one another or, at most, have sequential
dependency. There are two types of output that are supported: deactivation diagrams for viewing the fault trees or
sysdef code that is useful for evaluating the fault tree. Finally, the user has the option of either displaying the results

18




in a Web browser or generating a report that can be saved or printed. The last two options will be described more
fully later, but regardless of which options have been selected, when the user clicks on the Go button, the next page
to appear will be similar to that shown in Figure 12.

Fae Edl wew' Go - Communicater . o o
e 9 3 D e owm
i - Back Forward  Heload ~-Home” - Search . Nefscaps
Systems in the Paladin Criticality Analysis
Arranged in System Dependency Order

ispl e Complete Criticalit is

¥

road wheel Jeft 1 system
16. ghock_sbsorber left front system

17. final drive_sprocket lefr system
18. wack tensioner Jeft_system

20. batteries_gyctem
23. yo_kgxs.wu_a
2.

30. Miuv_kaay_b_mw_ﬂssm
47. hydraube_compartment phmbing system
fuse 7_equilibration_system

s3.

S4. fuse 2 er_elevation sygtera
§6. 0

§7. ¢

manuel_traverse sygtem
60. fuse 1_cos traverse system
1. fuse 2_gunner traverse system
63. fuse 6 gaverse clutch system
65. fuge 4 yampmer system
73. yms_system
74. coxmon_gystem

TR ueviehla varsil msevam

A wwia e |

Flgure 12 Llstmg of all the systems in a critlcahty analysis.

Here we see a listing of all the systems that constitute the criticality analysis. In this case, they are arranged in sys-
tem dependency order. By clicking on the top link, “Display the Complete Criticality Analysis,” the complete sys-
def code for all the systems is concatenated together and displayed in the browser. The page can then be saved as a
text file and used in other codes that require evaluation of the fault trees. Notice that all systems are links and by
clicking on them, the user is automatically taken to the particular sysdef expression for that system, an example of
which is shown in Figure 13.
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Figure 13. Sysdef code with links.
By clicking on the links and the Back button of the browser, it is easy to navigate through the criticality analysis.

If we return to the home page and select the Deactivation Diagram option, then we are again presented with a list of
systems similar to the one in Figure 12. But now, clicking on a system will bring up the correspondmg deactivation
diagram. An example of which is shown in Figure 14.
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Empty boxes are critical components, and shaded boxes are systems. By clicking on the system name in the table,
the user is automatically taken to that particular deactivation diagram.

Finally, by returning to the home page and selecting Generate PDF Document, a PDF document is constructed that
has one deactivation diagram per page. An example is shown in Figure 15.
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Here, the Adobe Acrobat Reader is installed as a plug-in so that the resulting PDF document is loaded directly in the
browser. If the user has not installed the plug-in, then the browser would bring up a dialog box requesting the user
to save the PDF file. Notice that the system boxes are shaded in the PDF document. These are links embedded
directly in the PDF document and can be used to navigate through the criticality analysis.

It should be emphasized here that all of this is being done on the fly from just the FTML. Deactivation diagrams,
sysdef code, and PDF documents are constructed and displayed as the FTML is being parsed; nothing has been pre-
processed ahead of time.
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APPENDIX. SOURCE CODE LISTING OF Prob CLASS

// Prob.h: Probability Algebra Class for the Evaluation of Fault Trees

#ifndef PROB_H
#define PROB_H

#include <iostream>
#include <vector>
#include <assert.h>
#include <math.h>
using namespace std;

// list of valid conditions

static const int ANY =0;
static const int ADJACENT =1;
static const int NON_ADJACENT = 2;
static const int NOT_ADJACENT = NON_ADJACENT;
static const int OR_MORE = 3;
static const int OR_LESS - 4;

class Prob {

static const bool KILLED = true; // meaning of true
static const bool NOT_KILLED = IKILLED;

