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Abstract-Development of objective measures 
for comparing genome data has become an 
important goal in computational genomics. 
Gene length distribution histograms derived 
from the predicted protein-coding gene 
populations of decoded genomes were 
considered as tools for genomic comparison. 
The first and second moments of the 
histograms map the decoded genomes as 
isolated points onto an Euclidean plane. The 
clustering of the genomic points on the plane 
preserves the separation of the three domains 
of life. The mapping of genomes onto a plane 
allows for the use of vector analysis in the 
study of genome evolution. 
Keywords-computationa genomics; informatics 

 
I. INTRODUCTION 

 
The number of decoded genomes from all 
domains of life is rapidly increasing.  The value 
of such genome data for evolutionary studies lies 
in comparison. Previously, macromolecules 
involved in the transcription/translation 
apparatus were compared across genomes in the 
investigation of the evolution of species [1]. The 
life forms on Earth were grouped into three 
domains (bacteria, archaea, and eukarya) 
according to the similarity in the sequences of 
small rRNA subunits. The resulting phylogenetic 
tree separates bacteria from the lineage that later 
diverged into archaea and eukarya at its earliest 
branching.  Recent studies tracing the time lines 
of different genes (proteins) brought results that 
are in conflict with this widely endorsed 
universal tree of life. Moreover gene histories do 
not trace the significant lateral transfer of genes 
between organisms. Such transfers were shown 
to occur between organisms that belong to 
different domains or subdomains [2].  
  
In this study we have investigated the potential 
benefits of arranging predicted protein-coding 
genes of a genome in the order of increasing 
gene length. The most immediately obvious 
benefit is that the data then gains a geometric 

shape and thus become amenable to standard 
signal analysis. Moreover, using wavelet 
decomposition it may be possible to identify the 
impact on the signal of such factors as errors in 
gene annotation, lateral horizontal transfer, and 
adaptive gene loss. The method proposed in this 
article provides a powerful tool for determining 
the direction of evolutionary movement of 
species due to the forces of lateral gene transfer 
and adaptive gene loss.    
 

II. METHODOLOGY 
 
Sets of annotated proteins for the decoded 
genomes that were discussed in this article were 
retrieved from the site 
ftp://ncbi.nlm.nih.gov/genbank/genomes.   The 
decoded genomes used in the study are 
composed of 6 archaea, 18 bacteria and 1 
eukaryote. Modified lists for predicted protein-
coding genes for A. pernix were obtained from 
Natale et al. (12) at 
ftp://ncbi.nlm.nih.gov/pub/koonin/Apernix.  
We used the MATLAB wavelet decomposition 
software to express gene length histograms in 
terms of a low-frequency approximation to the 
mean trend and 4 detail oscillatory signals, each 
having a different time scale [21].  We have used 
three different types of mother wavelets 
(Daubechies, Haar, and Shannon wavelets) in 
decomposition for each histogram, and the 
results were identical. The wavelet analysis used 
here decomposes the signal into a fourth-level 
approximation (A4) and four detail signals 
corresponding to different characteristic scales. 
 
Frequency distributions of random variables can 
be represented by a set of distribution moments. 
In this study we considered the moments defined 
as follows:  
 
M1 = {Ó [n (L) L]}/N  (1) 
      
M2 = {{Ó [n (L) L2]}/N}0.5 (2) 
  



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Signal and Noise in Gene Length Distributions of Decoded 
Genomes

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Biomedical Engineering The Catholic University
of America Washington, DC 20064

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document
contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



 2

In these equations, N denotes the number of 
protein coding genes in a genome, L is the gene 
length and n is the number of predicted protein-
coding genes at that gene length. The summation 
is over all possible gene lengths ranging from 1 
codon to N codons. 
 

III. RESULTS AND DISCUSSION 
 
Gene Length Histograms 
Our study focused on the predicted protein-
coding gene populations of six archaeal and 
eighteen bacterial genomes presented by the 
National Center for Biotechnology Information 
prior to January 15, 2001. Yeast was the only 
eukaryote considered in the study.  Figure 1 
shows gene length histogram of Aeropyrum 
pernix (ap2) predicted by Natale et al. [2].  
 