// friends list of functions

friend
Prob zero( vector< Prob > pk ) { // probability of exactly zerc kills

double prod = 1.;
for ( int &1 = 0; i < pk.size(); i++ ) prod *= Ipk[ i ];
return Prob{ prod );

friend
Prob none( vector< Prob > pk ) { // synonymous with zero

double prod = 1.;
for ( int 1 = 0; 1 < pk.size(); i++ ) prod *= Ipk[ i ];
return Prob( prod );

friend
Prob all( vector< Prob > pk ) { // probability of exactly all killed

double prod = 1.;

for ( int & = 0; i < pk.size(); i++ ) prod *= pk[ 1 ];
return Prob( prod );

// return probability of exactly n_kills under the given condition

friend
Prob prob( vector< Prob > pk, // Pk vector
int n_kills, // number of kills
int condition = ANY ) { // condition w/ ANY as default

int n = pk.size();

if ( n_kills == 0 && condition == ANY ) return zero( pk });
if ( n_kills == n && condition == ANY ) return all( pk );

double p_adjacent =0.;
double p_not_adjacent = 0.;
double p = exact( pk, n_kills, p_adjacent, p_not_adjacent );

switch ( condition ) {

case ( ANY ):
return Prob( p );
case ( ADJACENT ):
if ( n_kills < 2 ) return Prob( 0. ); // requires at least 2
return Prob( p_adjacent };
case ( NON_ADJACENT ):
if ( n_kills < 2 ) return Prob( 0. ):; // requires at least 2
if (¢ n_kills == n ) return Prob( 0. }: // non-adjacent impossible
return Prob( p_not_adjacent );
case { OR_MORE ):
for ( int 1 = n_kills+l; i <= n; i++ )
p += exact( pk, i, p_adjacent, p_not_adjacent );
return Prob( p );
case ( OR_LESS ):
for ( int i = 0; 1 < n_kills; i++ )
p += exact( pk, i, p_adjacent, p_not_adjacent );
return Prob( p );
default:
cerr << "invalid condition: " << condition << endl;
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exit( 1 );

}
// return probability of exactly n_kills (both adjacent and non-adjacent)

friend

Prob exact( vector< Prob > pk, // pk vector
int n_kills, // number of kill
doubles& p_adjacent, // probability of exactly n_kills, adjacent onl
doubles p_not_adjacent ) { // probability of exactly n_kills, non-adjacent only

int n = pk.size();

if ( n_kills < 0 ) {
cerr << "The number of kills of interest, " << n_kills
<< ", must be zero or greater" << endl;

exit( 1 );

if ( n_kills > n ) {
cerr << "Impossible since the number of kills of interest, " << n_kills
<< ", exceeds the number of elements, * << n << endl;

exit( 1 );

vector< Prob > p = pk;
vector< bool > bit( n );
p_adjacent = 0.;
p_not_adjacent = 0.;

for ( unsigned int i = 0; 1 < pow( 2, n ); i++ ) {
~decode( i, bit };

int count = 0;
for ( int J = 0; J < n; j++ ) count += bit{ 3} );

Lf ( count f= n_kills ) continue;

bool adjacent = false;
1f ( n_kills == n )
adjacent = true;
else {
for ( int § = 0; 3 < n - n_kills + 1; J++ ) {
bool ex = true;
for ( int k = 0; k < n_kills; k++ ) ex &= bit[ J + k };
adjacent |= ex;

)

double prod = 1.;

for ( int k = 0; k < n; k+t+ ) {

if ( bit{ k 1 Yy pl k } = pki k ]
else pl k] = tpk[ k 1;

prod *= p[ k };

if { adjacent ) p_adjacent += prod;
else p_not_adjacent += prod;

}
return Prob( p_adjacent + p_not_adjacent );

friend
Prob evaluate( Prob( *ft )( vector< Prob > ), // function pointer to fault tree

vector< Prob > pk ) { // pk vector
return ft{ pk );

friend

Prob evaluate( Prob( *ft )( vector< Prob > ), /7 function pointer to fault tree
vector< Prob > pk, // pk vector
int index ) { // one repeated index

assert( 0 <= index && index < pk.size() ):
vector< Prob > p = pk;

double el =~ pk[ index ];
double e2 = Ipk[ index };

pl index ) = KILLED;
double pl = el * ft( p );

pl index ] = NOT_KILLED;
double p2 =~ e2 * ft( p );

return Prob( pl + p2 );
}

friend
Prob evaluate( Prob( *ft )( vector< Prob > ), // function pointer to fault tree
vector< Prob > pk, // pk vector
int indexl, /7 first repeated index
int index2 ) { // second repeated index
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agssert( 0 <= indexl && indexl < pk.size() );
vector< Prob > p = pk;

double el = pk[ indexl J;

double e2 = Ipk[ indexl 1};

pl indexl } = KILLED;

double pl = el * evaluate( ft, p, index2 );
pl indexl ) = NOT_KILLED;

double p2 = e2 * evaluate{ ft, p, index2 );

return Prob( pl + p2 );
}

friend

Prob evaluate( Prob( *ft )( vector< Prob > ),
vector< Prob > pk,
vector< int >index ) {

// pk vector

int m = index.size();
int n = pk.size():
assert( 0 <= m & m <= n );

if (m ==
if (m ==
if (m ==

0 ) return evaluate( ft, pk );
1 ) return evaluate( ft, pk, index{ 0 ] });
n ) return evaluate_all( ft, pk );

int indexl = index.back(); // get last index

assert( 0 <= indexl && indexl < pk.size() );
index.pop_back(); // decrement the index vector
vector< Prob > p = pk;

double el = pk[ indexl ];

double e2 = Ipk{ indexl ];

pl indexl ] = KILLED;

double pl = el * evaluate( ft, p, index );
p{ indexl ] = NOT_KILLED;

double p2 = e2 * evaluate( ft, p, index );

return Prob{ pl + p2 );
}

// evaluate without making any assumptions regarding repeated
// gives correct answer even if not all indices are repeated,

friend
Prob evaluate_all( Prob( *ft )( vector< Prob > ),
vector< Prob > pk )} { // Pk vec
int n = pk.size();
vector< Prob > p( n ), state( n );
vector< bool > bit( n );
double prob = 0.;
for ( int L1 = 0; 1 < pow( 2, n ); i++ ) {
_decode( i, bit );
double prod = 1.;

for ( int §J = 0; J < n; j++ ) {
if ( bit{ 3 1 ) pl J ] = pk( 1;
else pl 31 =1tpk[ J 1;
prod *= p[ j§ 1;
state{ j ] = Prob( bit{[ j ] );

prob += prod * ft( state );

return Prob( prob );

//

overloaded logical operators

friend Prob operatorl|( const Probs a, const Probs b

return Prob( a._p + b._p - a._p * b._p );

a, const Probs b ) {

friend Prob operators&( const Probs

return Prob( a..p * b._p );

friend Prob operator”( const Probs a, const Probs b )

return Prob( a._p +b._p - 2. * a._ p*b. p);

//

overloaded arithmetic operators

friend Prob operator+( const Prob& a, const Probs b )

return Prob( a._p + b._p );
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// function pointer to fault tree

// repeated index vector

// no index occurs more than once
// only one index occurs more than once
// all indices occur more than once

indices
but does take longer

// function pointer to fault tree

tor

// logical OR

// logical AND

// logical EXCLUSIVE OR

// Prob + Prob




friend Prob operator+{ const Prob& a, double b ) { // Prob + double

return Prob( a._p + b );

friend Prob operator+( double a, const Probs b ) { // double + Prob

return Prob( a + b._p );
}

friend Prob operator-( const Prob& a, const Prob& b ) { // Prob - Prob

return Prob( a._p - b._p );

friend Prob operator-( const Probs a, double b ) { // Prob - double

return Prob( a._p - b );

friend Prob operator-( double a, const Probs b ) { // double - Prob

return Prob( a - b._p ):

friend Prob operator*({ const Probs a, double s ) { // Prob * double

return Prob{ a._p * 8 ):