 
Figure 1Length distribution of predicted protein-
coding genes for Aeropyrum pernix (ap2) and its 
wavelet decomposition into a mean 
approximation (A4) and oscillatory detail 
components (D1 to D4). 
 
Number of genes per gene length undergoes 
significant oscillations as the gene length 
increases one codon at a time from a minimum 
of about 50 codons to about 1400 codons. The 
oscillations depicted in D2 to D4 correspond to 
characteristic length scales increasing 2, 4, and 8 
folds. The mean trend for Aeropyrum pernix is 
such that the number of genes decayed 
exponentially with increasing gene length 

following its peak around 101 codons. Note that 
the spike at about 101 codons is reflected in the 
mean approximation (A4) as well as in the detail 
curve (D1) with the lowest length scale. The 
figure also underscores the decreasing trend of 
the amplitude of oscillations with increasing 
characteristic length.   
  
The histograms for decoded genomes could be 
partitioned into subsets according to geometric 
shape but in detail all were distinct from each 
other, and thus had the potential to be genomic 
signatures. The histogram for Escherichia coli 
shows no significant jump in the number of 
predicted proteins at 101 amino acids and the 
mean trend of the histogram resembles a skewed 
Gaussian distribution. Yeast, on the other hand, 
shows a significant jump at 101 codons but its 
genes are distributed over a much larger range of 
gene length than those that belong to Aeropyrum 
pernix. The discontinuity at 101 codons is quite 
apparent in some archaea including Pyrococcus 
horikoshii (phor). Its close phylogenic relative 
Pyrococcus abysii (paby) does not exhibit a 
sharp increase in the number of genes at this 
gene length. The biology behind the jump at 101 
codons is not yet well understood. 
 
Mapping of decoded genomes onto M1-M2 
plane 
 
We have determined the distribution moments 
M1 and M2 of the gene length distributions of 
decoded prokaryotes and yeast, as described in 
the methods section. Important features of a 
probability distribution can often be captured by 
a truncated set of distribution moments. The 
parameter M1 corresponds to the average gene 
length in the predicted protein-coding genes of a 
genome. The symbol M2 is the radius of gyration 
of the gene length histogram.  
 
Figure 3 shows M1 plotted as a function of M2 
for the predicted protein-coding gene populations 
of the decoded genomes considered in this study. 
Each decoded genome is represented as a point 
in the M1-M2 plane. Projection of predicted gene 
histograms onto a plane is reminiscent of the 
method in proteomics in which all known 
proteins are mapped as points on a plane using 
electrophoresis. The organisms to which the 
genomic points belong to are indicated in Fig. 2 
by using the shorthand representations of the 
genome names, as presented in the methods 
section. The figure shows the domains of archaea 
and bacteria occupying different regions of the 
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M1-M2 plane. Yeast is positioned outside the 
regions occupied by archaea and bacteria.  

 
Figure 2 The spatial positions of decoded 
genomes on the M1-M2 plane. The coordinates 
of each genomic point were obtained by 
computing the mean gene length (M1) and length 
of gyration (M2) from the predicted gene length 
histogram of the decoded genomes. Species 
belonging to archaea are represented by red 
rectangles, bacteria by blue trangles, and yeast 
by a green star. The COG1 point is a purple star 
and and COG2 a purple circle. 
 
The gene length histogram of the only 
completely decoded crenarchaeote, Aeropyrum 
pernix (ap1) is separated by the cluster of the 5 
archaeal genomes from euryarchaeotes, which 
are on the other side of the deepest division of 
the archaea. However, when the alternative gene 
annotation predicted by Natale et al. [2] is used, 
this organism occupies a position on the M1-M2 
plane (ap2) neighboring euryarchaeotes. Note 
also that Pyrococcus abysii is separated from this 
cluster and positioned closer to the interface 
between bacteria and archaea. The distance 
between Pyrococcus abysii and the rest of the 
decoded archaeal genomes may be due to the fact 
that Pyrococcus abysii possesses a larger set of 
metabolic genes than its phylogenic relative 
Pyrococcus horikoshii [12]. In its adaptation to 
heterotrophic life style, as a result of 
evolutionary forces, Pyrococcus horikoshii might 
have lost some of its metabolic pathways 
including that of aromatic amino acid pathway.  
 

The genome coordinates shown in Fig. 2 reflect 
the present states of the organisms under 
consideration. The present positions of species 
on the M1-M2 plane are determined not only by 
phylogeny but also by the external evolutionary 
forces acting on them.  
 
A point of reference to the distribution of 
decoded genomes on the M1-M2 plane could be 
obtained by computing the M1 and M2 values of 
the gene length histograms derived from the 
presently available COGs. We determined the 
minimum gene length and the average gene 
length for each COG.  Then we created two 
histograms by determining the number of COGs 
that either have the same minimum gene length 
(COG1) or the same average gene length 
(COG2). Since each COG represents a cluster of 
ortholog genes, the resulting histograms 
represent different approximations to the actual 
gene length distribution of the so-called ancestor 
cells or cell clusters. Note that the histogram for 
COG1 is similar in shape to the histogram 
corresponding to Aeoropyrum pernix [3] 
whereas the histogram for COG2 exhibits a 
wider distribution around the mean, as is the case 
with Escherichia coli.  Notice that the COG2 
point falls in between the regions of archaea and 
bacteria in the M1-M2 plane whereas the COG1 
is positioned further away in the domain of 
archaea (Fig. 2). If COG2 were to approximate 
the location of the ancestor cells on the M1-M2 
plane, one would conclude that archaea might 
have moved toward lower left by primarily 
shedding genes as a result of evolutionary 
adaptation. Perhaps, the lateral acquisition of 
genes from archaea as well as bacteria was not 
enough to compensate for the drastic loss of 
genes from the ancestor gene pool. On the other 
hand, bacteria and eukaryotes might have 
increased their gene contents by gene 
duplication, lateral gene transfer, and other 
means. This raises the question whether COG1 
or COG2 is a closer representation of the 
ancestor cell clusters. The answer must depend 
on the history of evolution of proteins. Is the 
shortest protein in a COG the most ancient? 
Recent genomic studies uncovered lineage 
specific expansions of domains and architectures 
of certain protein types in eukaryotes [4, 5]. The 
length of a protein carrying out a certain function 
would be expected to increase with the 
complexity of an organism due to increasing 
levels of regulation in protein expression.   
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IV. CONCLUSIONS 
 
Collection of estimated protein-coding gene 
populations for each decoded genome comes to 
life and become visual objects when the 
population is presented as a distribution of the 
number of predicted genes as a function of gene 
length. These histograms comprise noisy signals 
that potentially contain important data 
concerning the evolution of species. Embedded 
in predicted gene length histograms is the 
genomic signature of an organism. The 
decomposition of the histogram signals provides 
a powerful technique for detecting errors in gene 
annotation and potentially identifying the 
laterally transferred gene clusters. The low 
frequency components of the histograms may be 
used to classify decoded genomes and shed light 
into their evolution. Protein-coding gene 
population distributions, when analyzed as 
nonlinear, stochastic signals, will likely to reveal 
further insights into the correlation between 
genomic structure, time, and environment. 
 
When the average gene length M1 of the 
predicted protein-coding genes is plotted against 
the length of gyration parameter M2, the 
resulting dot plot separates the decoded genomes 
into clusters that reflect the three domains of life. 
The plot of genomic projections onto a plane 
allows for the computation of distances and 
angles between pairs of genomes. As the number 
of decoded genomes increases, M1-M2 plots of 
decoded genomes will capture the snap shot 
portrayal of the present-day organisms. Mapping 
of genomes onto a plane provides a visual aide as 
to spatial location of a newly decoded organism 
in relation to the organisms in various domains 
of life.  
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