}
friend Prob operator*( double s, const Probs a ) { // double * Prob

return Prob( a._p * s );

friend Prob operator/( const Probs a, double s ) { // Prob / double
assert( s >= 0., );
return Prob( a._p / s ):
// overloaded stream operators
friend istreams operator>>( istreams is, Probs a ) { // input Prob
double p;
is >> p: // enter the probability
1f ( 0. <= p && p <= 1. ) {
a..p ™ p;
return is;
else {
cerr << "Invalid input: value must be between 0 and 1." << endl
<< "Program Stopped." << endl;
exit( 1 );
1
}
friend ostreams operator<<( ostream& os, const Probs a ) { // output Prob

return oS << a._p;

public:
Prob({ double p = 0. ) { // constructor with default of zero

assert{ 0. <= p && p <= 1. ); // p must be in the interval [0,1]
~p = p;

“Prob( void ) { // default destructor
}
Prob( const Prob& a ) : _p( a..p ) { // copy constructor
}
Prob& operator={ const Probs a ) { // assignment operator
if ( this I= &a ) _p = a._p;
return *this;
Prob& operator=( const doubles p ) { // assign a probability
P;

P -
reiurn *thils;

Prob operatori( void ) { // logical NOT

return Prob( 1. - _p );
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Prob operator™( void ) {

return Prob( 1. - _p );

// overloaded logical operators
Prob& operator|=( const Probs a ) {
-p+= (1. - p) *a.p;
assert( 0. <= _p && _p <= 1. );
return *this;

Probs operator&=( const Probs a ) {

-p *=a. p;
assert( 0. <= _p && _p <= 1. ):;
return *this;

1

Probs operator®=( const Probs a ) {
p+=(1. - p-_p) *a._p;
assert( 0. <= _p && _p <= 1. );
return *this;

}

// overloaded arithmetic operators
Probs operator+=( const Probs a ) {

-p += a._p;
assert( 0. <= _p && _p <= 1. );
return *this;

Probs operator+={ double p ) {
-p += p;
assert( 0. <= _p && _p <= 1. );
return *this;

Prob& operator-=( const Probs& a ) {

= a._p;

assert( 0. <= _p & _p <= 1. );
return *this;

}

Prob& operator-=( double p ) {
P = p;
assert( 0. <= _p && _p <=1. );
return *this;

Probs operator*=( double s ) {
assert( s >= 0. );
—p *=s5;
return *this;

}

Probs operator/=( double s ) {
assert( s > 0. );
P /= s;
return *this;

}

// conversion operator
operator double( void ) const {

return _p;

// access functions
double p( void ) const {

telury _p;

1
private:

friend

// logical NOT

// logical OR assignment

// logical AND assignment

// logical EXCLUSIVE OR assignment

// addition assignment from Prob

// addition assignment from double

// subtraction assignment from Prob

/7 subtraction assignment from double

// multiplication assignment

// division assignment

// return probability value

// return probability value

unsigned int _encode{ const vector< bool >& v ) {
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const unsigned int BITS_PER_BYTE = 8;

const int N = v.size();

assert( N <= BITS_PER_BYTE * sizeof( unsigned int ) );
unsigned int s = ( unsigned int )( v{ 0 ] );

for (int i = 1; 1 < N; 8 += v[ i++ ] ) 5 *= 2;

return s;

1

friend
void _decode( unsigned int s, vector< bool >& v ) {

const unsigned int BIT = 1;
const int N = v.size();

v = vector< bool >{ N, false );
for ( int £ = 0; i < N; i++ ) V[ N-1 -1 ] = ( 8 & ( BIT << 1 ) );

double _p; // probability value
}:
#endif
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